Medidas de tendencia central o de posición: situación de los valores alrededor
|
|
- Consuelo Zúñiga Henríquez
- hace 6 años
- Vistas:
Transcripción
1 Tema 10: Medidas de posición y dispersión Una vez agrupados los datos en distribuciones de frecuencias, se calculan unos valores que sintetizan la información. Estudiaremos dos grandes secciones: Medidas de tendencia central o de posición: situación de los valores alrededor de los cuáles fluctúan los demás. Medidas de dispersión: grado de desviación de los datos respecto de las medidas de tendencia central. Acabaremos este resumen con el proceso de tipificación de una variable aleatoria. 1. Medidas de tendencia central Estudiaremos la media aritmética, la mediana y la moda Media aritmética Se suele representar por x, aunque también por µ e incluso abusando de la notación probabilista EX (esperanza de la variable X). Es el valor de tendencia central de mayor interés. Caso discreto Sea X una variable discreta que toma los valores x 1, x 2,, x k con frecuencias absolutas n 1, n 2,, n k resp. La media aritmética de X viene dada por x i n i x = = x i f i. Ejemplo. Calificaciones de 20 alumnos en Matemáticas: x i n i i P i La nota media es x = =
2 Propiedades 1) La suma de todas las desviaciones a la media es cero: (x i x)n i = 0. 2) Si X toma los valores x 1, x 2,..., x k, e Y los valores y i = x i + c, i = 1, 2,..., k, c R, entonces ȳ = x + c. 3) Si X toma los valores x 1, x 2,..., x k, e Y los valores y i = cx i, i = 1, 2,..., k, c R, entonces ȳ = c x. Aplicación: si X toma los valores x 1, x 2,..., x k, y Z los valores z i = x i c d, i = 1, 2,..., k, con c, d R, d 0, entonces z = x c d, lo cual facilita a veces los cálculos cambiando de variable. Por ejemplo, se quiere calcular el diámetro medio de 100 émbolos cuyas medidas en mm son: (x i ) n i Definimos Z = X cuya distribución de frecuencias es Diámetro (z i ) n i La media de Z es z = 0 15, luego x = 0 1 z = Caso continuo Si la variable aleatoria es continua, para simplificar se calculará la media aritmética de una variable discreta cuyos valores son las marcas de clase de cada uno de los intervalos y las frecuencias absolutas las de cada clase. Con ello se pierde precisión, porque sólo se tendrá en cuenta el número de valores que está dentro de un intervalo de clase pero no la forma en la que están repartidos. Ventajas de la media aritmética: - Contiene toda la información de los datos de la distribución, por lo que es representativa. - Siempre puede ser determinada, es fácil de calcular y admite operaciones aritméticas. Desventaja: presenta una gran sensibilidad a valores extremos. 2
3 1.2. Percentiles. Caso particular: la mediana Se suponen los valores de la variable ordenados en orden creciente. Si n, con 1 n 100, el percentil de rango n es el valor de la variable estadística que deja por debajo de él al n % de los valores y al resto por encima. La mediana es el percentil de rango 50 (divide a la muestra en dos partes iguales; al menos la mitad de la muestra cumple estar por debajo del valor destacado). Estudiaremos el valor de la variable correspondiente a un percentil dado; y dado un valor de la variable calcularemos el percentil correspondiente. Caso discreto Se realiza en primer lugar la tabla de frecuencias porcentuales acumuladas (f.p.a.). a) Si el porcentaje n no figura en la columna de f.p.a. se toma como percentil de rango n el primer valor de la variable cuya f.p.a. sobrepasa a n. b) Si el porcentaje n coincide con la f.p.a. de algún valor x i, se toma como percentil de rango n el valor x i+x i+1 2. Ejemplo. Consideramos de nuevo la tabla dada en la página?? sobre las calificaciones de 20 alumnos en Matemáticas. La mediana es 5, el percentil de rango 84 es 6, mientras que el percentil de rango 85 es = 7. Caso continuo Se construye el polígono de frecuencias porcentuales acumuladas (no debe construirse sobre el histograma, sino solo, pues las alturas deben reflejar el porcentaje correspondiente independientemente de la amplitud de cada clase). La abcisa correspondiente a la ordenada n es el percentil de rango n. El cálculo se hace por interpolación suponiendo que todos los individuos de un intervalo de clase están distribuidos homogéneamente. Ejemplo. Peso en kg de 100 personas: Peso [20, 40) [40, 60) [60, 80) [80, 100) P i
