Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis
|
|
- José Ramón Herrera Paz
- hace 6 años
- Vistas:
Transcripción
1 Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ La varanza y la desvacón típca Otras meddas de varacón. PROPIEDADE DE LA MEDIA Y LA VARIAZA. AIMETRÍA Y CURTOI 5. EJERCICIO Bblografía: Tema (pág ) Ejerccos recomendados: 1,,, 5, 8, 9, 11, 1, 1, 18, 19, 0,,, 5, 7, 8 y 0. Carmen ménez 1
2 1. MEDIDA DE TEDECIA CETRAL LA MEDIA ARITMÉTICA, Informa sobre la tendenca general de la varable en una muestra de sujetos Fórmula: 55 Ejemplo 1: :, 5,, 5. Donde: - La meda artmétca es el índce de tendenca central más utlzado. - ólo puede calcularse para varables cuanttatvas - Es muy sensble a valores extremos (dstrbucones marcadamente asmétrcas) Conocda, las puntuacones (o puntuacones drectas) pueden expresarse como desvacones a la meda grupal. Esto es, como las denomnadas Puntuacones dferencales: x Con los datos del Ejemplo 1, x: Donde: ( ) 0 (o ben x = 0). Por tanto, x 0 ( ) 0... (o ben x 0) Con los datos del Ejemplo 1: x = = 6 LA MEDIAA, Mdn Puntuacón en que dvde la dstrbucón en dos partes guales: deja por debajo y por encma de sí al 50% de las observacones Cálculo: Ejemplo : 7, 11, 6, 5, 7, 1, 9, 8, 10, 6, 9. 1º. e ordenan los datos de menor a mayor: 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 1. º. es mpar: Mdn = valor central. En el Ejemplo, Mdn = 8 Mdn1 Mdn es par: Mdn = meda artmétca de los valores centrales: º. Mdn tambén puede obtenerse calculando el centl 50 de la dstrbucón. Mdn se dferenca de en que no se ve afectada por los valores extremos que pueda tomar la varable LA MODA, Mo Valor de la varable que más aparece en nuestros datos (el que obtene la mayor frecuenca absoluta n ) En el Ejemplo 1: :, 5,, 5. Donde Mo = 5. * hay dos valores de con la n mayor, la dstrbucón es bmodal (s estos valores son cercanos, para calcular Mo puede hallarse la meda de ambos). Carmen ménez
3 COMPARACIÓ ETRE LA MEDIDA DE TEDECIA CETRAL Crteros a segur: 1º. (entre otras razones porque es el mejor estmador del parámetro poblaconal ). º. no puede calcularse (p.e. varables ordnales, valores extremos) obtener Mdn. º. no puede obtenerse Mdn (p.e. datos nomnales, ntervalos abertos con más del 50% de sujetos) obtener Mo. En algunos casos los tres ndcadores pueden dar valores smlares pero no necesaramente ha de ser así. Mdn = = Mo solo s la dstrbucón es smétrca: Mdn Mo metría Asmetría postva Asmetría negatva. MEDIDA DE VARIACIÓ Para consegur una vsón completa y comprensva de los datos obtendos hay que complementar las meddas de tendenca central con otros estadístcos que reflejen otras propedades. Por ejemplo, el grado en que los datos se parecen o dferencan entre sí, propedad que se denomna varabldad o varacón. Ejemplo. Consderemos los sguentes datos en para los grupos A y B: Totales: Medas: A : A 10 B : B 10 Las medas en A e B son guales, pero on los datos smlares? Para cuantfcar esta varacón podemos calcular la meda de las dstancas al cuadrado de las puntuacones a la meda (la varanza). Es decr: Totales: Medas: x A : x B : x A : x B : ,8 Carmen ménez
