3 malas condiciones que causan una corriente diferencial falsa en el transformador de potencia

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3 malas condiciones que causan una corriente diferencial falsa en el transformador de potencia"

Transcripción

1 Subestación de potencia / Protección / Transformadores 3 malas condiciones que causan una corriente diferencial falsa en el transformador de potencia Protección diferencial del transformador Al aplicar la protección diferencial del transformador de potencia, se deben considerar tres condiciones malas que pueden desequilibrar las corrientes aplicadas al relé (en comparación con las corrientes esperadas cuando el flujo de potencia en el transformador es igual al flujo de potencia del transformador). 1/14

2 3 Condiciones que causan corriente diferencial falsa en Power Transformer (crédito de la foto: Geoff Collins) Hablemos de las siguientes condiciones: 1. Corriente de irrupción magnetizante 2. Sobreexcitación, y 3. Saturación del transformador de corriente 1. Intensidad de Magnetización 2/14

3 Cuando el voltaje del sistema se aplica a un transformador en un momento en que el flujo normal en estado estable debe tener un valor diferente del existente en el transformador, se produce un transitorio de corriente, conocido como corriente de entrada de magnetización. Este fenómeno se ilustra en la Figura 1 para un transformador sin flujo residual. En la figura, el transformador se energiza cuando el voltaje del sistema es cero. Con el circuito altamente reactivo involucrado, el flujo Φ debe estar en el máximo negativo o muy cerca, pero el transformador no tiene flujo. Por lo tanto, el flujo debe comenzar en cero y alcanzar un valor de 2Φ en el primer período de ciclo. Para proporcionar este flujo, la excursión requiere una gran corriente de excitación, como se muestra. Los transformadores funcionan normalmente cerca de la saturación para obtener la mejor eficiencia, por lo que los valores de flujo mayores que lo normal Φ dan como resultado una saturación severa y una gran corriente de excitación. 3/14

4 Figura 1 - Fenómeno de la corriente de entrada de magnetización (no hay flujo residual inicialmente en el transformador) Si un transformador se ha energizado previamente, existe una gran posibilidad de que al desenergizarse se deje algo de flujo Φ en el hierro. Esto podría ser positivo o negativo. Si en la Figura 1, hubiera existido un flujo residual de + Φ R R a partir de una activación anterior, el máximo de flujo requerido habría sido de 2Φ + Φ, lo que da como resultado una R corriente de irrupción magnetizante máxima más alta. Si Φ hubiera sido negativo, el flujo máximo requerido sería 2Φ - R Φ R con menos corriente de entrada. 4/14

5 Este es un fenómeno aleatorio. Si el transformador se había energizado en o cerca del voltaje positivo máximo (vea el punto d en la Figura 1), el requisito de flujo en ese momento es cero. Por lo tanto, la corriente de excitación normal fluiría con una irrupción insignificante o sin transitorios. Las corrientes de excitación normales para los transformadores de potencia son del orden del 2% -5% de la corriente a plena carga. La corriente máxima de magnetización inicial puede ser tan alta como 8-30 veces la corriente de carga completa. La resistencia en el circuito de alimentación y el transformador y las pérdidas parásitas en el transformador reducen los pico de la corriente de entrada de manera que, eventualmente, se desintegra al valor de corriente de excitación normal. La constante de tiempo varía de alrededor de 10 ciclos a tan largo como 1 minuto en circuitos de muy alta inducción. Los factores que intervienen en la irrupción, además del punto de tiempo de activación con relación a los requisitos de flujo, son: Tamaño del transformador, Tamaño y naturaleza de la fuente del sistema de potencia, Tipo de hierro en el transformador, historial anterior y Relación L / R del transformador y el sistema. 5/14

6 En un circuito trifásico, siempre se producirá una irrupción en una o dos y generalmente en las tres fases, con los voltaje separados a 120, aunque puede ser o no máximo o cero en una de las fases. La Figura 2 muestra una traza de corriente de irrupción de magnetización típica cuando un banco de transformador recibe energía de los terminales conectados en estrella o triángulo. Figura 2 - Corriente de entrada de magnetización típica a los transformadores: (a) corriente de fase A a bobinados conectados en estrella; (b) Corriente de fase A a bobinados conectados en delta. 6/14

7 Hace algunos años, los estudios indicaron que el componente del segundo armónico de la onda de entrada era el 15% o más de la corriente fundamental. En los últimos años, las mejoras en el núcleo del acero y el diseño están dando como resultado transformadores para los cuales todos los armónicos de corriente de entrada son menores, con posibilidades de que el segundo armónico sea tan bajo como 7%. La irrupción magnetizante puede ocurrir bajo tres condiciones y se describen como: a. Inicial, b. Recuperar, y c. Simpático a. La irrupción de magnetización inicial 1. La entrada de magnetización inicial puede ocurrir cuando se energiza el transformador después de un período previo de desenergización. Esto fue descrito anteriormente y tiene el potencial de producir el valor máximo. segundo. Invasión de recuperación Durante una falla o una caída momentánea en el voltaje, puede producirse una avalancha cuando la tensión vuelve a la normalidad. Esto se llama recuperación de la recuperación. El peor caso es un fallo externo sólido de tres fases cerca del banco de transformadores. Durante la falla, el voltaje se reduce a casi cero en el banco; luego, cuando se borra la falla, el voltaje vuelve repentinamente a un valor normal. Esto puede producir una entrada de magnetización, pero su máximo no será tan alto como la entrada inicial debido a que el transformador está parcialmente energizado. 7/14

