1. Ecuaciones de Chapman-Kolmogorov. Probabilidad absoluta de encontrarse en un estado tras n transiciones.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Ecuaciones de Chapman-Kolmogorov. Probabilidad absoluta de encontrarse en un estado tras n transiciones."

Transcripción

1 SESIÓN b CASIICACIÓN d CAENAS d ARKOV Ecuacios d Chama-Kolmogorov robabilidad absolua d corars u sado ras rasicios Timos d r aso Clasiicació d sados Class d ua Cada d arov riodicidad Ejmlos robabilidads d absorció IOE ilomaura d Esadísica Clasiicació d Cadas d arov SEANA UC

2 SESIÓN b coiuació) ESTAO ESTACIONARIO EN Cd robabilidads a largo érmio Númro mdio d visias a u sado rasicios Cálculo d las a largo érmio Coss asociados a los sados 5 Coco d sado saciario Clasiicació d sados 6 Cadas d arov rgódicas Ejmlos IOE ilomaura d Esadísica Esado Esacioario C d SEANA UC

3 ECUACIONES E CHAAN KOOGOROV robabilidads codicioals rasicios: Ρ X j X i O ara,,, K i,j j ara K,,, i ORA ATRICIA E AS EC E CHAAN KOOGOROV: IOE ilomaura d Esadísica Clasiicació d Cadas d arov UC

4 UC IOE ilomaura d Esadísica UC IOE ilomaura d Esadísica Clasiicació d Cadas d arov robabilidad absolua d corars u sado ras rasicios S suo coocidas las robabilidads iicials X i) ) ) j X Noació j : S busca: robabilidad d qu la rasició la cada sé l sado j ) ) ) ) ) ) O ) [ ] T )

5 SESION E ROBEAS Ua ida d oograía almaca u modlo aricular d cámaras ara ror l soc ud cuar didos smaals a su disribuidor a dmada d uidads dl modlo la smaa s ua va oisso co E[ ] Sa Y l úmro iicial d cámaras, Y l úmro d cámaras al ial d la ª smaa, Y al ial d la sguda c os sábados or la och s cúa u dido d S cámaras al disribuidor si la ida l ivl d xiscias s <s ) El dido s srvido uualm l lus or la mañaa Si dura ua smaa o ud saisacrs las dmadas d los clis, ésas s ird IOE ilomaura d Esadísica Cadas d arov Iroducció UC

6 UC IOE ilomaura d Esadísica UC IOE ilomaura d Esadísica Cadas d arov Iroducció ) ) ) 8 ) ) ) 68, { } ) )

7 Ejmlo d la ida d cámaras: Suogamos: S id: ) T ) [ ) ) ) ) ] [ ] T T ) S uiliza la orma ) ) : ) ) ) T T ) ) ) [ ] [ ] IOE ilomaura d Esadísica Clasiicació d Cadas d arov UC

8 IOE ilomaura d Esadísica TIEOS E RIER ASO Y, Va úmro d rasicios ara visiar l sado j or rimra vz arido dl sado i Noació: Rlacios d rcurrcia: OS CASOS: ) Y ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ara i jj jj Clasiicació d Cadas d arov jj < El sado j ud o visiars uca dsd l i < j ) jj ) jj < Εsado Esado jj RECURRENTE TRANSITORIO UC

9 Cálculo d las E [ ] Y ) ) ) ) ) ) [] j j j 6 Ε [ Y ] ) ) ),, < IOE ilomaura d Esadísica Clasiicació d Cadas d arov UC

10 [] ) [] I

11 CASES E EQUIVAENCIA E UNA CAENA E ARKOV Accsibilidad: u sado j s accsibl dsd l i si al qu > Noació: i j ) Es osibl corar u aso qu coc i co j sobr l diagrama d rasicios Ejmlo: 7, ro 7 os sados i, j comuica r sí si i j & j i Noació: i j ) s rlació d quivalcia: a) i j j i b) i j, j i S admi i i ) iició d clas: Ci ){ j i j } j Ci) Ci) Cj) j Ci) Ci) Cj) Ø IOE ilomaura d Esadísica Clasiicació d Cadas d arov UC

12 ERIOICIA iició d sado riódico y ariódico El ríodo d u sado rcurr j, s l ro d j al qu l los ara los qu la orma d j, r algú y ara,,,, U sado rcurr j s ariódico si xis u ro osiivo r al qu ) r ) > s d jj > & jj ) r > jj A ERIOICIA AERIOICIA) ES COÚN A TOOS OS ESTAOS E UNA CASE { } > {,6,8,,} { } > {,,,} IOE ilomaura d Esadísica Clasiicació d Cadas d arov UC

13 ROBABIIAES E ABSORCIÓN rscia d class absorbs Esrucura d la mariz d robabilidads d rasició Esados, Corao vual Esado sdido Esados,5 Corao o Esado 6 Excdcia A 6 B IOE ilomaura d Esadísica 6 R A A R Q Clasiicació d Cadas d arov B B R Abs Q UC

14 robabilidads d absorció iició Class rasiòria j i Class absorb 6 5 r i i sa rasiori ; j sa rcorr, j Abs R Q R Q robabilidad d qu arido d i rasiorio) s visi j rcurr) or rimra vz ariz : Ídics d ilas : sados rasiorios Ídics d columas: sados rcurrs IOE ilomaura d Esadísica Clasiicació d Cadas d arov UC

15 UC IOE ilomaura d Esadísica UC IOE ilomaura d Esadísica Clasiicació d Cadas d arov ) R R Q I Q R m m m m ara l sado absorb 5 6

16 R A A B B R Q 5 6 Co corao d io iicialm, qu robabilidad hay d sr dsdido? IOE ilomaura d Esadísica Clasiicació d Cadas d arov UC