4 La Varanza, Es el promedo de las dstancas al cuadrado desde los valores en hasta la meda (es decr, de las puntuacones dferencales al cuadrado) en una muestra de n sujetos. Fórmulas: Fórmula alternatva: ( ) x En el Ejemplo 1: :, 5,, 5. x : 0, 1, -, 1. x : 0, 1,, 1. La Desvacón Típca, 011 1, 5 O ben: En el Ejemplo 1: 1,5 1, La Cuasvaranza, ( ) Propedades: OTRA MEDIDA DE VARIACIÓ Ampltud total o rango: ; -1 A T = máx - mín Coefcente de varacón: CV 100. PROPIEDADE DE LA MEDIA Y DE LA VARIAZA 1. puede tomar cualquer valor mentras que valor mínmo 0. (en puntuacones dferencales) ( ) ( -1) ,5 y son sempre postvas, sendo su. tenemos una msma varable que ha sdo medda en k grupos y conocemos las medas y varanzas en cada grupo, entonces podemos calcular los estadístcos globales: k 1 k T Ejemplo : k 5 ( ) j j j j T T 5 6 j j 6() () (5) 6,15 6() (5) (6) 6(,15) (,15) (5,15) 6,5 1 1 T e utlza más que la varanza porque al calcular la raíz cuadrada se retoman las undades de medda orgnales para resumr las dstancas entre las y la. Carmen ménez T
5 . AIMETRÍA Y CURTOI Además de la tendenca central y la varacón, hay otras dos característcas que nos permten descrbr una dstrbucón de frecuencas. Tenen que ver con la forma de la dstrbucón. e trata de la asmetría y la curtoss. Índce de asmetría La asmetría de una dstrbucón hace referenca al grado en que los datos se reparten por encma y por debajo de la tendenca central. x Índce: As. Donde, x ( ) A B C ITERPRETACIÓ: A. As > 0: Asmetría postva B. As = 0: metría C. As < 0: Asmetría negatva * ota: el índce mostrado es el más común, aunque sólo puede calcularse para varables donde pueda obtenerse la meda y la varanza (cuanttatvas). Índce de curtoss La curtoss hace referenca al grado de apuntamento de una dstrbucón. Índce: x Cr. Donde, x ( ) A B C ITERPRETACIÓ: A. Cr > 0: dstrbucón Leptocúrtca B. Cr = 0: dstrbucón Mesocúrtca C. Cr < 0: dstrbucón Platcúrtca Ejemplo 5 x x x x : Meda: = Varanza: = 6 =,5 x As 0,8 ; ()(,5 ) 8 x Cr - 1 ()(,5 ) 88 Carmen ménez 5
6 5. EJERCICIO EJERCICIO x = - x = ( - ) : 1. Calcule la meda de. Rellene los huecos de la tabla EJERCICIO Calcule la medana y la meda en los sguentes conjuntos de datos: a) 5, 6, 7, 7, 8, 9, 9, 10, 10 b) 1, 1, 1, 1, 15, 16, 16, 17 c),,, 5, 5, 6, 6, 6, 6, 155 EJERCICIO n 1 n n n Calcule la moda para cada una de las dstrbucones que aparecen en la tabla: EJERCICIO Obtenga la varanza en cada uno de los sguentes conjuntos de datos: : 7 5 x: x : Y: y: y : W: 1, 1,7 1,6 1, 1,5 7,5 w: -0, 0, 0,1-0,1 0 w : EJERCICIO 5 e evalúa el nvel de tabaqusmo en una muestra de varones y 5 mujeres. Género Tabaqusmo ( ) V V V M 7 M 5 M M 10 M 6 1. Calcule la meda y varanza para mujeres y varones (por separado). Calcule la meda y la varanza para el grupo total (aplcando las propedades). Qué grupo es más homogéneo? Carmen ménez 6
7 EJERCICIO 6 La dreccón general de tráfco está nteresada en estudar la educacón val en los jóvenes. Para ello seleccona una muestra aleatora de sujetos que acaban de obtener el carnet de conducr (grupo 1) y otra con sujetos que lo tenen hace 5 años (grupo ) y regstra el nº de veces que han perddo puntos en el últmo año. Los resultados se muestran a contnuacón: Grupo 1: 1 1. Grupo : , ,5 1 1 Calcule los índces de asmetría y curtoss para cada grupo y elabore la representacón gráfca de las dos dstrbucones en una sola gráfca. Interprete los resultados obtendos. Carmen ménez 7
Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma
Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................