4 Pi peso Recuérdese que la recta que pasa por los puntos (x 0, y 0 ) y (x 1, y 1 ) viene dada, por ejemplo, como y x 0 = y 1 y 0 x 1 x 0 (x x 0 ). En este caso la mediana está en el intervalo [40, 60). Es aquel x tal que = El percentil de rango 91 es (x 40) x = Moda Es el valor de la variable estadística que corresponde al máximo del diagrama diferencial (diagrama de rectángulos o barras-histograma en caso continuo- y polígono de frecuencias simples). Se representa por M o. Caso discreto La moda es el valor de la variable con mayor frecuencia. o tiene por qué ser única, puede haber dos o más valores que se repiten (frecuencia absoluta) igual número (máximo) de veces. En tal caso, todos esos valores son la moda. Ejemplo: En el caso de que estudiemos el número de hijos por familia española descrito por el siguiente diagrama de barras: 4
5 tenemos que Mo = 2. Caso continuo Se construye el histograma n alumnos calificacion La moda está en el rectángulo de altura máxima, es decir, el de base [3, 5). (Suponemos, igual que se hacía en el cálculo de la mediana, que la distribución a lo largo del intervalo es uniforme.) Así, ahora la moda se calcula hallando la intersección de los segmentos que aparecen en la figura. En este caso, la moda corresponde a la coordenada x del punto de intersección. Como dicho punto es (4 45, 14 71), Mo =
6 2. Medidas de dispersión La dispersión de una distribución es la mayor o menor separación de sus datos respecto de una de las características de tendencia central, pretendiendo medir la representatividad de dicha característica. Ejemplo. Calificaciones de 28 alumnos: Física 3 9 n i Biología n i La calificación media en ambas asignaturas es de 6 puntos, pero dónde es más representativa? Estudiaremos el recorrido, la desviación media, la varianza, la desviación típica y el coeficiente de variación de Pearson Recorrido Viene definido como R = máx(x i ) mín(x i ). Proporciona una primera información de la variabilidad de la distribución, pero es insuficiente ya que si la variable toma un valor muy alto o muy bajo en relación con el resto, puede inducir a engaño (de nuevo, como ocurría con la media, es muy sensible a valores extremos) Desviación media Dada una característica de tendencia central C, los valores x i C representan la desviación a C. Estas cantidades definen una variable estadística que se usa como medida de dispersión. En concreto, la desviación media es la media aritmética de las desviaciones a la media: x i x n i D x =. Problema: los valores absolutos no son muy adecuados para realizar cálculos y posteriores estudios. 6
7 2.3. Varianza Se define como la media aritmética de los cuadrados de las desviaciones a la media: (x i x) 2 n i s 2 X =. Si la varianza es nula, todos los valores de la variable coinciden con la media, es decir, dispersión nula. Cuanto más alejadas estén las observaciones de la media, mayor será la varianza. A veces también aparece (por ejemplo en muchas calculadoras) expresada como σ 2 n. Propiedades: Sea X una variable, c, d R, d 0. 1) Si Y = dx, entonces s 2 Y = d2 s 2 X. 2) Si Y = X + c, entonces s 2 Y = s2 X. Teorema 1 (de König). la varianza es la diferencia entre la media de los cuadrados y el cuadrado de la media, es decir, (x i x) 2 n i = x 2 i n i x 2 Problema: como todas las desviaciones están elevadas al cuadrado, la unidad de medida de la varianza viene dada en cuadrados de las unidades de los datos originales Desviación típica Se define como la raíz cuadrada positiva de la varianza: 1/2 (x i x) 2 n i s X =. Esto aparece representado en muchas calculadoras como σ n. 7