8 do. Irrupción simpática Se puede producir una avalancha de magnetización en un transformador energizado cuando se energiza un transformador cercano. Un caso común es el paralelo a un segundo banco de transformadores con uno que ya está en funcionamiento. El componente de CC de la corriente de entrada también puede saturar los transformadores energizados, lo que resulta en una corriente de entrada aparente. Esta corriente transitoria, cuando se agrega a la corriente de entrada del banco que está energizado, proporciona una corriente total simétrica compensada que es muy baja en armónicos. Esta sería la corriente que fluye en el circuito de suministro a ambos bancos de transformadores. Volver a contenidos 2. Sobreexcitación El nivel de flujo dentro de un transformador es proporcional al voltaje aplicado al transformador e inversamente proporcional a la frecuencia del voltaje aplicado. Cuando se producen condiciones de sobreexcitación que están por encima de los límites del diseño del transformador, el núcleo del transformador se satura y se produce una acumulación de calor con eventuales daños al transformador. Los transformadores de generador están especialmente sujetos a la sobreexcitación ya que dichos transformadores están conectados directamente a los terminales del generador. Las condiciones de voltaje y frecuencia en los terminales del generador están sujetas a variaciones de voltaje y frecuencia, especialmente durante el arranque del generador. Sin embargo, las preocupaciones sobre la sobreexcitación del transformador no están limitadas a los transformadores generadores. 8/14

9 Figura 3 - Corriente de magnetización en la sobreexcitación, donde I1 es la corriente de frecuencia fundamental, I5 es la corriente del quinto armónico, Im es la corriente de magnetización total y In es la corriente nominal. Las condiciones de sobrevoltaje y subfrecuencia pueden ocurrir en cualquier lugar del sistema de alimentación, especialmente cuando las perturbaciones hacen que porciones del sistema operen como islas aisladas. Los sistemas de transmisión a granel también están sujetos a condiciones de alta tensión durante períodos de carga ligera. Esto se debe a que dichos sistemas a menudo contienen largas líneas de transmisión, que contienen una capacitancia significativa. Durante períodos de carga ligera, el efecto de la capacidad de la línea predomina en las caídas de tensión causadas por la carga que fluye a través de la reactancia inductiva de la línea, lo que resulta en niveles de voltaje incrementados en el sistema. 9/14

10 Los niveles de voltaje pueden aumentar hasta el punto donde se exceden las clasificaciones de las instalaciones del sistema, incluidos los transformadores. El contenido armónico de la corriente de excitación del transformador es predominantemente armónico impar. La corriente típica de excitación del transformador contendrá una componente fundamental, que es el 52% de la nominal, una tercera componente armónica igual al 26% nominal, una quinta componente armónica igual al 11% nominal, una séptima componente armónica igual al 4% nominal, y así. Se debe considerar la protección contra sobreexcitación para todos los grandes transformadores utilizados como transformadores de la unidad generadora o aquellos que están conectados a partes del sistema de energía que conducen a que los transformadores se sobreexciten. Dicha protección debe consistir en retransmisión que sea capaz de responder directamente al nivel de excitación que existe, como voltios = transmisión de hertz. Los relés diferenciales del transformador están sujetos a la operación en alta corriente de excitación del transformador. Sin embargo, la característica operativa del relé en dicha corriente no se correlaciona bien con las características del límite de sobreexcitación del transformador. Como tal, no es práctico usar retransmisión diferencial como un medio para proteger a los transformadores contra la sobreexcitación. 10/14

11 En el lado negativo, los relés diferenciales del transformador están sujetos a operar con corriente de sobreexcitación a niveles inferiores a los que pueden causar daños al transformador. Además, la operación de retransmisión diferencial causada por la sobreexcitación podría causar confusión en las investigaciones posteriores a la perturbación. Los transformadores más grandes, para los que la sobreexcitación es una preocupación, deben estar equipados con protección de sobreexcitación específica y la retransmisión diferencial asociada debe bloquearse para que no funcione con la corriente de excitación por los motivos citados anteriormente. 3. Saturación del transformador de corriente La 3. saturación Saturación del de transformador los transformadores de corriente de corriente asociados con la retransmisión diferencial del transformador causa varias preocupaciones con respecto a dicha retransmisión: 1. La saturación de TC en fallas externas puede causar un funcionamiento incorrecto de la retransmisión diferencial debido a la corriente de operación que puede resultar de las formas de onda de corriente secundaria distorsionadas que existen durante tales condiciones. 2. Los armónicos contenidos en las corrientes secundarias de un transformador de corriente saturada pueden retrasar el funcionamiento de la retransmisión diferencial del transformador en fallas internas del transformador. La selección adecuada de los transformadores de corriente puede minimizar la exposición a los problemas enumerados anteriormente. Las características de diseño de los relés diferenciales del transformador también abordan estas preocupaciones. Volver a contenidos Referencia // Principios de protección de retransmisión y aplicaciones de H. Lee Willis y Muhammad H. Rashid 11/14

D.II: Sistemas de protección de transformadores

D.II: Sistemas de protección de transformadores D.II: Sistemas de protección de transformadores Curso: Introducción a los Sistemas de Protección de Sistemas Eléctricos de Potencia IIE-Fing-UdelaR Facultad de Ingeniería - UDELAR (IIE - UDELAR) Curso:

Más detalles

K = U1 / U2 = I 2 n / I 1 n. Figura 4.1: Sistema general de protección diferencial.

K = U1 / U2 = I 2 n / I 1 n. Figura 4.1: Sistema general de protección diferencial. Tema: Relé diferencial de sobrecorriente. I. OBJETIVOS. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Protección y Coordinación de Sistemas de Potencia. Explicar el procedimiento de operación

Más detalles

PROTECCIÓN DE SISTEMAS ELÉCTRICOS UNIDAD V

PROTECCIÓN DE SISTEMAS ELÉCTRICOS UNIDAD V UNIDAD V RELÉS DIFERENCIALES GENERALIDADES El principio de funcionamiento de todas las protecciones diferenciales se basa en la comparación entre la corriente de entrada y la de salida, en una zona comprendida

Más detalles

MATERIA: ELECTRICIDAD BÁSICA

MATERIA: ELECTRICIDAD BÁSICA MATERIA: ELECTRICIDAD BÁSICA 1. CUÁL ES LA PARTÍCULA MÁS PEQUEÑA DE LA MATERIA? a. UN ELECTRÓN b. UNA MOLÉCULA c. UN ELEMENTO d. NINGUNA DE LAS ANTERIORES 2. EL HIDRÓGENO ES UN ELEMENTO O UN COMPUESTO?