Medidas de Tendencia Central y de Variabilidad
Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.
Estadística Unidimensional: SOLUCIONES
4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas
Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.
ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:
Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia
MAT-3 Estadístca I Tema : Meddas de Dspersón Facltador: Félx Rondón, MS Insttuto Especalzado de Estudos Superores Loyola Introduccón Las meddas de tendenca central son ndcadores estadístcos que resumen
Medidas de Variabilidad
Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces
Media es la suma de todas las observaciones dividida por el tamaño de la muestra.
Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,
16/02/2015. Ángel Serrano Sánchez de León
Ángel Serrano Sánchez de León Índce Introduccón Varables estadístcas Dstrbucones de frecuencas Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca, armónca,
COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN
COLEGIO IGLÉS DEPARTAMETO IVEL: CUARTO MEDIO PSU. UIDAD: ESTADISTICA 3 PROFESOR: ATALIA MORALES A. ROLADO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. MEDIDAS DE DISPERSIÓ Las meddas de dspersón dan
A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.
MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan
Tema 1:Descripción de una variable. Tema 1:Descripción de una variable. 1.1 El método estadístico. 1.1 El método estadístico. Describir el problema
Tema :Descrpcón de una varable Tema :Descrpcón de una varable. El método estadístco. Descrpcón de conjuntos de datos Dstrbucones de frecuencas. Representacón gráfca Dagrama de barras Hstograma. Meddas
Tema 1: Estadística Descriptiva Unidimensional
Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde
MEDIDAS DESCRIPTIVAS
Tema 2: MEDIDAS DESCRIPTIVAS DE LOS DATOS 1. MEDIDAS DE CETRALIZACIÓ: Meda Medana Moda Cuantles Otras 2. MEDIDAS DE DISPERSIÓ: Desvacón típca Varanza Rango Otras 3. MEDIDAS DE FORMA: Asmetría Apuntamento
INTRODUCCIÓN. Técnicas estadísticas
Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad
I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez
Problema La sguente tabla epresa la estatura en cm. de soldados: Talla 5 56 60 6 68 6 80 8 88 Soldados 6 86 50 8 95 860 85 6 9 a) Haz un hstograma que represente la estatura en metros de los soldados.
Descripción de una variable
Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad
Prueba de Evaluación Continua
Estadístca Descrptva y Regresón y Correlacón Prueba de Evaluacón Contnua 1-III-18 1.- Dada la varable x y la nueva varable y=a+bx, ndcar (demostrándolo) la expresón exstente entre las respectvas medas
1. Notación y tabulación
Tema 2: Descrpcón Unvarante. otacón y tabulacón 2. Descrpcón gráfca 3. Descrpcón numérca. Momentos estadístcos. Meddas de poscón. Meddas de dspersón v. Varable tpfcada v. Meddas de forma v. Meddas de concentracón
DEFINICIÓN DE INDICADORES
DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.
Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas.
UIDAD 3: Meddas estadístcas Las meddas estadístcas o parámetros estadístcos son valores representatvos de una coleccón de datos y que resumen en unos pocos valores la normacón del total de datos. Estas
Relaciones entre variables
Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.