8 Propiedades: Sea X una variable, c, d R, d 0. 1) Si Y = dx, entonces s Y = ds X. 2) Si Y = X + c, entonces s Y = s X. 3) Usando de nuevo el Teorema de König: x 2 i n i s X = x 2 1/2 Ejemplo. Calificaciones de 20 alumnos en Matemáticas: Sabemos que x = Usando la definición, s 2 X = x i n i (x i x) 2 (x i x) 2 n i x 2 i x 2 i n i Total (x i x) 2 n i Usando el Teorema de König, s 2 X = 2.5. Coeficiente de variación de Pearson = = , y s X = x 2 i n i x 2 = (5 05) 2 = A veces hay que comparar las dispersiones de dos distribuciones expresadas en distintas unidades. Es por ello que estudiamos una medida relativa de la variabilidad de la distribución mediante un número abstracto independiente de las unidades de medida de las variables. El coeficiente de variación de Pearson es CV = s X x. Multiplicándolo por cien permite usar el lenguaje de porcentajes. Cuanto mayor sea CV menor será la representatividad de la media. Su valor mínimo es cero, cuando s X = 0, en cuyo caso, obviamente, no hay dispersión. 8
9 Tipificación de la variable En ocasiones interesa deducir el valor relativo de un dato respecto al grupo que pertenece, usando para ello la media y desviación típica del grupo. Ejemplo. Se quiere asignar un puesto de trabajo entre dos candidatos. La plaza la consigue el que obtenga mejor calificación en una prueba que ambos realizaron en sus ciudades de procedencia. El candidato A obtuvo 55 puntos sobre 80, el candidato B 7 sobre 10 puntos. Son conocidas las medias y las desviaciones típicas de ambas pruebas: x A = 45, s A = 12; x B = 6, s B = 2. Quién consigue entonces el puesto de trabajo? O dicho más generalmente: cómo comparar datos de dos muestras distintas asociadas a un mismo tipo de estudio? Se hace un reescalamiento, denominado tipificación. Se llama tipificación de la variable X, que toma los valores x 1, x 2,..., x k, a la transformación z i = x i x s X. A la variable Z que toma los valores z 1, z 2,..., z k, se le llama variable tipificada. Gracias a las propiedades de la media y desviación típica, la variable tipificada tiene media nula y desviación típica uno (y ahora sí podemos compararlas). otamos Z A y Z B a dos nuevas variables estadísticas, las tipificaciones de las calificaciones habidas en las respectivas ciudades. Así, las notas de ambos individuos tipificadas son: z A = x A x A s A = 0 83; z B = x B x B s B = 0 5. Estos valores ahora sí son comparables, y elegimos el valor mayor, es decir, el candidato de la ciudad A como el más apto. 9
Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población.
Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta
Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido
Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6
Parámetros y estadísticos
Parámetros y estadísticos «Parámetro»: Es una cantidad numérica calculada sobre una población y resume los valores que esta toma en algún atributo Intenta resumir toda la información que hay en la población
Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL
1. Introducción ESTADÍSTICA CO EXCEL La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en
Ejercicio de estadística para 3º de la ESO
Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población
MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL
MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL Las medias de tendencia central o posición nos indican donde se sitúa un dato dentro de una distribución de datos. Las medidas de dispersión, variabilidad o variación
ANÁLISIS DESCRIPTIVO CON SPSS
ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística ANÁLISIS DESCRIPTIVO CON SPSS 1.- INTRODUCCIÓN Existen dos procedimientos básicos que permiten describir las propiedades de las distribuciones:
Otras medidas descriptivas usuales
Tema 7 Otras medidas descriptivas usuales Contenido 7.1. Introducción............................. 1 7.2. Medidas robustas.......................... 2 7.2.1. Media recortada....................... 2 7.2.2.