17 SESIÓN b coiuació) ESTAO ESTACIONARIO EN Cd robabilidads a largo érmio Númro mdio d visias a u sado rasicios Cálculo d las a largo érmio Coss asociados a los sados 5 Coco d sado saciario Clasiicació d sados 6 Cadas d arov rgódicas Ejmlos IOE ilomaura d Esadísica Esado Esacioario C d SEANA UC

18 Númro mdio d visias a u sado j rasicios X i - - Z si arido dl sado i, s llga a j l ríodo corariam Y Z va Nº d visias al sado j rasicios arido d i) Ε [ ] [ ] E Z Y IOE ilomaura d Esadísica Esado Esacioario C d SEANA UC

19 ROBABIIAES A ARGO TÉRINO ara los sados i,j dro d ua clas C crrada s vriica: No dd d i [ E ] Y lim lim j, j C Irració: j racció d los riodos qu s visia j j jj imo mdio d rcurrcia dl sado j vriica: i C i,, i i C Ejmlo: IOE ilomaura d Esadísica Esado Esacioario C d SEANA UC

20 UC IOE ilomaura d Esadísica UC IOE ilomaura d Esadísica Esado Esacioario C d SEANA ROBABIIAES A ARGO TÉRINO Suogamos ua úica clas crrada C {,, } ) Comrobació: ado qu C j lim j, T i T T i T i i lim lim lim I i, as robabilidads a largo érmio vriica: T a cuació T maiisa qu la mariz I - o i ivrsa ya qu

21 UC IOE ilomaura d Esadísica UC IOE ilomaura d Esadísica Esado Esacioario C d SEANA CÁCUO d las ROBABIIAES a ARGO TÉRINO a T ) ), i C b i Vriica las cuacios: ud limiars ua ila d las a) y susiuirla or b) as solucios úicas) vriicará > Ejmlo:, T

22 ) Coss asociados a sados class crradas S X s ua v a iddi dl imo aa ) qu oma valors S, S, K, S asociada a los sados : ) ) ) El cos mdio srado or rasició ras rasicios vi dado or: Ε S ) ara las class crradas riódicas o ariódicas) xis l lími, lim ) X j j C S ud dmosrar qu l cos mdio or rasició a largo érmio vi dado or: lim Ε X ) S j) j IOE ilomaura d Esadísica Esado Esacioario C d SEANA S j C UC

23 ESTAO ESTACIONARIO No dd d i iició: S rsa sado sacioario cuado ara cualquir sado j: j ) X ) j j iddim d ls robabilidads d sado iicial j ) [ ] Si l xis ara la cada, l vcor T disribució d robabilidads d los sados régim sacioario s domia Vriica: i, i i Equivalm: j IOE ilomaura d Esadísica Esado Esacioario C d SEANA UC

24 CAENAS ERGÓICAS iició Sólo hay ua clas y ésa s ariódica Ejmlo d la ida d cámaras: Tras 8 rasicios, las robabilidads codicioals d los sados o dd d la siuació iicial 8 as ilas d la mariz so idéicas a dígios d rcisió) El sado iicial s irrlva: T T ) ) 8 ) [* * * *] [ ] IOE ilomaura d Esadísica Esado Esacioario C d SEANA UC

25 CAENAS ERGÓICAS Si ua cada s rgódica rsa d acurdo co la diició arior) y admás s vriica qu: a) b) > Cuáls d sas cadas rsa sado sacioario? IOE ilomaura d Esadísica Esado Esacioario C d SEANA q UC

26 UC IOE ilomaura d Esadísica UC IOE ilomaura d Esadísica Esado Esacioario C d SEANA CAENAS ERGÓICAS jmlo) q q q q q O O O O O O O O O ) Π j j, Π i j i j i j i j i,,, Π - Avría sgura - q - ) q q q q - q

27 SESIÓN E ROBEAS rmiar las class d la cada:

28 ROBEAS ERIOICIA Y CASES E AS CAENAS:

29 SESION E ROBEAS Ua ida d oograía almaca u modlo aricular d cámaras ara ror l soc ud cuar didos smaals a su disribuidor a dmada d uidads dl modlo la smaa s ua va oisso co E[ ] Sa Y l úmro iicial d cámaras, Y l úmro d cámaras al ial d la ª smaa, Y al ial d la sguda c os sábados or la och s cúa u dido d S cámaras al disribuidor si la ida l ivl d xiscias s <s ) El dido s srvido uualm l lus or la mañaa Si dura ua smaa o ud saisacrs las dmadas d los clis, ésas s ird IOE ilomaura d Esadísica Cadas d arov Iroducció UC

30 UC IOE ilomaura d Esadísica UC IOE ilomaura d Esadísica Cadas d arov Iroducció ) { } ) ) ) 8 < ) ) ) 8 ) ) ) 68 ) ) 68 ) ) 6 ) ) 68, ) ) 6 ) ) ) 68 ) ) 68 ) { } ) ) ) 8 <

31 UC IOE ilomaura d Esadísica UC IOE ilomaura d Esadísica Cadas d arov Iroducció ) ) ) 8 ) ) ) 68, { } ) )

32 Ejmlo d la ida d camaras Ua d ls quacios rsula rduda, s o surimir la quara i rsoldr l sisma l rsula és [ ] T ormulació maricial ) I T T T T El ms mig d rcurrècia dls sas és, uias d rasició, és a dir smas

33 Ssió c OEIZACIÓN E TIEO E VIA rocso d Rovació iició: Colcció d variabls alaorias {τ } discras o coiuas) co ídic discro Id úuam ució d dsidad τ ució d disribució τ Idéicam disrib τ τ τ τ - τ Variabls alaorias imoras: Timo hasa l sucso : Númro d rovacios N) ució d rovació: IOE ilomaura d Esadísica iició d rocso d Rovació UC U C

34 TEOREA EEENTA E RENOVACIÓN Caso τ -Erlag S di u uvo rocso d rovació {τ' } co τ' T ara ado aas, E[τ ] d m) d τ τ τ τ τ' τ τ τ' τ' m) m) ) a Caso τ Wibull ) x ) τ b a, b E[τ ] 5, E[τ '],8 d m) d m) m) IOE ilomaura d Esadísica rocso d Rovació Torma lmal d Rovació UC

35 áquia áquia τ τ τ N N N5 N N5 alm 9)

36 UNCIÓN E IABIIA UNCIÓN E TASA E AOS

37 TIEO E VIA CONICIONA ROIEA Caso xocial Auscia d mmoria τ i- τ i θ s IOE ilomaura d Esadísica UC

38 CARACTERÍSTICAS COUNES EN OS SE Timo d rmacia l SE imo d sra cola) imo d srvicio Timo d sra cola Timo d srvicio Isa d rada l SE Timo d rmacia l SE Isa d salida dl SE rocso d llgadas: os isas los qu s roduc las icios so alaorios: j los isas d llgada d los clis a ua ida) odlizació: τ τ τ τ - τ rocso d srvicio: os imos d srvicio so ambié alaorios: va coiua) Irvalo τ r llgadas: rocso d rovació IOE ilomaura d Esadísica TEORÍA E COAS Iroducció y roidads básicas UC

2. Definición de Cadena de Markov Propiedad Markoviana y estacionariedad. 3. Matriz de Probabilidades de transición y Diagrama de estados.

2. Definición de Cadena de Markov Propiedad Markoviana y estacionariedad. 3. Matriz de Probabilidades de transición y Diagrama de estados. SESIÓN a CAENAS E ARKOV INTROUCCIÓN Noción d rocso Esocásico finición E asociados a un sisma finición d Cadna d arov roidad aroviana y sacionaridad 3 ariz d robabilidads d ransición y iagrama d sados 4

Más detalles

El transistor bipolar de unión (BJT)

El transistor bipolar de unión (BJT) l rasisor biolar d uió (JT roducció 1948-1949: illia hockly, Joh ard y alr H. raai dscubr s disosiivo y modla su riciio d fucioamio. s l rasisor más uilizado circuios discros. Prsa mayors vlocidad d rsusa

Más detalles

Cap. II: Principios Fundamentales del Flujo de Tránsito

Cap. II: Principios Fundamentales del Flujo de Tránsito Cap. II: Pricipios Fudamtals dl Flujo d Trásito Diagrama Espacio-Timpo Distacia 1 2 Itralo (i) 3 4 5 6 Espaciamito () Timpo Flujo, q Dsidad, Vlocidad, Tasa horaria quialt a la cual trasita los hículos

Más detalles

Problemas Tema 2: Sistemas

Problemas Tema 2: Sistemas SISTEMAS Y CIRCUITOS ~ PROBLEMAS Curso Académico 00900 Problmas Tma Sismas PROBLEMA. Dados los siguis sismas impo coiuo las sñals d rada idicadas, drmi las sñals d salida corrspodis ( ) x sñal d rada x

Más detalles

Demostraremos estos resultados por medio de la Función generatriz de momentos y algunos de los resultados ya obtenidos en la Práctica 4.

Demostraremos estos resultados por medio de la Función generatriz de momentos y algunos de los resultados ya obtenidos en la Práctica 4. ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 8: UESTREO EJERCICIO Dmosrarmos sos rsulados or mdio d la Fució grariz d momos y alguos d los rsulados ya obidos la Prácica 4. Sa, ocs, + + +, al qu Broulli (. Eocs: (

Más detalles

PROBLEMAS TEMA 4 EJERCICIO 1 (Ej 9.15 de Fernández Abascal)

PROBLEMAS TEMA 4 EJERCICIO 1 (Ej 9.15 de Fernández Abascal) PROLMAS TMA JRCICIO j 9.5 d Frádz Abascal La cotizació olsa d u cirto título s cosidra ua variabl alatoria ormalmt distribuida co arámtros dscoocidos, ro s diso d la siguit iformació: a ist u,5% d robabilidad

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Probabilidads y Estadística Comutación Facultad d Cincias Eactas y Naturals. Univrsidad d Bunos Airs Ana M. Bianco y Elna J. Martín 4 Variabls alatorias continuas Distribución Uniorm: Rcordmos qu tin distribución

Más detalles

3. Modelos Univariantes de Probabilidad. Curso Estadística. Modelos Univariantes

3. Modelos Univariantes de Probabilidad. Curso Estadística. Modelos Univariantes 3. Modlos Uivariats d Probabilidad Curso - Estadística Modlos Uivariats Procso d Broulli El rsultado d u rimto admit dos catgorías: Actabl y Dfctuoso. S rit l rimto vcs. La robabilidad d dfctuoso s la

Más detalles

Política Fiscal. Gobiernos de coalición o de intereses geográficos dispersos

Política Fiscal. Gobiernos de coalición o de intereses geográficos dispersos Política Fiscal Goiros d coalició o d itrss oráficos disrsos Goiros d coalició o d itrss oráficos disrsos Escario olítico dod l oiro stá comusto or dos artidos coalició:. Partidos ti rfrcias distitas sor

Más detalles

INTRODUCCIÓ ALS PROCESSOS ESTOCÀSTICS. CADENES DE MARKOV. MODELS DE LA INVESTIGACIÓ OPERATIVA PER L ANÀLISI DE SISTEMES FIB

INTRODUCCIÓ ALS PROCESSOS ESTOCÀSTICS. CADENES DE MARKOV. MODELS DE LA INVESTIGACIÓ OPERATIVA PER L ANÀLISI DE SISTEMES FIB INTRODUCCIÓ ALS ROCESSOS ESTOCÀSTICS. CADENES DE ARKOV. ODELS DE LA INVESTIGACIÓ OERATIVA ER L ANÀLISI DE SISTEES FIB TAULA DE CONTINGUTS. CADENES DE ARKOV. DEFINICIÓ DE CADENA DE ARKOV FINITA 5... Exemle:

Más detalles

Modelos Probabilísticos comunes

Modelos Probabilísticos comunes Modlos robabilísicos comus M. A. Vícor D. iilla Morá Faculad d Igiría, UNAM Rsum Iroducció. sayo d Broulli. Disribució d Broulli, drmiació d su mdia y d su variaza. rocso d Broulli. Disribució biomial,

Más detalles

Respuesta al escalón unitario

Respuesta al escalón unitario Rpua al caló uiario Epcificacio l domiio dl impo La ampliud duració d la rpua raioria db mar dro d lími olrabl dfiido E ima d corol lial la caracrizació dl raiorio comúm raliza uilizado u caló uiario a

Más detalles

APÉNDICE B HIDRÁULICA DEL REACTOR DE MEZCLA COMPLETA

APÉNDICE B HIDRÁULICA DEL REACTOR DE MEZCLA COMPLETA APÉNDIE B HIDRÁULIA DEL REATOR DE MEZLA OMPLETA B.1 REATOR DE MEZLA OMPLETA (fluj idal) El mdl d fluj u racr ral s cura algú pu r las cdicis d mzcla d ls racrs idals (racr d mzcla cmpla (RM) y racr d fluj

Más detalles

Modelo de Regresión Logística

Modelo de Regresión Logística Modlo d Rgrsión Logística Modlo d rgrsión qu lica l comortaminto d una variabl dndint discrta, Y, dicotómica n función d una o más variabls indndints cualitativas o cuantitativas. Los valors qu toma la

Más detalles

TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS

TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS Tma Sucsios Matmáticas I º Bach. TEMA SUCESIONES SUCESIONES Y TÉRMINOS EJERCICIO : Si l térmio gral d ua sucsió s a 0 Halla l térmio sgudo y l décimo. b) Hay algú térmio qu valga? Si hay dcir qu lugar

Más detalles

Un ejercicio relacionado con la función Li(x)

Un ejercicio relacionado con la función Li(x) Uivrsidad Iramricaa d Puro Rico - Rcio d Poc U jrcicio rlacioado co la fució Por: Eriqu Díaz Gozálz Uivrsidad Iramricaa d Puro Rico, Rcio d Poc. U poco d hisoria. E la búsquda para ua l qu idicara la disribució

Más detalles

EJERCICIOS RESUELTOS TEMA 1: PARTE 3

EJERCICIOS RESUELTOS TEMA 1: PARTE 3 Ejrcicios rsultos Tma part III): Límits d uncions º BCN EJERCICIOS RESUELTOS TEMA : PARTE 3 LÍMITES DE FUNCIONES. CONTINUIDAD Ejrcicios rsultos Tma part III): Límits d uncions º BCN ) Dada la guint unción:

Más detalles

En esta unidad vamos a aprender el proceso inverso de derivar, que se llama integrar. 2, la función F(

En esta unidad vamos a aprender el proceso inverso de derivar, que se llama integrar. 2, la función F( . PRIMITIV DE UN FUNCIÓN E sa uidad vaos a aprdr l procso ivrso d drivar, qu s llaa igrar. Diició: Ua ució F diros qu s ua priiiva d ora ució dada, si la drivada d F s, s dcir: F s priiiva d F Ejplo :

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio

Más detalles

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO CRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació e la maemáica

Más detalles

Sesión 2.c MODELIZACIÓN DEL TIEMPO DE VIDA

Sesión 2.c MODELIZACIÓN DEL TIEMPO DE VIDA Sesión 2.c ODEIZACIÓN DE TIEPO DE VIDA. Definición de roceso de Renovación. Función de renovación. Caso exonencial. Distribución k-erlang 2. Teorema Elemental de Renovación. 3. Función de Fiabilidad y

Más detalles

APUNTES DE CLASE ECONOMETRÍA I UDI ECONOMETRÍA E INFORMÁTICA. Y = Xβ + U, donde los parámetros se han

APUNTES DE CLASE ECONOMETRÍA I UDI ECONOMETRÍA E INFORMÁTICA. Y = Xβ + U, donde los parámetros se han APNTS D CLAS CONOMTRÍA I DI CONOMTRÍA INFORMÁTICA Prof. Rafal d Arc Rafal.darc@uam.s "CONTRAST DL PRDICTOR" o INTRVALO D CONFIANZA D LA PRDICCIÓN PNTAL N L MBRL a d las mdidas d bodad a posriori más frcum

Más detalles

III - Enfoques teóricos alternativos sobre inflación

III - Enfoques teóricos alternativos sobre inflación III - Efoqus óricos alraivos sobr iflació Iflació Dfiició y Mdició S dfi l ídic d rcios como: P =X g i f i i dod asumimos P = 1 (ivl d rcios dl ríodo bas). Para l caso cocro d uilizació d u ídic d Lasyrs

Más detalles

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO DECRECIENTE

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO DECRECIENTE Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO DECRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació a u

Más detalles

PENSUM DE ESTUDIOS DE INGENIERÍA DE SISTEMAS

PENSUM DE ESTUDIOS DE INGENIERÍA DE SISTEMAS O RÚBLICA BOLIVARIAA D VZULA UIVRSIDAD ACIOAL RIMTAL OLITÉCICA ATOIO JOSÉ D SUCR SUM D STUDIOS D IGIRÍA D SISTMAS SMSTR I 11015 MATMÁTICA I 4 2 0 6 5 -- 14012 DIBUJO I 1 3 0 4 2 -- 21012 IGLS I 1 0 3 4

Más detalles

6. Intervalos de confianza

6. Intervalos de confianza 6. Iervalos de cofiaa Curso 0-0 Esadísica Coceo de iervalo de cofiaa Se ha realiado ua ecuesa a 400 ersoas elegidas al aar ara esimar la roorció de voaes de u arido olíico.? Resulado Ecuesa Sí 0 ooros

Más detalles

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de

Más detalles

Señales y Sistemas. Análisis de Fourier.

Señales y Sistemas. Análisis de Fourier. Sñals y Sistmas Aálisis d Fourir. Itroducció El foqu d st capítulo s la rprstació d sñals utilizado sos y cosos ( otras palabras, xpocials complas). El studio d sñals y sistmas utilizado xpocials complas

Más detalles

8 Límites de sucesiones y de funciones

8 Límites de sucesiones y de funciones Solucioario 8 Límits d sucsios y d ucios ACTIVIDADES INICIALES 8.I. Calcula l térmio gral, l térmio qu ocupa l octavo lugar y la suma d los ocho primros térmios para las sucsios siguits., 6,,,..., 6, 8,,...,,,,...

Más detalles

PRÁCTICA 1: Análisis en el dominio del tiempo de sistemas continuos simples

PRÁCTICA 1: Análisis en el dominio del tiempo de sistemas continuos simples Sismas Sñals Crso 4/5 Igiría Iformáia PRÁCTICA : Aálisis l omiio l impo sismas oios simpls I.- Prosamio sñal Malab Tal omo s vio l rso arior Malab rabaa o úio ipo lmos: las maris. Los ipos aos básios o

Más detalles

CEPAL SERIE Manuales Nº 9. Sexta parte

CEPAL SERIE Manuales Nº 9. Sexta parte CEPAL SERIE Mauals Nº 9 Sxa ar 7 CEPAL SERIE Mauals Nº 9 Caíulo 4 El rocso d risió Sísis Ua caracrísica imora d los daos qu ublica acualm los INEs s qu sul xrimar u rocso d risió rcurr as d cosidrarlos

Más detalles

Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,...

Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,... TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN S llama sucsió a u cojuto d úmros dados ordadamt d modo qu s puda umrar: primro, sgudo, trcro,... Los lmtos d la sucsió s llama térmios y s

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d coido Págia Opradors difrcials sismas d cuacios Opradors difrcials Oprador aulador 6 fiició 6 Sismas d cuacios difrcials lials 9 Solució d u sisma, méodo d los opradors 9 Rsum 5 Bibliografía rcomdada

Más detalles

Análisis de Señales. Descripción matemática de señales

Análisis de Señales. Descripción matemática de señales Análisis d Sñals Dscripción mamáica d sñals Sñals Las sñals son funcions d variabls indpndins, poradoras d información Sñals lécricas:nsions y corrins n un circuio Sñals acúsicas: audio Sñals d vido: variación

Más detalles

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A cors loros. só más d dos dmsos Dcó: S... rbls lors dscrs l ucó d robbldd cou dl cor loro... s d como: ddo culqur couo A R...... P... P... A...... A...... s ucó ssc ls sgus rodds:.................. orm

Más detalles

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden: Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices

Más detalles

9 Momentos y funciones generatrices de Momentos

9 Momentos y funciones generatrices de Momentos 9 omos y fucos grarcs d omos Edgar Acua ESA 400 Edgar Acua 9. omos Sa ua varabl alaora s df su smo momo co rspco al org como μ E[ ], smpr qu l caso dscro y qu p < f d < l caso couo. Obvam, μμ..tamb, s

Más detalles

SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA 1: Problema Nº 5.34 Oppenheim

SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA 1: Problema Nº 5.34 Oppenheim SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA : Problma Nº 5.3 Opphim Obsrv l siguit sistma: Dtrmi y() Solució: El traycto d arriba produc, al multiplicar por Cos(/), traslació dl spctro

Más detalles

DECAIMIENTO RADIOACTIVO

DECAIMIENTO RADIOACTIVO DECIMIETO RDIOCTIVO El dcaimito radioactivo s idpdit dl modo d dcaimito, y s aplica a todos llos: α,β +, β -, CE (captura lctróica), γ, y fisió spotáa. Postulados: LEY DE DESITEGRCIO RDIOCTIV. La probabilidad

Más detalles

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8 Méodos Numéricos - cap. 7. Ecuacioes Difereciales PVI /8 Ecuacioes Difereciales Ordiarias (EDO Ua Ecuació Diferecial es aquella ecuació que coiee difereciales o derivadas de ua o más fucioes. Ua Ecuació

Más detalles

PENSUM DE ESTUDIOS DE INGENIERÍA MECÁNICA

PENSUM DE ESTUDIOS DE INGENIERÍA MECÁNICA O RÚBLICA BOLIVARIAA D VZULA UIVRSIDAD ACIOAL RIMTAL OLITÉCICA SUM D STUDIOS D IGIRÍA MCÁICA SMSTR I CODIGO ASIGATURAS T L HT/S U RQUISITOS C 11015 MATMÁTICA I 4 2 0 6 5 -- 14012 DIBUJO I 1 3 0 4 2 --

Más detalles

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones.

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones. reguta 6 utos Ua empresa de limpieza cotrata persoal e forma putual depediedo de las solicitudes de trabajo de sus clietes. ara el iicio de ua coferecia iteracioal, u cliete platea la limpieza a fodo del

Más detalles

El modelo de Solow-Swan con progreso tecnológico

El modelo de Solow-Swan con progreso tecnológico Céar Aúz Noa d Crciio Ecoóico UNVERSDAD NACONA MAYOR DE SAN MARCOS ACUTAD DE CENCAS ECONÓMCAS Uivridad dl Prú Dcaa d Aérica El odlo d Solow-Swa co progro cológico E a par hablaro d la jora cológica dl

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

Tema 4: Fenómenos de transporte de carga

Tema 4: Fenómenos de transporte de carga Elecróica de disosiivos Tema 4: Feómeos de rasore de carga Ca. : Se, Ca. 4: K. Kao rrasre de oradores movilidad resisividad efeco all ifusió de oradores Proceso de difusió Relació de Eisei Iyecció de oradores

Más detalles

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición. DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada

Más detalles

Z = número atómico o número de protones del núcleo Z = 1 (H); 2 (He + ); 3 (Li 2+ ).

Z = número atómico o número de protones del núcleo Z = 1 (H); 2 (He + ); 3 (Li 2+ ). CAPITULO. l átoo d idógo ) Atoo d idógo idogoid Z úo atóico o úo d poto dl úclo Z (H); (H + ); (Li + ). F q q / ε F q q / θ.6-9 cul.8 - u N u cul /( ε ) / φ V() -Z / ( u ) Hˆ Hˆ Hˆ + Ψ (, ) ψ ( )ψit( )

Más detalles

CASO DE ESTUDIO N 8. Análisis de un tornillo de transmisión

CASO DE ESTUDIO N 8. Análisis de un tornillo de transmisión Vrsió 01 CAPITULO POYECTO DE ELEMENTOS DE SUJECIÓN, ANCLAJE Y CIEE CASO DE ESTUDIO N 8 Aálisis u torillo trasmisió Vrsió 01 1. Itroucció Los torillos trasmisió stá somtios a cosirabls solicitacios bias

Más detalles

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n =

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n = Hoa Problemas Aálisis II /9 85.- Sea la fució oliómica: N R Demosrar que: i ii iii iv Solució: Cosideremos la ideidad: R N. Derivado e ambos miembros reseco de mulilicado desués or se obiee: - Derivado

Más detalles

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,

Más detalles

TEMA 1 INTRODUCCIÓN A LA TEORÍA DE LA SEÑAL

TEMA 1 INTRODUCCIÓN A LA TEORÍA DE LA SEÑAL EMA INRODUCCIÓN A LA EORÍA DE LA SEÑAL Vicor Moisés Hrádz Cham hdzcham@ux.s Sismas d rasmisió d Daos.ELEMENOS BÁSICOS DE UN SISEMA DE COMUNICACIÓN U sisma d comuicació básico sá compuso por: - fu - caal

Más detalles

EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3

EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3 Rpaso d Matmáticas E st apédic s hará u brv rpaso d las cuacios y fórmulas básicas d utilidad Química Física gral y Trmodiámica Química particular. EXPONENTES Y POTENCIAS Muchos úmros s xprsa forma más

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

Variables aleatorias discretas

Variables aleatorias discretas Probabilidads y stadística Comutació Facultad d Cicias actas y aturals. Uivrsidad d Buos Airs Aa M. Biaco y la J. Martíz 4 Variabls alatorias discrtas istribució Biomial: Muchos rimtos alatorios satisfac

Más detalles

AUTOCORRELACION. El modelo y el no cumplimiento de los supuestos quedarían planteados de la siguiente manera:

AUTOCORRELACION. El modelo y el no cumplimiento de los supuestos quedarían planteados de la siguiente manera: AUTOCORRELACION La auocorrlació la rlació qu da r la variabl rurbadora( ), coraviido uo d lo uuo ara imar l modlo a arir d la iddcia qu dbría xiir r a variabl E roblma ra fudamalm cuado raliza udio coomérico

Más detalles

Sistemas de colas: clase 1. Amedeo R. Odoni 10 de octubre de 2001

Sistemas de colas: clase 1. Amedeo R. Odoni 10 de octubre de 2001 Sistemas de colas: clase Amedeo R. Odoi de octubre de 2 Temas de teoría de colas 9. Itroducció a las colas: ley de Little; M/M/. olas de acimieto y muerte de Markov. ola M/G/ y extesioes 2. olas de prioridad:

Más detalles

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución DETERMINNTES II 1 0 4-1 1. Halla los deermiaes de las siguiees marices: = B = 5-1 05 B 4 1 1 10-1 0. Calcula, aplicado la regla de Sarrus, el siguiee deermiae: = 0 0 1-6 -1 0 1 0 0 0 1 00 11 6 00 1 0 0

Más detalles

Un forward sobre commodities como el oro sufre una pequeña variación ya que se incluye la tasa de interés del oro (lease rate) con la variable l

Un forward sobre commodities como el oro sufre una pequeña variación ya que se incluye la tasa de interés del oro (lease rate) con la variable l El Forward U corao fuuro o a plazo, s odo aqul cuya lqudacó o slm dfr hasa ua fcha posror spulada l msmo, s dcr s dos pas acurda hacr la rasaccó hasa u prodo fuuro dígas por jmplo 6 mss, so s u corao forward.

Más detalles

CASTILLA-LA MANCHA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CASTILLA-LA MANCHA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO CASILLA-LA MANCHA / JUNIO 0. LOGSE / FÍSICA / EXAMEN COMPLEO El aluo dbrá cottar a ua d la do ocio routa A o B. Lo robla utúa 3 uto cada uo y la cutio uto cada ua. S odrá utilizar ua calculadora y ua rgla.

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. APLICACIONES LINEALES. INTODUCCIÓN: APLICACIONES ENTE CONJUNTOS. Ua aplicació etre dos cojutos A y B es ua regla que permite asigar a cada elemeto de A, uo de B. La aplicació del cojuto A e el cojuto B

Más detalles

Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid Febrero de 2012

Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid Febrero de 2012 Tema 2: Aálisis gráfico y esadísico de relacioes Uiversidad Compluese de Madrid Febrero de 202 Aálisis gráfico y descripivo de ua variable (I) Daos de series emporales: Rea per c pia EEUU Cosumo per c

Más detalles

Régimen transitorio. Respuesta a funciones elementales

Régimen transitorio. Respuesta a funciones elementales Régie rasiorio Vibració Trasioria: Desaparece co el paso el iepo, pero puee ser iporae e respuesa a fuerzas o perióicas (golpes, explosioes...). Respuesa a fucioes eleeales c () x ució escaló ució rapa

Más detalles

Tema 5: Transistor Bipolar de Unión (BJT)

Tema 5: Transistor Bipolar de Unión (BJT) Tma 5: Trasistor ipolar d Uió JT) 5.1 troducció otidos 5.2 ucioamito dl trasistor Zoa Activa Dircta 5.3 Modlo d orrits dl Trasistor. Modlo d rs-moll 5.4 Modos o Zoas d Opració 5.5 Modlos Spic 5.6 jmplos

Más detalles

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden PRÁCTICA 1 Sisemas elécricos de rimer y segudo orde Objeivo: Deermiar la resisecia iera de u geerador. Realizar medicioes de la cosae de iemo de circuios de rimer orde asabajas y de los arámeros de diseño

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Toría d Sistmas y Sñals Trasparias: Aálisis ruial d sñals TD Autor: Dr. Jua Carlos Gómz Aálisis ruial d Sñals Timpo Disrto. Sri d ourir d Sñals Timpo Disrto Sa () ua sñal priódia o príodo, s dir: ( ) +

Más detalles

Observación: si en la urna hubiese 1500 bolillas blancas y 500 verdes y se extraen dos bolillas al azar sin reemplazo, entonces

Observación: si en la urna hubiese 1500 bolillas blancas y 500 verdes y se extraen dos bolillas al azar sin reemplazo, entonces art Variabls alatorias rof. María B. itarlli.- Variabls alatorias discrtas imortats Distribució biomial Sa ε u xrimto alatorio. Sa u vto asociado a ε y aotamos Suogamos u xrimto alatorio ε u cuml los siguits

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA. F() s ua primitiva d f() si F ()= f(). Esto s prsa así: f() = F'() = F() La itgració s la opració ivrsa a la drivació, d modo qu: FUNCIONES

Más detalles

Unidad 2 : Ecuaciones Diferenciales Lineales de Orden Superior. Tema 2.1 : Definiciones y Terminología

Unidad 2 : Ecuaciones Diferenciales Lineales de Orden Superior. Tema 2.1 : Definiciones y Terminología 7 Unidad : Euaions Dirnials inals d Ordn Surior Tma. : Diniions Trminología a Euaión Dirnial inal d o rdn No Homogéna tin la orma: a d d d d a a g uaión EDN H a Euaión Dirnial inal d o rdn Homogéna Asoiada

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MTRICES RNGO DE UN MTRIZ 4. Calcula el rago de la mariz 4 0 0 0 Obeer ua mariz escaloada por filas Se puede cambiar el orde de las filas de la mariz: F F4 0 0 0 0 0 0 F F 4F 4 F 4 F F 0 F

Más detalles

Planificación contra stock. Presentación. Introducción

Planificación contra stock. Presentación. Introducción Plaificació cora sock 09.0.07 Preseació Fabricar cora sock? No iee que ser cero el iveario? Se vio e el capíulo de iroducció. Plaificar cora sock Ciclo de pedido y fabricació idepediees. Demada aual coocida.

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

IDENTIFICACION DE SISTEMAS DE SEGUNDO ORDEN

IDENTIFICACION DE SISTEMAS DE SEGUNDO ORDEN Ediorial d la Uivridad Tcológica Nacioal IDENTIFICACION DE SISTEMAS DE SEGUNDO ORDEN Ig. Robro Agl Rivro* Rum Para l diño d ima d corol, xi umroo méodo qu rmi r darrollado dro d ua amlia gama d caracríica.

Más detalles

Conceptes fonamentals de xarxes de computadors. Un enfocament analític. J.M. Barceló, Ll. Cerdà, J. García.

Conceptes fonamentals de xarxes de computadors. Un enfocament analític. J.M. Barceló, Ll. Cerdà, J. García. Concetes onamentals de xarxes de comutadors. Un enocament analític. J.M. Barceló, Ll. Cerdà, J. García. Temario: Cadenas de Markov y teoría de colas. Ll. Cerdà, 9 horas. Traic models. J.M. Barceló, 6 horas.

Más detalles

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL El méodo dirco d la rigidz. Méodo maricial MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL 1. SISTEMAS DE REERENCIA La sismaización dl méodo cuyos fundamnos s han prsnado anriormn rquir dl paso d unas caracrísicas

Más detalles

Hola, chicas y chicos! Os presentamos a. Él y sus amigos son los ganadores del concurso de ciencias de este año. . En Brasil, la selva está en

Hola, chicas y chicos! Os presentamos a. Él y sus amigos son los ganadores del concurso de ciencias de este año. . En Brasil, la selva está en E ryc d Pdr Hj d cividd 1 Nmbr: Fch: L rícu y cmé. NOTICIAS DEL COLE PEDRO Y SUS AMIGOS GANAN EL CONCURSO DE CIENCIAS H, chic y chic! O rm Bqu. É y u mig gdr d ccur d cici d ñ. Pdr d. E Bri, v á rqu á

Más detalles

Tema 2: Sistemas. 2.1 Introducción

Tema 2: Sistemas. 2.1 Introducción Tema : Sisemas Tema : Sisemas. Iroducció U sisema respode co uas deermiadas señales a la acció de oras. x() sisema y ( ) = T x( ) Ejemplo Tiempo coiuo: sisema mecáico () dy b d y() T{ } { } d y() dy()

Más detalles

NOTAS DE CLASE ECONOMETRÍA I UDI ECONOMETRÍA E INFORMÁTICA

NOTAS DE CLASE ECONOMETRÍA I UDI ECONOMETRÍA E INFORMÁTICA MDIDAS D BONDAD A POSTRIORI CONTRAST D JANS NOTAS D CLAS CONOMTRÍA I DI CONOMTRÍA INFORMÁTICA Prof. Rafal d Arc rafal.darc@uam.s Rvisado dicimbr 8 CONTRAST DL PRDICTOR" o INTRVALO D CONFIANZA D LA PRDICCIÓN

Más detalles

TALLER 4: Preparación parcial final. Cálculo Integral. UdeA Profesor: Jaime Andrés Jaramillo.