EXPERIMENTACIÓN COMERCIAL(I)
EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado
LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA
LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas
TEMA 5. ANÁLISIS DE UNA VARIABLE (III). MEDIDAS DE ASIMETRÍA, CURTOSIS Y CONCENTRACIÓN
DEPARTAMENTO DE ECONOMÍA GENERAL Y ETADÍTICA UNIDAD DOCENTE DE ETADÍTICA Y ECONOMETRÍA UNIVERIDAD DE HUELVA ANÁLII ETADÍTICO DEL TURIMO I 200-200200 DIPLOMATURA EN TURIMO TEMA 5 ANÁLII DE UNA VARIABLE
LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION
Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas
ESTADISTICA APLICADA A LA EDUCACIÓN
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA FACULTAD DE EDUCACIÓN DEPARTAMENTO DE MÉTODOS DE INVESTIGACIÓN Y DIAGNÓSTICO EN EDUCACIÓN I Grados de Educacón Socal y Pedagogía ESTADISTICA APLICADA A LA
De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado
Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de
Tema 1: Análisis de datos unidimensionales
Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones
SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN
Estadístca SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN LOGRO DE APRENDIZAJE: Al fnalzar la sesón, el estudante estará en la capacdad de calcular e nterpretar meddas de tendenca central y poscón de
Pruebas Estadísticas de Números Pseudoaleatorios
Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =
17/02/2015. Ángel Serrano Sánchez de León
Ángel Serrano Sánchez de León 1 Índce Introduccón Varables estadístcas Dstrbucones esde frecuencas c Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca,
SEMANA 13. CLASE 14. MARTES 20/09/16
SEMAA 3. CLASE. MARTES 20/09/6. Defncones de nterés.. Estadístca descrptva. Es la parte de la Estadístca que se encarga de reunr nformacón cuanttatva concernente a ndvduos, grupos, seres de hechos, etc..2.
MEDIDAS DE TENDENCIA CENTRAL: MEDIA ARITMÉTICA
.. MEDIDAS DE POSICIÓ... MEDIDAS DE TEDECIA CETRAL: MEDIA ARITMÉTICA EJEMPLO : S tenemos el sguente conjunto de datos... 0, 9, 8, 0, 9, 9, 0, 9, 0, 9... y deseamos encontrar un valor resuma y represente
ESTADÍSTICA UNIDIMENSIONAL
ESTADÍSTICA UNIDIMENSIONAL La estadístca undmensonal trata de resumr la nformacón contenda en una tabla que contene nformacón de una sola varable en unos pocos números. Las meddas de poscón pueden ser:
Métodos Estadísticos de la Ingeniería Tema 3: Medidas Estadísticas Grupo B
Métodos Estadístcos de la Ingenería Tema 3: Meddas Estadístcas Grupo B Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Enero 2010 Contendos...............................................................
CAPÍTULO 4 MARCO TEÓRICO
CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.
2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo
Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso
EJERCICIOS RESUELTOS TEMA 2
EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones;
ESTADÍSTICA DESCRIPTIVA
Estadístca www.aulatecnologa.com 1 ETADÍTICA DECRIPTIVA Lo prmero que buscamos con la Estadístca es el tratamento matemátco a partr de una nformacón epermental. Cuando queremos observar la evolucón de
Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza
Maestría en Admnstracón Meddas Descrptvas Formularo e Interpretacón Dr. Francsco Javer Cruz Arza A contnuacón mostramos el foco de atencón de las dstntas meddas que abordaremos en el presente manual. El
9Soluciones a los ejercicios y problemas
38 S a todos los datos de una dstrbucón le sumamos un msmo número, qué le ocurre a la meda? Y a la desvacón típca? Y s multplcamos todos los datos por un msmo número? Llamamos a al valor sumado a cada
TEMA 1.- CONCEPTOS BÁSICOS
TEMA 1.- CONCEPTOS BÁSICOS 1.1.- Cuestones tpo test 1.- En las encuestas personales puede codfcarse, por ejemplo, con un cero las que son contestadas por una mujer y con un uno las que lo son por un varón.