1.1. Introducción y conceptos básicos
Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................
ESTADÍSTICA SEMANA 4
ESTADÍSTICA SEMANA 4 ÍNDICE MEDIDAS DE DISPERSIÓN... 3 APRENDIZAJES ESPERADOS... 3 DEfinición de Medida de dispersión... 3 Rango o Recorrido... 3 Varianza Muestral (S 2 )... 3 CÁLCULO DE LA VARIANZA...
REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL.
REPASO COCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓ ORMAL. Éste es un breve repaso de conceptos básicos de estadística que se han visto en cursos anteriores y que son imprescindibles antes de acometer
MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN
MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Suponga que le pedimos a un grupo de estudiantes de la asignatura de estadística que registren su peso en kilogramos. Con los datos del peso de los estudiantes
1. MEDIDAS DE TENDENCIA CENTRAL
1. MEDIDAS DE TENDENCIA CENTRAL Lo importante en una tendencia central es calcular un valor central que actúe como resumen numérico para representar al conjunto de datos. Estos valores son las medidas
Medidas de tendencia Central
Medidas de tendencia Central 7.1 Media 7.1.1 Media para un conjunto de datos no agrupados Este parámetro lo usamos con tanta cotidianidad que nos será muy familiar, aunque también aprenderemos algunas
Media vs mediana vs moda Cual medida de tendencia central es mas adecuada? MEDIA conveniencias:
Iniciar con las interpretaciones de las medidas MEDIA VS MEDIANA VS MODA CUAL ES LA MEDIDA ADECUADA TAREA MEDIA PONDERADA Actividad de Medidas de Localización Problema 1. El problema de las tasas de delito.
Tema 9: Estadística Descriptiva. Distribuciones estadísticas. Representaciones
Tema 9: Estadística Descriptiva Distribuciones estadísticas Representaciones gráficas 1 Conceptos fundamentales La Estadística es el conjunto de métodos necesarios para recoger, clasificar, representar
Estadística: conceptos básicos y definiciones.
Estadística: conceptos básicos y definiciones. 1 Conceptos básicos 2 Conceptos básicos cont. 3 Conceptos básicos cont. 4 Conceptos básicos cont. 5 Conceptos básicos cont. 6 Definición de Estadística La
Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS
ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos
ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Construcción de una Base de Datos
Descargado desde www.medwave.cl el 13 Junio 2011 por iriabeth villanueva Medwave. Año XI, No. 2, Febrero 2011. ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Construcción de una Base de Datos Autor:
Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos
Capítulo 10 Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Al analizar datos, lo primero que conviene hacer con una variable es, generalmente, formarse una idea lo más exacta posible
Población, muestra y variable estadística
Población, muestra y variable estadística La estadística es la parte de las Matemáticas que estudia cómo recopilar y resumir gran cantidad de información para extraer conclusiones. La población de un estudio
Clase 2: Estadística
Clase 2: Estadística Los datos Todo conjunto de datos tiene al menos dos características principales: CENTRO Y DISPERSIÓN Los gráficos de barra, histogramas, de puntos, entre otros, nos dan cierta idea
ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS
ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS 1) INTRODUCCIÓN El análisis de varianza es una técnica que se puede utilizar para decidir si las medias de dos o más poblaciones son iguales. La prueba se
8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...
Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación
Gráficas de caja. El borde derecho de la caja es el tercer cuartil, Q 3, que es la mediana de los valores que están por encima de la mediana.