Más detalles

DV Power Ensayo del transformador con el analizador de devanados y conmutador de tomas TWA30D

DV Power Ensayo del transformador con el analizador de devanados y conmutador de tomas TWA30D - Notas de aplicación - Ensayo del transformador con el analizador de devanados y conmutador de tomas TWA30D 1.- Introducción El analizador de devanados y conmutador de tomas TWA30D es una potente solución

Más detalles

SELECCIÓN DE ARRANCADORES. Se desea arrancar éste motor teniendo en cuenta las siguientes restricciones:

SELECCIÓN DE ARRANCADORES. Se desea arrancar éste motor teniendo en cuenta las siguientes restricciones: SELECCIÓN DE ARRANCADORES EJERCICIO 1 Un motor de inducción jaula de ardilla trifásico de 6 bobinas, 12 terminales, cada bobina diseñada para soportar 127 voltios y 100 amperios nominales, tiene y, el

Más detalles

CAPITULO III COMPENSACION REACTIVA

CAPITULO III COMPENSACION REACTIVA CAPITULO III COMPENSACION REACTIA 1. GENERALIDADES DE COMPENSACION REACTIA 1.1 FACTOR DE POTENCIA Factor de potencia es el nombre dado a la relación entre la potencia activa (kw) usada en un sistema y

Más detalles

Transformador en vacío alimentado a tensión y frecuencia nominal.

Transformador en vacío alimentado a tensión y frecuencia nominal. Transformadores. 1. Ensayo de Vacío. Este ensayo se realiza en las siguientes condiciones: Transformador en vacío alimentado a tensión y frecuencia nominal. A partir del mismo se determinan las pérdidas

Más detalles

CLASIFICACIÓN DE LAS DIFERENTES PERTURBACIONES CONSIDERADAS EN LOS PROBLEMAS DE CALIDAD DE POTENCIA

CLASIFICACIÓN DE LAS DIFERENTES PERTURBACIONES CONSIDERADAS EN LOS PROBLEMAS DE CALIDAD DE POTENCIA CLASIFICACIÓN DE LAS DIFERENTES PERTURBACIONES CONSIDERADAS EN LOS PROBLEMAS DE CALIDAD DE POTENCIA I. VARIACIONES DE VOLTAJE Y CORRIENTE Se considera como variación un evento periódico o de larga duración

Más detalles

CRONOGRAMA DE MATERIA PROFESOR: TEL: E. MAIL: PRE-REQUISITOS COMPETENCIAS

CRONOGRAMA DE MATERIA PROFESOR: TEL: E. MAIL: PRE-REQUISITOS COMPETENCIAS 1 CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERIAS DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERIA MECANICA ELECTRICA CRONOGRAMA DE MATERIA CARRERA: ING. COM. Y ELECT. HORAS SEM: T: 60 hrs. P:

Más detalles

b) Frecuencia nominal. La frecuencia (medida en Hz) del sistema de potencia para el cual el banco del capacitor es diseñado.

b) Frecuencia nominal. La frecuencia (medida en Hz) del sistema de potencia para el cual el banco del capacitor es diseñado. 4. Características de los capacitores Como ya se menciono anteriormente los elementos de compensación son necesarios para la adecuada operación de sistemas eléctricos de potencia. Estos pueden clasificarse

Más detalles

UNIVERSIDAD DE COSTA RICA

UNIVERSIDAD DE COSTA RICA UNIVERSIDAD DE COSTA RICA IE-035 LABORATORIO DE MÁQUINAS ELÉCTRICAS I EXPERIMENTO 5 - GRUPO 0 PROFESOR: JUAN RAMON RODRÍGUEZ Transformador Monofásico. Relación de transformación y Circuito Equivalente.

Más detalles

Introducción a los principios de las máquinas

Introducción a los principios de las máquinas CONTENIDO Prefacio Capítulo 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Introducción a los principios de las máquinas Las máquinas eléctricas, los transformadores y la vida diaria Nota referente a las unidades

Más detalles

EXAMEN DE SISTEMAS ELÉCTRICOS

EXAMEN DE SISTEMAS ELÉCTRICOS NOMBRE: TEST DE TRANSFORMADORES Y MÁQUINAS 1ª PREGUNTA RESPUESTA A 50 Hz, un transformador tiene unas pérdidas por histéresis de 3 kw siendo las pérdidas totales en el hierro de 5 kw. Si la frecuencia

Más detalles

Cómo elegir la UPS correcta?

Cómo elegir la UPS correcta? Cómo elegir la UPS correcta? El mercado de UPS está lleno de información que conduce a los clientes hacia lo que no es realmente importante. Con el propósito de conducirlo a usted hace lo que es importante

Más detalles

TRANSFORMADORES DE POTENCIA

TRANSFORMADORES DE POTENCIA TRANSFORMADORES DE POTENCIA Profesor: César Chilet 16/09/2013 cchilet@tecsup.edu.pe 2 1 OBJETIVO Definir el modelo del transformador para estudios de transmisión de potencia eléctrica en régimen permanente

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD BICENTENARIA DE ARAGUA SECRETARIA

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD BICENTENARIA DE ARAGUA SECRETARIA CARRERA: INGENIERIA ELECTRICA AÑO. 99-1 UNIDAD CURRICULAR: CODIGO: REQUISITOS SISTEMAS DE PROTECCIONES ELEC934 ELEC824 UNIDADES DE CREDITOS: 04 DENSIDAD DE HORARIO: 05 HORAS TEORICAS: 03 HORAS PRÁCTICAS:

Más detalles

SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C.

SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C. SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C. 1. INTRODUCCION La forma como se produce el flujo magnético en las máquinas de corriente contínua (cc), estas máquinas se clasifican en: EXCITACIÓN INDEPENDIENTE

Más detalles

INDICE Capítulo 1. Conversión de Energía Capítulo 2. Inductancia Capítulo 3. Transformador

INDICE Capítulo 1. Conversión de Energía Capítulo 2. Inductancia Capítulo 3. Transformador INDICE Capítulo 1. Conversión de Energía 1 1.1. Fuerza en un capacitor 2 1.2. El Toroide 5 1.3. Circuitos magnéticos en serie y paralelo 7 1.4. Otros sistemas comunes de unidades magnéticas 8 1.5. Materiales

Más detalles

SESION 10: GENERADORES DE C.C.

SESION 10: GENERADORES DE C.C. SESION 10: GENERADORES DE C.C. 1. INTRODUCCION Los generadores de c.c. son máquinas de cc que se usan como generadores. No hay diferencia real entre un generador y un motor, pues solo se diferencian por

Más detalles

APUNTE: EL TRANSFORMADOR

APUNTE: EL TRANSFORMADOR APUNTE: EL TRANSFORMADOR Área de EET Página 1 de 6 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual #. de fecha - -. INACAP 2002. Página 2 de 6 INDICE

Más detalles

LEY DE OHM EN CORRIENTE CONTINUA

LEY DE OHM EN CORRIENTE CONTINUA LEY DE OHM EN CORRIENTE CONTINA "La intensidad de corriente que circula por un circuito de C. C. es directamente proporcional a la tensión aplicada, e inversamente proporcional a la Resistencia R del circuito."

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores El análisis de potencia es de suma importancia. La potencia es la cantidad más relevante en sistemas de suministro de electricidad,

Más detalles

7.1.1)Introducción. Fig.7.1.: Aspecto externo de un motor de inducción típico. SISTEMAS ELECTROMECÁNICOS Pág 116

7.1.1)Introducción. Fig.7.1.: Aspecto externo de un motor de inducción típico. SISTEMAS ELECTROMECÁNICOS Pág 116 CAPÍTULO 7 7.1)ASPECTOS CONSTRUCTIVOS Y PRINCIPIO DE FUNCIONAMIENTO. 7.1.1)Introducción. Fig.7.1.: Aspecto externo de un motor de inducción típico. SISTEMAS ELECTROMECÁNICOS Pág 116 Fig.7.2.: Partes componentes

Más detalles

INDICE Capitulo 1. Introducción a las Instalaciones Eléctricas Capitulo 2. Elemento que Constituyen una Instalación Eléctrica

INDICE Capitulo 1. Introducción a las Instalaciones Eléctricas Capitulo 2. Elemento que Constituyen una Instalación Eléctrica INDICE Capitulo 1. Introducción a las Instalaciones Eléctricas 1. Descripción 1 2. Objetivos de una instalación 1 2.1. Seguridad 2.2. Eficiencia 2.3. Economía 2.4. Flexibilidad 2.5. Accesibilidad 3. Clasificación

Más detalles

We are the Energy Keeper to Save your Power.

We are the Energy Keeper to Save your Power. 1 Sistemas de eficiencia energética We are the Energy Keeper to Save your Power. HQ Tel +82 32 322 8584 www.enerkeeper.com e- mail : energy@enerkeeper.com Introducción Nuestros equipos de eficiencia y

Más detalles

No, ya que existen perdidas, pudiendo hacer tal conexionado en un transformador ideal.

No, ya que existen perdidas, pudiendo hacer tal conexionado en un transformador ideal. 1. Un transformador de tensión es reversible. Si se toman dos transformadores idénticos de 230/12 V y si conectan los dos secundarios entre si y uno de los primarios se conecta a una toma de tensión, En

Más detalles

MANUAL SE-703 MONITOR DE FUGA A TIERRA 11 DE JULIO DE 2001 REVISION 5

MANUAL SE-703 MONITOR DE FUGA A TIERRA 11 DE JULIO DE 2001 REVISION 5 406 Jessop Avenue Saskatoon, Saskatchewan Canadá S7N 2S5 Fono: (306) 373-5505 Fax: (306) 374-2245 www.startco.ca MANUAL SE-703 MONITOR DE FUGA A TIERRA 11 DE JULIO DE 2001 REVISION 5 Publicación: SE-703-M

Más detalles

5.Corrección del factor de potencia

5.Corrección del factor de potencia 5.Corrección del factor de potencia Por: Ing. César C Chilet León Factor de potencia de cargas La mayoría de las cargas industriales (motores, transformadores...), alimentadas con corriente alterna necesitan

Más detalles

9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3

9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3 1. Un alternador a) es una maquina rotativa de corriente continua b) es una máquina estática de corriente alterna c) es una máquina rotativa de corriente alterna d) ninguna de las anteriores es correcta

Más detalles

Sin embargo, un circuito eléctrico puede contener uno o varios tipos diferentes de resistencias conectadas, entre las que se encuentran:

Sin embargo, un circuito eléctrico puede contener uno o varios tipos diferentes de resistencias conectadas, entre las que se encuentran: DIFERENTES TIPOS DE RESISTENCIAS De acuerdo con la Ley de Ohm, para que exista un circuito eléctrico cerrado tiene que existir: 1.- una fuente de fuerza electromotriz (FEM) o diferencia de potencial, es

Más detalles

Energía reactiva. Generalidades Definiciones Compensación de Reactiva Otros

Energía reactiva. Generalidades Definiciones Compensación de Reactiva Otros Energía reactiva Generalidades Definiciones Compensación de Reactiva Otros Energía Activa Se convierte en energía útil: Calor Movimiento kwh Energía Activa y Reactiva Energía Reactiva Magnetiza máquinas

Más detalles

MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA

MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA CIRCUITOS Y SISTEMAS EN CORRIENTE CONTINUA MOD. MCM1/EV EB 15 CIRCUITOS Y SISTEMAS EN CORRIENTE ALTERNADA MOD. MCM2/EV EB 16 CIRCUITOS Y SISTEMAS TRIFASICOS