Capitalización y descuento simple
Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los
ANÁLISIS EXPLORATORIO DE DATOS
ANÁLISIS EXPLORATORIO DE DATOS 1. INTRODUCCIÓN HISTÓRICA 2 1.1 La Estadístca como cenca 2 1.2 Algunos problemas que resuelve la Estadístca 2 2. INTRODUCCIÓN A LA ESTADÍSTICA 3 2.1. Concepto y Objetvo de
4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es
4ºB ESO Capítulo 1: Estadístca 350 Índce 1. POBLACIÓ Y MUESTRA. VARIABLES ESTADÍSTICAS 1.1. POBLACIÓ 1.. MUESTRA 1.3. IDIVIDUO 1.4. VARIABLE ESTADÍSTICA. TABLAS DE FRECUECIAS.1. FRECUECIA ABSOLUTA.. FRECUECIA
2 Dos tipos de parámetros estadísticos
Dos tpos de parámetros estadístcos Págna 198 1. Calcula la meda, la medana y la moda de cada una de estas dstrbucones estadístcas: a) 4, 5, 6, 6, 6, 6, 7, 11, 1, 17 b), 1, 6, 9,, 8, 9,, 14, c), 3, 3, 3,
LECTURA 05 : MEDIDAS DE DISPERSIÓN Y DE FORMA TEMA 18: MEDIDAS DE DISPERSION
Unverdad Católca Lo Ángele de Chmbote LECTURA 0 : MEDIDAS DE DISPERSIÓN Y DE FORMA TEMA 8: MEDIDAS DE DISPERSION. DEFINICION La medda de dperón on aquella que cuantfcan el grado de concentracón o de dperón
Correlación y regresión lineal simple
. Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan
LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II)
LECTURA 03 DISTRIBUCIONES DE FRECUENCIAS (PARTE II) DISTRIBUCIONES DE FRECUENCIAS EN INTERVALOS DE CLASE Y DISTRIBUCIONES DE FRECUENCIAS POR ATRIBUTOS O CATEGORÍAS TEMA 6 DISTRIBUCIÓN DE FRECUENCIAS EN
Índice de Precios de las Materias Primas
May-15 Resumen Ejecutvo El objetvo del (IPMP) es sntetzar la dnámca de los precos de las exportacones de Argentna, consderando la relatva establdad en el corto plazo de los precos de las ventas externas
INTRODUCCIÓN AL ANÁLISIS DE DATOS SEPTIEMBRE 2014 Código asignatura: EXAMEN TIPO TEST MODELO B DURACION: 2 HORAS.
eptembre 04 EAMEN MODELO B ág. INTRODUCCIÓN AL ANÁLII DE DATO ETIEMBRE 04 Códgo asgnatura: 60037 EAMEN TIO TET MODELO B DURACION: HORA olucones 0 4 40 30 0 0 0 44 4 39 6 4 36 37 3 8 00 0 0 03 04 Nº de
Tema 6. Estadística descriptiva bivariable con variables numéricas
Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables
CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso
CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que
ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística
ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es
REGRESION Y CORRELACION
nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda
LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION
Unversdad Católca Los Ángeles de Chmbote LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 4: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION. DEFINICION Las meddas estadístcas son meddas de resumen
1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas...