LECCIÓN CONDENSADA 2.1 Gráficas de caja En esta lección crearás e interpretarás las gráficas de caja para conjuntos de datos usarás el rango intercuartil (IQR) para identificar valores extremos potenciales
LECCION 1ª Introducción a la Estadística Descriptiva
LECCION 1ª Introducción a la Estadística Descriptiva La estadística descriptiva es una ciencia que analiza series de datos (por ejemplo, edad de una población, altura de los estudiantes de una escuela,
Distribución de frecuencias gráficas y tablas
Distribución de frecuencias gráficas y tablas Dra. Alicia M. González de la Cruz Educ 525 2013 Organizar los datos Las distribuciones de frecuencia es la organización de datos crudos en forma de tablas,
Covarianza y coeficiente de correlación
Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también
Tema 3: Variables aleatorias y vectores aleatorios bidimensionales
Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos
ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión
Descargado desde www.medwave.cl el 13 Junio 2011 por iriabeth villanueva Medwave. Año XI, No. 3, Marzo 2011. ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión Autor:
Clase 2: Estadística
Clase 2: Estadística Los datos Todo conjunto de datos tiene al menos dos características principales: CENTRO Y DISPERSIÓN Los gráficos de barra, histogramas, de puntos, entre otros, nos dan cierta idea
(Tomado de: http://www.liccom.edu.uy/bedelia/cursos/metodos/material/estadistica/var_cuanti.html)
VARIABLES CUANTITATIVAS (Tomado de: http://www.liccom.edu.uy/bedelia/cursos/metodos/material/estadistica/var_cuanti.html) Variables ordinales y de razón. Métodos de agrupamiento: Variables cuantitativas:
CUESTIONES DE AUTOEVALUACIÓN (TEMA 1)
CUESTIONES DE AUTOEVALUACIÓN (TEMA 1) Cuestiones de Verdadero/Falso 1. Un estadístico es una característica de una población. 2. Un parámetro es una característica de una población. 3. Las variables discretas
UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL
UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características
15 PARÁMETROS ESTADÍSTICOS
EJERCICIOS PROPUESTOS 1.1 El número de libros leídos por los miembros de un círculo de lectores en un mes se resume en esta tabla. N. o de libros leídos x i N. o de personas f i 1 1 3 18 11 7 7 1 Halla
Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS
Tema 9 Estadística Matemáticas B º E.S.O. TEMA 9 ESTADÍSTICA TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS EJERCICIO : En un grupo de personas hemos preguntado por el número
Medidas de la tendencia central y las gráficas de caja
LECCIÓN CONDENSADA 2.1 Medidas de la tendencia central y las gráficas de caja En esta lección Encontrarás e interpretarás la media, la mediana, y la moda para unos conjuntos de datos Crearás e interpretarás
Aplicaciones de Estadística Descriptiva
Aplicaciones de Estadística Descriptiva Contenidos de la presentación Funciones estadísticas en Excel. Gráficos. El módulo de análisis de datos y las tablas dinámicas de Excel. Información Intentaremos
Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones
Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces
INSTITUCION EDUCATIVA LUIS PATRON ROSANO DOCUMENTO PARA ESTUDIAR LOGROS PENDIENTES DE ESTADISTICA DE 10º
INSTITUCION EDUCATIVA LUIS PATRON ROSANO DOCUMENTO PARA ESTUDIAR LOGROS PENDIENTES DE ESTADISTICA DE 10º DEFINICIÓN DE PARÁMETRO ESTADÍSTICO Un parámetro estadístico es un número que se obtiene a partir
MEDIDAS DE TENDENCIA CENTRAL
CAPÍTULO 14 MEDIDAS DE TENDENCIA CENTRAL A veces, de los datos recolectados ya organizados en alguna de las formas vistas en capítulos anteriores, se desea encontrar una especie de punto central en función
Tema 2. Espacios Vectoriales. 2.1. Introducción
Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por
Tema 2 Estadística Descriptiva
Estadística Descriptiva 1 Tipo de Variables 2 Tipo de variables La base de datos anterior contiene la información de 2700 individuos con 8 variables. Los datos provienen de una encuesta nacional realizada
Síntesis Numérica de una Variable
Relación de problemas 2 Síntesis Numérica de una Variable Estadística 1. En siete momentos del día se observa el número de clientes que hay en un negocio, anotando: 2, 5, 2, 7, 3, 4, 9. Calcular e interpretar
Socioestadística I Análisis estadístico en Sociología
Análisis estadístico en Sociología Capítulo 3 CARACTERÍSTICAS DE LAS DISTRIBUCIOES DE FRECUECIAS 1. CARACTERÍSTICAS DE UA DISTRIBUCIÓ UIVARIATE Hasta ahora hemos utilizado representaciones gráficas para
EJERCICIOS SOBRE : NÚMEROS ENTEROS
1.- Magnitudes Absolutas y Relativas: Se denomina magnitud a todo lo que se puede medir cuantitativamente. Ejemplo: peso de un cuerpo, longitud de una cuerda, capacidad de un recipiente, el tiempo que
DESIGUALDADES E INECUACIONES
DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia
GRADO TURISMO TEMA 2: ANÁLISIS DE DATOS TURÍSTICOS UNIDIMENSIONALES
GRADO TURISMO TEMA 2: ANÁLISIS DE DATOS TURÍSTICOS UNIDIMENSIONALES Prof. Rosario Martínez Verdú TEMA 2: ANÁLISIS DE DATOS TURÍSTICOS UNIDIMENSIONALES 1. Presentación de los datos: distribuciones de frecuencias,
1 Espacios y subespacios vectoriales.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto
1.4.- D E S I G U A L D A D E S
1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y
I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O.
PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. Este programa está destinado a los alumnos que han promocionado a cursos superiores sin haber superado esta materia.
I1.1 Estudios observacionales IISESIÓN DISEÑO O DE ESTUDIOS EN INVESTIGACIÓN N MÉDICA DESCRIPTIVA CURSO DE. 1.2 Estudios experimentales
1 2 3 4 5 6 ESQUEMA DEL CURSO ESTADÍSTICA BÁSICA DISEÑO DE EXPERIMENTOS CURSO DE ESTADÍSTICA STICA BÁSICAB ESTADÍSTICA DESCRIPTIVA TIPOS DE VARIABLES MEDIDAS DE POSICIÓN CENTRAL Y DE DISPERSIÓN TABLAS
13Soluciones a los ejercicios y problemas
Soluciones a los ejercicios y problemas PÁGINA Pág. P RACTICA Tablas de frecuencias El número de faltas de ortografía que cometieron un grupo de estudiantes en un dictado fue: a) Di cuál es la variable
Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8
Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características
BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.
BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades
Anexo 4. Herramientas Estadísticas
Anexo 4 Herramientas Estadísticas La estadística descriptiva es utilizada como una herramienta para describir y analizar las características de un conjunto de datos, así como las relaciones que existen
Las bebidas Alcohólicas
Las bebidas Alcohólicas Hecho por: - Elisa Gutiérrez - Guillermo Rivas-plata - Rodrigo Pumares - Beatriz Sánchez 1 Índice 1- Introducción... 3 2- Objetivos... 3 3- Preguntas de la encuesta... 4 4- Encuesta...
PRESENTACIÓN GRÁFICA DE LOS DATOS
PRESENTACIÓN GRÁFICA DE LOS DATOS Una imagen dice más que mil palabras, esta frase explica la importancia de presentar los datos en forma gráfica. Existe una gran variedad de gráficos y la selección apropiada
Los números racionales
Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones
Estadística descriptiva con Excel (Cálculo de medidas)
Universidad Pedagógica Experimental Libertador Instituto Pedagógico de Miranda José Manuel Siso Martínez Departamento de Ciencias Naturales y Matemáticas Cátedra: Estadística aplicada a la educación Estadística
x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos
Introducción. Estadística 1. 1. Introducción
1 1. Introducción Introducción En este tema trataremos de los conceptos básicos de la estadística, también aprenderemos a realizar las representaciones gráficas y a analizarlas. La estadística estudia
Profr. Efraín Soto Apolinar. Factorización
Factorización La factorización es la otra parte de la historia de los productos notables. Esto es, ambas cosas se refieren a las mismas fórmulas, pero en los productos notables se nos daba una operación
Semana de dieta (X) 1 2 3 4 5 Peso en Kg (Y) 88.5 87 84 82.5 79
. Una persona se somete a una dieta de adelgazamiento durante cinco semanas. A continuación se detalla su peso al término de cada una de esas semanas: Semana de dieta X) 2 3 4 Peso en Kg Y) 88. 87 84 82.
Se podría entender como una matriz de filas y columnas. Cada combinación de fila y columna se denomina celda. Por ejemplo la celda A1, B33, Z68.
Departamento de Economía Aplicada: UDI de Estadística. Universidad Autónoma de Madrid Notas sobre el manejo de Excel para el análisis descriptivo y exploratorio de datos. (Descriptiva) 1 1 Introducción
Divisibilidad y números primos
Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos
Tema 4 : Tabulación de datos
Tema 4 : Tabulación de datos La tabulación consiste en presentar los datos estadísticos en forma de tablas o cuadros. --Partes de una tabla TITULO de la tabla, que debe ser preciso y conciso CONTENIDO,
Raíces cuadradas y radicales
Raíces cuadradas y radicales Raíz cuadrada - la raíz cuadrada de x, donde x, es igual a c (donde c si c 2 = x. Se usa la notación para representar la raíz cuadrada principal de x. Al símbolo se le llama
www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control.
ESTUDIOS DE CAPACIDAD POTENCIAL DE CALIDAD 1.- INTRODUCCIÓN Este documento proporciona las pautas para la realización e interpretación de una de las herramientas fundamentales para el control y la planificación
Datos estadísticos. 1.3. PRESENTACIÓN DE DATOS INDIVIDUALES Y DATOS AGRUPADOS EN TABLAS Y GRÁFICOS
.. PRESENTACIÓN DE DATOS INDIVIDUALES Y DATOS AGRUPADOS EN TABLAS Y GRÁFICOS Ser: Describir el método de construcción del diagrama de tallo, tabla de frecuencias, histograma y polígono. Hacer: Construir
2 Resolución de algunos ejemplos y ejercicios del tema 2.
INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 8 2 Resolución de algunos ejemplos y ejercicios del tema 2. 2.1 Ejemplos. Ejemplo 13 La siguiente tabla de frecuencias absolutas corresponde a 200 observaciones
Matemática de redes Representación binaria de datos Bits y bytes
Matemática de redes Representación binaria de datos Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo pueden entender
Tema 7: Estadística y probabilidad
Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro
Master en Gestión de la Calidad
Master en Gestión de la Calidad E U R O P E A N Q U A L I T Y 18. Estudios de Capacidad 1 / 1 Estudios de Capacidad: Lo que vamos a estudiar en este apartado se emplea tanto en la planificación de los
Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b
La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente
CORRELACIÓN Y PREDICIÓN
CORRELACIÓN Y PREDICIÓN 1. Introducción 2. Curvas de regresión 3. Concepto de correlación 4. Regresión lineal 5. Regresión múltiple INTRODUCCIÓN: Muy a menudo se encuentra en la práctica que existe una
TEMA 4: Introducción al Control Estadístico de Procesos
TEMA 4: Introducción al Control Estadístico de Procesos 1 Introducción 2 Base estadística del diagrama de control 3 Muestreo y agrupación de datos 4 Análisis de patrones en diagramas de control 1. Introducción
ESTIMACIÓN. puntual y por intervalo
ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio
Tema 10. Estimación Puntual.
Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener
CONTENIDOS MÍNIMOS BLOQUE III: ÁLGEBRA
CONTENIDOS MÍNIMOS BLOQUE III: ÁLGEBRA Interpolación de términos en una sucesión. Cálculo del término general de sucesiones muy sencillas. Distinción entre progresiones aritméticas y geométricas. Interpolación
Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN CIENCIAS EMPRESARIALES ESTADÍSTICA
ESCUELA UIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA E CIECIAS EMPRESARIALES ESTADÍSTICA Ejercicios Resueltos AÁLISIS ESTADÍSTICO DE DOS VARIABLES Y RE- GRESIÓ LIEAL SIMPLE Curso 6-7 Curso 6-7 1)
Imagen de Rosaura Ochoa con licencia Creative Commons
Imagen de Rosaura Ochoa con licencia Creative Commons Durante el primer tema hemos aprendido a elaborar una encuesta. Una vez elaborada la encuesta necesitamos escoger a los individuos a los que se la
Análisis de Datos. Práctica de métodos predicción de en WEKA
SOLUCION 1. Características de los datos y filtros Una vez cargados los datos, aparece un cuadro resumen, Current relation, con el nombre de la relación que se indica en el fichero (en la línea @relation
14 ESTADÍSTICA UNIDIMENSIONAL
1 ESTADÍSTICA UNIDIMENSIONAL EJERCICIOS PROPUESTOS 1.1 Clasifica los siguientes caracteres estadísticos. a) Número de canastas encestadas en un partido de baloncesto. b) Canal de televisión preferido por
1 Comida Favorita.Cualitativa. 2 Profesión que te gusta.cualitativa. 3 Número de goles marcados por tu equipo favorito en la última
1.-Indica que variables son cualitativas y cuales cuantitativas: 1 Comida Favorita.Cualitativa. 2 Profesión que te gusta.cualitativa. 3 Número de goles marcados por tu equipo favorito en la última temporada.cuantitativa.
Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff
Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.
PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa:
Página 90 5 LA PARÁBOLA 5.1 DEFINICIONES La parábola es el lugar geométrico 4 de todos los puntos cuyas distancias a una recta fija, llamada, y a un punto fijo, llamado foco, son iguales entre sí. Hay
Tema 1: Test de Distribuciones de Probabilidad
Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).
2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES
2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1 Se ha medido el volumen, X, y la presión, Y, de una masa gaseosa y se ha obtenido: X (litros) 1 65 1 03 0 74 0 61 0 53 0 45 Y (Kg/cm 2 ) 0 5 1 0 1 5 2 0 2 5 3
Líneas Equipotenciales
Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia
Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una
UNIDADES DE ALMACENAMIENTO DE DATOS
1.2 MATÉMATICAS DE REDES 1.2.1 REPRESENTACIÓN BINARIA DE DATOS Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo
PRÁCTICA No. 1 ESTADÍSTICA DESCRIPTIVA PARTE I
PRÁCTICA No. 1 ESTADÍSTICA DESCRIPTIVA PARTE I Objetivos: Al finalizar esta práctica, el alumno podrá utilizar de manera más eficiente diversas funciones de Excel que le faciliten el cálculo de los principales
17.- PARABRISAS RESOLUCIÓN
17.- PARABRISAS La sección de control de calidad de una fábrica de parabrisas elige, aleatoriamente, una muestra de 100 parabrisas producidos por una determinada máquina y registra la longitud de los parabrisas
Control Estadístico de Procesos
Control Estadístico de Procesos Gráficos de Control Los gráficos de control o cartas de control son una importante herramienta utilizada en control de calidad de procesos. Básicamente, una Carta de Control
Análisis de componentes principales
Capítulo 2 Análisis de componentes principales 2.1. INTRODUCCIÓN El Análisis de componentes principales trata de describir las características principales de un conjunto de datos multivariantes, en los
Explicación de la tarea 3 Felipe Guerra
Explicación de la tarea 3 Felipe Guerra 1. Una ruleta legal tiene los números del 1 al 15. Este problema corresponde a una variable aleatoria discreta. La lectura de la semana menciona lo siguiente: La
Representaciones Gráficas
Representaciones Gráficas Gráficos para variables cualitativas Los gráficos más usuales para representar variables de tipo nominal son los siguientes: Diagramas de barras: Se representa en el eje de ordenadas
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local
21 Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local Victoria Jiménez González Introducción La Estadística es considerada actualmente una herramienta indispensable