TALLER 4: Preparación parcial final. Cálculo Integral. UdeA Profesor: Jaime Andrés Jaramillo. TALLER : Prparació parcial fial Cálculo Itgral UdA - Profsor: Jaim Adrés Jaramillo jaimaj@cocptocomputadorscom Sucsios Mustr los primros cuatro térmios d la sucsió y dtrmi si s covrgt o divrgt: a) d) +

Más detalles

2. MODELIZACIÓN DE LA VARIABLE DE PERTURBACIÓN ALEATORIA

2. MODELIZACIÓN DE LA VARIABLE DE PERTURBACIÓN ALEATORIA Aálisis d Auocorrlació ANÁLISIS DE AUTOCORRELACIÓN. DEFINICIÓN Y CAUSAS DE AUTOCORRELACIÓN E s ma s cusioar, para los modlos qu rabaja co daos d sris d impo, ua d las hipósis qu dfi l Modlo d Rgrsió Lial

Más detalles

TEMA 3: INFERENCIA ESTADISTICA

TEMA 3: INFERENCIA ESTADISTICA ESTADÍSTICA, CURSO 008 009 TEMA 3: INFERENCIA ESTADISTICA INTRODUCCION oblació. Muestra, muestreo. Objetivos de la iferecia estadística. Métodos paramétricos y o paramétricos. TEORIA ELEMENTAL DEL MUESTREO.

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Uivrsidad d Purto Rico Rcito Uivrsitario d Mayagüz Dpartamto d Cicias Matmáticas Eam III Mat - Cálculo II d abril d 8 Nombr Númro d studiat Scció Profsor Db mostrar todo su trabajo. Rsulva todos los problmas.

Más detalles

Propuesta A. 3. Se considera la función f(x) = t, si 3 x 3 (x 3) 2 si x>3

Propuesta A. 3. Se considera la función f(x) = t, si 3 x 3 (x 3) 2 si x>3 Pruebas de Acceso a Eseñazas Uiverarias Oiciales de Grado Maeria: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá coesar a ua de las dos opcioes propuesas A ób. Se podrá uilizar cualquier

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

Capítulo IV. Estadísticas cuánticas.

Capítulo IV. Estadísticas cuánticas. Capítulo I. stadísticas cuáticas. Lcció 6 Itroducció a las stadísticas cuáticas. Partículas distiguibls idistiguibls. stadísticas d Bos-isti y d rmi-dirac. Lcció 7 Gas idal d rmi: lctros mtals. Lcció 8

Más detalles

Análisis del caso promedio El plan:

Análisis del caso promedio El plan: Aálisis dl caso promdio El pla: Probabilidad Aálisis probabilista Árbols biarios d búsquda costruidos alatoriamt Tris, árbols digitals d búsquda y Patricia Listas sip Árbols alatorizados Técicas Avazadas

Más detalles

2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros

2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros .8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros 59.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros Variació d parátros U procdiito

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

Tomando como nivel de energía cero el nivel fundamental. Dada la diferencia de energía entre los niveles en la mayoría de los casos

Tomando como nivel de energía cero el nivel fundamental. Dada la diferencia de energía entre los niveles en la mayoría de los casos Capíulo. La fucó d pacó ) Spaacó d la fucó d pacó S ha dmosado aom - / k [.] La ía dl l s ual a: k [.] + + + [.] + S los ados d lbad o accoa [.4] - / k - / k... [.5] ) Fucó d pacó lcóca omado como l d

Más detalles

() t ( )exp( ) 2. La transformada de Fourier

() t ( )exp( ) 2. La transformada de Fourier 1 x d La ransormada d ourr x d La ransormada d ourr Sa una uncón localmn ngrabl cuya ngral valor absoluo sa acoada n R. S dn su ransormada d ourr como: 1 d Esas xrsons nos rmn calcular la xrsón domno d

Más detalles

(esta notación fue elegida por el matemático Leonhar Euler) De hecho la función f ( x)

(esta notación fue elegida por el matemático Leonhar Euler) De hecho la función f ( x) INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION 9 OCTUBRE

Más detalles

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia:

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia: .4 ECUACIÓN E TRANSMISIÓN E FRIIS La cuación d rasmicion d FRIIS rlaciona la poncia rcibida a la poncia rasmiida nr dos annas sparadas por una disancia: R dond s la dimnsión más grand d cualquir anna.

Más detalles

Estimacion puntual y por Intervalo

Estimacion puntual y por Intervalo Eimacio uual y or Iervalo El objeivo e efecuar ua geeraliació de lo reulado de la muera a la oblació. Iferir o adiviar el comoramieo de la oblació a arir del coocimieo de ua muera. E geeral o iereará coocer

Más detalles

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD ACTIVIDAD DE APRENDIZAJE Sila Curso MAT0 Nombr Curso Cálculo I Crédios 0 Hrs. Smsrals Toals 5 Rquisios MAT00 o MAT00 Fcha Acualización Escula o Prorama Transvrsal Prorama d Mamáica Currículum Carrra/s

Más detalles

PRIMER CONGRESO LATINOAMERICANO DE AGENCIAS DE DESARROLLO LOCALCa rm e n d e Vib o ra l An tio q u ia -Co lo m b ia

PRIMER CONGRESO LATINOAMERICANO DE AGENCIAS DE DESARROLLO LOCALCa rm e n d e Vib o ra l An tio q u ia -Co lo m b ia PRIMER CONGRESO LATINOAMERICANO DE AGENCIAS DE DESARROLLO LOCALCa rm e n d e Vib o ra l An tio q u ia -Co lo m b ia 2 8 y 2 9 d e m a yo d e l 2 0 0 9 Pa ís u n ita rio. Niv e le s d e Go b ie rn o : N

Más detalles

El siguiente tema sugerido para tratar en clases es el método de integración por partes veamos de donde surge y algunos ejemplos propuestos

El siguiente tema sugerido para tratar en clases es el método de integración por partes veamos de donde surge y algunos ejemplos propuestos Méodos y écicas de iegració El siguiee ema sugerido para raar e clases es el méodo de iegració por pares veamos de dode surge y alguos ejemplos propuesos ( º ) Méodo de Iegració por pares:. dv u. v u =

Más detalles