TEMA. ESTADÍSTICA DESCRIPTIVA.. Concepto y orgen de la estadístca..... Conceptos báscos..... Tablas estadístcas: recuento..... Representacón de grafcas.... 6.. Varables cualtatvas... 6.. Varables cuanttatvas
CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS
CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables
Análisis de Regresión y Correlación
1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón
TEMA 14. ESCALAMIENTO CONJUNTO. INTRODUCCIÓN A LA TEORÍA DE LA RESPUESTA A LOS ITEMS (TRI)
TEMA 14. ESCALAMIENTO CONJUNTO. INTRODUCCIÓN A LA TEORÍA DE LA RESPUESTA A LOS ITEMS (TRI) 14.1. La Curva Característca de los ítems (CCI) 14.. Los errores típcos de medda 14.3. La Funcón de Informacón
LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II)
LECTURA 03 DISTRIBUCIONES DE FRECUENCIAS (PARTE II) DISTRIBUCIONES DE FRECUENCIAS EN INTERVALOS DE CLASE Y DISTRIBUCIONES DE FRECUENCIAS POR ATRIBUTOS O CATEGORÍAS TEMA 6 DISTRIBUCIÓN DE FRECUENCIAS EN
Tema 4: Variables aleatorias
Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son
Smoothed Particle Hydrodynamics Animación Avanzada
Smoothed Partcle Hydrodynamcs Anmacón Avanzada Iván Alduán Íñguez 03 de Abrl de 2014 Índce Métodos sn malla Smoothed partcle hydrodynamcs Aplcacón del método en fludos Búsqueda de vecnos Métodos sn malla
Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos:
MEDIDAS DE POSICIÓN Y DISPERSIÓN Estadístca En la clase anteror vmos como resumr la nformacón contenda en un conjunto de datos medante tablas y gráfcos. En esta clase vamos a ver como resumrlos medante
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 Págna 0 PRACTICA Meda y desvacón típca 1 Las edades de los estudantes de un curso de nformátca son: 17 17 18 19 18 0 0 17 18 18 19 19 1 0 1 19 18 18 19 1 0 18 17 17 1 0 0 19 0 18 a) Haz una tabla
MODELOS DE ELECCIÓN BINARIA
MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos
Aspectos fundamentales en el análisis de asociación
Carrera: Ingenería de Almentos Perodo: BR01 Docente: Lc. María V. León Asgnatura: Estadístca II Seccón A Análss de Regresón y Correlacón Lneal Smple Poblacones bvarantes Una poblacón b-varante contene
TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).
TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen
PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF)
ANEXO I EVALUACIÓN DE LA ENERGIA REGULANTE COMENSABLE (RRmj) OR ROORCIONAR RESERVA ROTANTE ARA EFECTUAR LA REGULACIÓN RIMARIA DE FRECUENCIA ( RF) REMISAS DE LA METODOLOGÍA Las pruebas dnámcas para la Regulacón
RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C
RESISTENCIS EN SERIE Y LEY DE LS MLLS V V 2 V 3 C D Fgura R R 2 R 3 Nomenclatura: Suponemos que el potencal en es mayor que el potencal en, por lo tanto la ntensdad de la corrente se mueve haca la derecha.
Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias
Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8
ESTADÍSTICA DESCRIPTIVA
ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores
CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información
IV. Base de Datos CAPÍTULO IV. MEDICIÓN De acuerdo con Székely (2005), exste dentro del período 950-2004 nformacón representatva a nvel naconal que en algún momento se ha utlzado para medr la pobreza.
Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución.
Ejercco nº En una empresa de teleonía están nteresados en saber cuál es el número de aparatos teleóncos (ncludos teléonos móvles) que se tene en las vvendas. Se hace una encuesta y, hasta ahora, han recbdo
5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS.
5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. Para organzar los datos a medda que el número de observacones crece, es necesaro condensar más los datos en tablas apropadas, a fn de presentar, analzar e nterpretar
DATOS AGRUPADOS POR INTERVALOS DE CLASE
3. Datos agrupados por ntervalo (Varable contnua) Generalmente los datos se agrupan por medo de ntervalos de clase, los cálculos son una aproxmacón a la realdad, se faclta los cálculos. En la agrupacón
ACTIVIDADES ESTADÍSTICA UNIDIMENSIONAL. a) Calcula la temperatura media y la temperatura mediana de la semana.