Más detalles

Práctico 4 - Int. a la Electrotécnica

Práctico 4 - Int. a la Electrotécnica Práctico 4 - Int. a la Electrotécnica Transformador Trifásico Problema 1 Tres transformadores monofásicos se conectan entre si para formar un banco trifásico. Los transformadores tienen relación de vueltas

Más detalles

Institución Educativa Barrio Santander Medellín - Antioquia EXAMEN PARCIAL NOMBRE DEL ALUMNO GRADO FECHA

Institución Educativa Barrio Santander Medellín - Antioquia EXAMEN PARCIAL NOMBRE DEL ALUMNO GRADO FECHA Fecha: 29/03/202 Página : de 8 NOMBRE DEL ALUMNO GRADO FECHA. Calcula el siguiente circuito y completa la tabla de resultados V R T I I I 2 I 3 V AB V BC P P R P R2 P R3 2. Resuelve el siguiente circuito

Más detalles

DEPARTAMENTO DE OPERACIONES. SISTEMA DE MONITOREO PARA LA CALIDAD DE LA ENERGÍA

DEPARTAMENTO DE OPERACIONES. SISTEMA DE MONITOREO PARA LA CALIDAD DE LA ENERGÍA Reporte de monitoreo El siguiente reporte muestra el resultado del monitoreo en tiempo real que se llevo a cabo en la fecha del 03 al 09 de Junio de 2013 en el transformador de la subestación No.1. La

Más detalles

Clase VI. Máquinas de Corriente Directa: Generadores de Corriente Directa. Generalidades

Clase VI. Máquinas de Corriente Directa: Generadores de Corriente Directa. Generalidades Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electromecánica Curso: Máquinas Eléctricas para Mecatrónica Profesor: Ing. Greivin Barahona Guzmán Clase VI Máquinas de Corriente Directa: Generadores

Más detalles

Circuito equivalente, pérdidas, y pruebas en un motor de inducción

Circuito equivalente, pérdidas, y pruebas en un motor de inducción Martínez López Juan Raúl Máquinas Eléctricas Grupo 4 1 Circuito equivalente, pérdidas, y pruebas en un motor de inducción Circuito equivalente El circuito equivalente de un motor de inducción tiene gran

Más detalles

ANEXO VII-Requisitos esenciales específicos de los contadores de energía eléctrica activa

ANEXO VII-Requisitos esenciales específicos de los contadores de energía eléctrica activa ANEXO VII-Requisitos esenciales específicos de los contadores de energía eléctrica activa Los requisitos pertinentes aplicables del Anexo IV, los requisitos específicos del presente Anexo y los procedimientos

Más detalles

Clase 7 Inductancia o Reactancia Inductiva

Clase 7 Inductancia o Reactancia Inductiva Clase 7 Inductancia o Reactancia Inductiva 1 La Bobina - Autoinducción Autoinducción es un fenómeno electromagnético que se presentan en determinados sistemas físicos como por ejemplo cicuitos eléctricos

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d Accés a la Universitat. Curs 2012-2013 Electrotecnia Serie 4 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B), entre

Más detalles

C.A. : Circuito con Resistencia R

C.A. : Circuito con Resistencia R Teoría sobre c.a obtenida de la página web - 1 - C.A. : Circuito con Resistencia R Intensidad Instantánea i(t) e Intensidad Eficaz I v(t) = V sen t) V I = ----- R V = R I i(t) = I sen t) V R = ----- I

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUES DE ESO UNIVERSIDD.O.G.S.E. URSO 2005-2006 ONVOTORI JUNIO EETROTENI E UMNO EEGIRÁ UNO DE OS DOS MODEOS riterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y gráfico si

Más detalles

Electrotecnia. Proves d accés a la universitat. Serie 3. Convocatòria Primera parte

Electrotecnia. Proves d accés a la universitat. Serie 3. Convocatòria Primera parte Proves d accés a la universitat Convocatòria 2016 Electrotecnia Serie 3 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B). Resuelva

Más detalles

EXPERIMENTO DE LABORATORIO No 1 EL TRANSFORMADOR MONOFASICO. Página 1 de 6

EXPERIMENTO DE LABORATORIO No 1 EL TRANSFORMADOR MONOFASICO. Página 1 de 6 EXPERIMENTO DE LABORATORIO No 1 EL TRANSFORMADOR MONOFASICO Página 1 de 6 OBJETIVOS 1. Conocer las relaciones de voltaje y corriente de un transformador. 2. Estudiar las corrientes de excitación, la capacidad

Más detalles

Transformadores. Juan Alvaro Fuentes Moreno Departamento de Ingeniería Eléctrica Universidad Politécnica de Cartagena

Transformadores. Juan Alvaro Fuentes Moreno Departamento de Ingeniería Eléctrica Universidad Politécnica de Cartagena Transformadores Juan Alvaro Fuentes Moreno juanalvaro.fuentes@upct.es Departamento de Ingeniería Eléctrica Universidad Politécnica de Cartagena enero 2012 JAFM (Ingeniería Eléctrica UPCT) transformadores

Más detalles

TRANSFORMADORES DE POTENCIA. Profesor: César Chilet. 26/05/2013

TRANSFORMADORES DE POTENCIA. Profesor: César Chilet. 26/05/2013 TRANSFORMADORES DE POTENCIA Profesor: César Chilet 26/05/2013 cchilet@tecsup.edu.pe 2 1 OBJETIVO Definir el modelo del transformador para estudios de transmisión de potencia eléctrica en régimen permanente

Más detalles

IEM-315-T Ingeniería Eléctrica

IEM-315-T Ingeniería Eléctrica IEM-315-T Ingeniería Eléctrica Potencia en el Estado Estable. Potencia Instantánea y Potencia Promedio. Potencia Instantánea. La potencia instantánea suministrada a cualquier dispositivo está dada por

Más detalles

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS Universidad Nacional del Santa Facultad de Ingeniería E.A.P. Ingeniería En Energía Departamento Académico de Energía y Física LABORATORIO DE MAQUINAS ELECTRICAS Guía de Practica N 02: MEDICION DE TENSION

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

Convocatòria Electrotecnia. Proves d accés a la universitat. Serie 1. Primera parte

Convocatòria Electrotecnia. Proves d accés a la universitat. Serie 1. Primera parte Proves d accés a la universitat Electrotecnia Serie 1 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B). Resuelva los ejercicios

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (III) TERCERA PARTE: corriente

Más detalles

Tema 11: CIRCUITOS ELÉCTRICOS

Tema 11: CIRCUITOS ELÉCTRICOS Tema 11: CIRCUITOS ELÉCTRICOS Esquema 1. Estructura atómica 2. El circuito eléctrico 3. Magnitudes eléctricas básicas 4. Ley de Ohm 5. Energía eléctrica. Efecto Joule. 6. Potencia eléctrica. Tipos de resistencias

Más detalles

Sistema de Ahorro de Electricidad

Sistema de Ahorro de Electricidad Sistema de Ahorro de Electricidad El Equipo Ahorrador de Electricidad Es un sistema integrado por circuitos RLC de etapas múltiples que contiene: Una Resistencia eléctrica, Bobina (inductancia) y un Condensador

Más detalles

5.1.1)Principio de funcionamiento.

5.1.1)Principio de funcionamiento. CAPÍTULO 5 MÁQUINAS DE CORRIENTE CONTINUA 5.1)ASPECTOS CONSTRUCTIVOS Y PRINCI- PIO DE FUNCIONAMIENTO. 5.1.1)Principio de funcionamiento. Devanado de Estator (campo): - Objetivo: producir el campo que posibilita

Más detalles

Circuitos Trifásicos con receptores equilibrados

Circuitos Trifásicos con receptores equilibrados FACULTAD DE INGENIERIA U.N.M.D.P. DEPARTAMENTO DE INGENIERIA ELECTRICA. ASIGNATURA: Electrotecnia 2 (Plan 2004) CARRERA: Ingeniería Eléctrica y Electromecánica Circuitos Trifásicos con receptores equilibrados

Más detalles

APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN

APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN Andrés González 393 APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN 1. Por qué el núcleo del transformador es de hierro o acero? Podría ser de otro material? El núcleo

Más detalles

CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 4. Análisis de Sistemas de Potencia Grainger-Stevenson. Capítulo 1

CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 4. Análisis de Sistemas de Potencia Grainger-Stevenson. Capítulo 1 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 4 OBJETIVO Representar y analizar un SEP BIBLIOGRAFIA Análisis de Sistemas de Potencia

Más detalles

En un transformador monofásico la corriente en vacío no puede ser sinusoidal debido a la característica no lineal del hierro.

En un transformador monofásico la corriente en vacío no puede ser sinusoidal debido a la característica no lineal del hierro. Corrientes de Excitación en un Transformador Trifásico. 1. Introducción. En un transformador monofásico la corriente en vacío no puede ser sinusoidal debido a la característica no lineal del hierro. La

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUES DE ESO UNVERSDD.O.G.S.E. URSO 006-007 - ONVOTOR: SEPTEMRE EETROTEN E UMNO EEGRÁ UNO DE OS DOS MODEOS riterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y gráfico si

Más detalles

Curso Eléctrico Palas P&H 4100XPC Codelco Andina.

Curso Eléctrico Palas P&H 4100XPC Codelco Andina. Curso Eléctrico Palas P&H 4100XPC Codelco Andina. Sist em a RPC y Sup r esora Introducción La cabina RPC se encarga mantener una potencia reactiva los mas cercana a uno, descargando bancos de condensadores

Más detalles

Capítulo 1 Introducción de Sistemas de Potencia

Capítulo 1 Introducción de Sistemas de Potencia ELC-30524 Sistemas de Potencia II Capítulo 1 de Sistemas de Potencia Prof. Francisco M. González-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/sp2.htm 1. La planeación, diseño, y operación

Más detalles

Contenido. Acerca del autor... Prólogo... Agradecimientos...

Contenido. Acerca del autor... Prólogo... Agradecimientos... Contenido Acerca del autor... Prólogo... Agradecimientos... xiii xv xix Capítulo 1: CIRCUITOS MAGNÉTICOS Y CONVERSIÓN DE ENERGÍA...... 1 1.1. Introducción.................................... 1 1.2. Materiales

Más detalles

CORRECCIÓN DEL FACTOR DE POTENCIA CON REGULADOR DE ENERGÍA REACTIVA RTR

CORRECCIÓN DEL FACTOR DE POTENCIA CON REGULADOR DE ENERGÍA REACTIVA RTR INGENIERIA ELECTRONICA EN CONTROL Y AUTOMATISMO CONTROL DE MOVIMIENTO I CORRECCIÓN DEL FACTOR DE POTENCIA CON REGULADOR DE ENERGÍA REACTIVA RTR MSc. Orlando Philco A. CONCEPTOS GENERALES Las cargas generan

Más detalles

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO.

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO. UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA ALICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO Andrés González OBJETIVOS Comprobar experimentalmente la influencia de

Más detalles

GENERALIDADES. El autotransformador puede ser considerado como un caso particular del transformador.

GENERALIDADES. El autotransformador puede ser considerado como un caso particular del transformador. AUTOTRANSFORMADOR GENERALIDADES El autotransformador puede ser considerado como un caso particular del transformador. A diferencia del transformador, tiene un sólo bobinado sobre el núcleo, con una parte

Más detalles

2. EXPERIENCIAS DE TRANSFORMADORES 2.2. EXPERIENCIA N 2: TRANSFORMADORES TRIFASICOS.

2. EXPERIENCIAS DE TRANSFORMADORES 2.2. EXPERIENCIA N 2: TRANSFORMADORES TRIFASICOS. 2. EXPERIENCIAS DE TRANSFORMADORES 2.2. EXPERIENCIA N 2: TRANSFORMADORES TRIFASICOS. A.- INTRODUCCION El uso de transformadores en conexión trifásica en Sistemas de Potencia es de primera importancia,

Más detalles

AÑO DE LA INTEGRACION NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD

AÑO DE LA INTEGRACION NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD 1 AÑO DE LA INTEGRACION NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD FACULTAD DE ING. MECÁNICA Y ELÉCTRICA ESCUELA DE ING. ELECTRÓNICA TEMA: ARRANCADOR DIRECTO CURSO DOCENTE CICLO ALUMNO : Dibujo

Más detalles

Cálculo de cortocircuitos

Cálculo de cortocircuitos Cálculo de cortocircuitos Índice 2 1 Tipo de Falla Las fallas posibles son: Falla trifásica Falla monofásica a tierra Falla entre dos fases Falla entre dos fases a tierra Fase abierta 3 Tipo de Falla 3-phase

Más detalles

Instalación y mantenimiento de cualquier red eléctrica.

Instalación y mantenimiento de cualquier red eléctrica. Soluciones 1 Soporte Eléctrico Instalación y mantenimiento de cualquier red eléctrica. Desarrollamos proyectos llave en mano enfocados a la Calidad y Eficiencia en el consumo. Transformadores. Subestaciones.

Más detalles

Conceptos de electricidad. Conrado Perea

Conceptos de electricidad. Conrado Perea Conceptos de electricidad Conrado Perea Conceptos de electricidad. La electricidad tiene su origen en el movimiento de una pequeña partícula llamada electrón que forma parte del átomo. El átomo es la porción

Más detalles

PROTECCIÓN DIRECCIONAL

PROTECCIÓN DIRECCIONAL PROTECCÓN DRECCONAL Unidades que determinan la dirección del flujo de potencia y/o corriente en una localización determinada de un sistema eléctrico de potencia; de esta forma, es posible mediante este

Más detalles

Transformador monofásico

Transformador monofásico GUIA DE TRABAJOS PRACTICOS DE LABORATORIO TPN 1 Transformador monofásico 1. Objetivos Realizar la identificación de bobinados y obtener su polaridad (homología). Determinar la curva de magnetización y

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. Tema: Aplicaciones prácticas de circuitos magnéticos. I. Objetivos. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. Analizar la relación del número de vueltas en los

Más detalles

UNIVERSIDAD SIMON BOLIVAR

UNIVERSIDAD SIMON BOLIVAR LA MAQUINA ASINCRONICA. DESCRIPCION Hoja Nº II-001 Tanto en el número, como en el volumen de ventas, la máquina asincrónica supera a todas las demás máquinas eléctricas. Las máquinas asincrónicas encuentran

Más detalles

DEPARTAMENTO DE OPERACIONES. SISTEMA DE MONITOREO PARA LA CALIDAD DE LA ENERGÍA

DEPARTAMENTO DE OPERACIONES. SISTEMA DE MONITOREO PARA LA CALIDAD DE LA ENERGÍA Reporte de monitoreo El siguiente reporte muestra el resultado del monitoreo en tiempo real que se llevo a cabo en la fecha del 21 al 24 de Junio de 2013 en el tablero de tensión regulada. La medición

Más detalles

CARACTERISTICAS Y SELECCIÓN MOTORES ELECTRICOS. Universidad Católica del Maule Escuela de Ingeniería en Construcción Asignatura : Circuitos Eléctricos

CARACTERISTICAS Y SELECCIÓN MOTORES ELECTRICOS. Universidad Católica del Maule Escuela de Ingeniería en Construcción Asignatura : Circuitos Eléctricos Universidad Católica del Maule Escuela de Ingeniería en Construcción Asignatura : Circuitos Eléctricos CARACTERISTICAS Y SELECCIÓN DE MOTORES ELECTRICOS Profesor: Francisco Valdebenito A. CLASIFICACIÓN

Más detalles

1. Conceptos básicos sobre motores eléctricos

1. Conceptos básicos sobre motores eléctricos 1. Conceptos básicos sobre motores eléctricos Anibal T. De Almeida ISR-Universidad de Coímbra 1 Temario Sistemas de motores: uso de la energía Definición de sistema de motores Tipos de motores eléctricos

Más detalles

Práctico 3 - Electrotécnica 2 Transformador trifásico

Práctico 3 - Electrotécnica 2 Transformador trifásico Práctico 3 - Electrotécnica 2 Transformador trifásico Problema 1 Tres transformadores monofásicos se conectan entre si para formar un banco trifásico. Los transformadores tienen relación de vueltas igual

Más detalles

Al final de cada cuestión se índica su puntuación

Al final de cada cuestión se índica su puntuación TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN Una hora y treinta minutos INSTRUCCIONES: El alumno elegirá una de las dos opciones A o B PUNTUACIÓN: Al final de cada cuestión se índica su puntuación CUESTIÓN

Más detalles

Protecciones del sistema eléctrico de potencia ABB University

Protecciones del sistema eléctrico de potencia ABB University DESCRIPCIÓN DEL CURSO Protecciones del sistema eléctrico de potencia ABB University Objetivo El curso proporciona al participante una comprensión de los dispositivos y sistemas de protección más comúnmente

Más detalles

SECCIÓN 3: ACCIONAMIENTO DE BOMBAS

SECCIÓN 3: ACCIONAMIENTO DE BOMBAS SECCÓN 3: ACCONAMENTO DE BOMBAS NTRODUCCÓN as bombas centrífugas pueden accionarse mediante motores eléctricos, turbinas o motores de combustión interna. Salvo en el caso de dificultades en el suministro

Más detalles

Transformada de Laplace Descripción de un transformador

Transformada de Laplace Descripción de un transformador Transformada de Laplace Descripción de un transformador Néstor Jorge Dietrich Estudiante de Ingeniería en Computación Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina nestordietrich@gmail.com

Más detalles

CORRIENTE ALTERNA CORRIENTE ALTERNA

CORRIENTE ALTERNA CORRIENTE ALTERNA CORRIENTE ALTERNA La corriente alterna es generada por un alternador, las fuerzas mecánicas hacen girar una rueda polar y se obtienen tensiones inducidas en los conductores fijos del estator que la envían

Más detalles

ELECTROTECNIA Y MÁQUINAS ELÉCTRICAS

ELECTROTECNIA Y MÁQUINAS ELÉCTRICAS niversidad acional de Cuyo MÁQIAS ELÉCTRICAS GABIETE IDSTRIAL 06 ASIGATRA: CRSO: SEMESTRE: MÁQIAS ELÉCTRICAS 3 5 OMBRE Y APELLIDO: ALMO DOCETES FOTO Prof. Tit. J.T.P. J.T.P. Aux. Docente Ayte Ad Honorem

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL IEE PROGRAMA DE ESTUDIOS

ESCUELA SUPERIOR POLITECNICA DEL LITORAL IEE PROGRAMA DE ESTUDIOS LITORAL IEE AU51 INSTALACIONES ELÉCTRICAS INDUSTRIALES UNIDAD ACADÉMICA: CARRERA: ESPECIALIZACIÓN: ÁREA: TIPO DE MATERIA: EJE DE FORMACIÓN: Facultad de Ingeniería en Electricidad y Computación Ingeniería

Más detalles

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL AVELLANEDA DTO. DE ELÉCTRICA. Cátedra: Máquinas Eléctricas II

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL AVELLANEDA DTO. DE ELÉCTRICA. Cátedra: Máquinas Eléctricas II NIVERSIDAD TECNOLOGICA NACIONAL FACLTAD REGIONAL AVELLANEDA DTO. DE ELÉCTRICA Cátedra: Máquinas Eléctricas II TRABAJO PRÁCTICO N 2 Características Internas y Externas de Máquinas Sincrónicas - Triángulo

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2002-2003 CONVOCATORIA SEPTIEMBRE ELECTROTÉCNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores Introducción En algún instante dado, la potencia en una carga es igual al producto y la corriente Ahora consideremos el caso de C.

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBS DE CCESO L UNIERSIDD L.O.G.S.E CURSO 2004-2005 - CONOCTORI: ELECTROTECNI EL LUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico

Más detalles

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE UNIDAD 5: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE La corriente que nos entrega una pila o una batería es continua y constante: el polo positivo

Más detalles

Qué importancia tiene limitar las sobretensiones?

Qué importancia tiene limitar las sobretensiones? 74 8. EL PARARRAYOS (DPS) COMO ELEMENTO DE PROTECCIÓN FRENTE A SOBREVOLTAJES Una red eléctrica se debe proteger adecuadamente frente a todo tipo de sobrevoltajes, de manera que pueda operar con confiabilidad

Más detalles

LABORATORIO DE CONVERSORES ESTÁTICOS PRÁCTICA N 9

LABORATORIO DE CONVERSORES ESTÁTICOS PRÁCTICA N 9 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE CONVERSORES ESTÁTICOS 1.

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en

Más detalles

TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA.

TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA. TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción. CONTENIDO: 7.1.- Constitución de una máquina de corriente continua. 7.2.- Principio de funcionamiento. 7.3.- Tipos de excitación.

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO

UNIVERSIDAD NACIONAL DEL CALLAO UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA ESCUELA DE INGENIERIA ELECTRICA INTRODUCCIÓN Modificando las características físicas de los rotores de los motores de inducción

Más detalles

No. 5 I. OBJETIVOS II. INTRODUCCIÓN

No. 5 I. OBJETIVOS II. INTRODUCCIÓN Nivel: Facultad de Estudios Tecnológicos. Departamento: Eléctrica. Materia: Maquinas Eléctricas II. Docente de Laboratorio: Ing. Wilfredo Monroy. Lugar de Ejecución: Laboratorio de Maquinas Eléctricas,

Más detalles

INTRODUCCIÓN A LOS MOTORES ELÉCTRICOS MOTORES DE CORRIENTE CONTINUA MOTORES DE CORRIENTE ALTERNA

INTRODUCCIÓN A LOS MOTORES ELÉCTRICOS MOTORES DE CORRIENTE CONTINUA MOTORES DE CORRIENTE ALTERNA AÉN) I.T.I Esp..Electróni ica. Contr rol de Mo otores INTRODUCCIÓN A LOS MOTORES ELÉCTRICOS MOTORES DE CORRIENTE CONTINUA MOTORES DE CORRIENTE ALTERNA Fraile Mora,J; Máquinas elétricas.macgrawhill Faure,R;

Más detalles

SISTEMAS ELECTROMECÁNICOS

SISTEMAS ELECTROMECÁNICOS Universidad Técnica Federico Santa María Departamento de Electrónica Valparaíso-Chile SISTEMAS ELECTROMECÁNICOS José Rodríguez Agosto de 1999 Introducción. Introducción. Este apunte contiene las figuras

Más detalles

Nombre de la asignatura: CONVERTIDORES ELECTRONICOS DE POTENCIA. Carrera: INGENIERIA ELECTRONICA. Dr. Marco A. Arjona L. Ing. Felipe de Jesús Cobos

Nombre de la asignatura: CONVERTIDORES ELECTRONICOS DE POTENCIA. Carrera: INGENIERIA ELECTRONICA. Dr. Marco A. Arjona L. Ing. Felipe de Jesús Cobos 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: CONVERTIDORES ELECTRONICOS DE POTENCIA Carrera: INGENIERIA ELECTRONICA Clave de la asignatura: Horas teoría - horas práctica créditos: 3 2 8 2.- HISTORIA

Más detalles