Matemátcas Aplcadas a las Cencas Socales I ACTIVIDADES ESTADÍSTICA UNIDIMENSIONAL 1) Se ha meddo la temperatura en grados centígrados la presón atmosférca en mm en una cudad durante una semana obtenéndose
MEDIDAS DE DISPERSIÓN
MEDIDAS DE DISPERSIÓ Introduccón Al estudar característcas o varables de una poblacón o muestra, sempre se manfestan dscrepancas o dferencas en los resultados ndvduales de las observacones. La varabldad
Medidas de centralización
1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos
Glosario básico. de términos estadísticos
Glosaro básco de térmnos estadístcos Lma, mayo de 2006 CREDITOS Dreccón y Supervsón Lupe Berrocal de Montestruque Drectora Técnca del Centro de Investgacón y Desarrollo Responsable del documento Hermna
Ejercicios y Talleres. puedes enviarlos a
Ejerccos y Talleres puedes envarlos a klasesdematematcasymas@gmal.com www.klasesdematematcasymas.com Hallar: 1. Altura Mayor: 1,93. Altura Menor: 1, 3. Rango: 1,93-1, 0,7 4. Formar ntervalos: m Rango 5.
Guía de ejercicios #1
Unversdad Técnca Federco Santa María Departamento de Electrónca Fundamentos de Electrónca Guía de ejerccos # Ejercco Ω v (t) V 3V Ω v0 v 6 3 t[mseg] 6 Suponendo el modelo deal para los dodos, a) Dbuje
el blog de mate de aida CSI: Estadística unidimensional pág. 1
el blog de mate de ada CSI: Estadístca undmensonal pág. ESTADÍSTICA La estadístca es la cenca que permte hacer estudos de grandes poblacones escogendo sólo un pequeño grupo de ndvduos, lo que ahorra tempo
Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica?
Relacones entre varables cualtatvas Problema: xste relacón entre el estado nutrconal y el rendmento académco de estudantes de enseñanza básca? stado Nutrconal Malo Regular Bueno TOTAL Bajo 13 95 3 55 Rendmento
EJERCICIOS PROPUESTOS TEMAS 1 Y 2
EJERCICIOS PROPUESTOS TEMAS 1 Y 2 1.- Indca para los sguentes caracteres s son varables (dferencando entre dscretas y contnuas) o atrbutos, y la escala de medda a la que pertenecen: a) Nvel de estudos
Algunas aplicaciones del test del signo
43 Algunas aplcacones del test del sgno Test de Mc emar para sgnfcacón de cambos: En realdad este test se estuda en detalle en Métodos no Paramétrcos II, en el contexto de las denomnadas Tablas de Contngenca.
Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia
Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,
TEMA 4 Variables aleatorias discretas Esperanza y varianza
Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón
Probabilidad Grupo 23 Semestre Segundo examen parcial
Probabldad Grupo 3 Semestre 015- Segundo examen parcal La tabla sguente presenta 0 postulados, algunos de los cuales son verdaderos y otros son falsos. Analza detendamente cada postulado y elge tu respuesta
Análisis de la varianza de un factor
Análss de la varanza de un factor El test t de muestras se aplca cuando se queren comparar las medas de dos poblacones con dstrbucones normales con varanzas guales y se observan muestras ndependentes para
E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA
E.U.I.T.I. Blbao Asgnatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Blbao Asgnatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA TEMA 2: ESTADÍSTICA DESCRIPTIVA 1. RESUMEN Métodos para resumr y descrbr
Estadísticos muéstrales
Estadístcos muéstrales Hemos estudado dferentes meddas numércas correspondentes a conjuntos de datos, entre otras, estudamos la meda, la desvacón estándar etc. Ahora vamos a dstngur entre meddas numércas
Estadística Descriptiva
Estadístca Descrptva ÍDICE ESTADÍSTICA DESCRIPTIVA. Poblacón y Muestra 4. Varables estadístcas 4 3. Frecuencas 5 4. Dstrbucones 7 5. Representacón gráfca 5. De caracteres cuanttatvos 5.. De varables estadístcas
Análisis de la varianza de un factor
Análss de la varanza de un factor El test t de muestras se aplca cuando se queren comparar las medas de dos poblacones con dstrbucones normales con varanzas guales y se observan muestras ndependentes para
CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.
Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo