f p) 2 3x f q) f r) 4 x f s) x 6 f t) f u) x 3x f v) x 7x x x 9x

Tamaño: px
Comenzar la demostración a partir de la página:

Download "f p) 2 3x f q) f r) 4 x f s) x 6 f t) f u) x 3x f v) x 7x x x 9x"

Transcripción

1 .- Halla el dominio de deinición de las siguientes unciones polinómicas y racionales: a) ( ) b) ( ) 8 j) ( ) 9 4 d) ( ) 6 9 l) 7 ( ) 5 ( ) ( ) 4 p) q) r) 7 9 ( ) 8 ( ) 7 9 ( ) 4 6 ( ) 4 ( ) ( ) s) 5 ( ) 6 m) t) h) ( ) ( ) ( ) 7 ( ) 4 u) v) o) 5 w) ( ) ( ) 4 7 ( ) ( ) ( ) ( ) ( ) ( ) Sol : a)... ; 7 / ; h) / ; 5 ; j) ; ; l) ; m) ; ; ; o) ; p),, ; q) 0,, ; r),4 ; s),, ; t) / ; u), ; v) ; w).- Halla el dominio de deinición de las siguientes unciones irracionales: a) ( ) 6 8 l) ( ) 5 v) ( ) 4 b) ) ( m) ( ) 4 w) ( ) 4 ( ) d) ( ) 4 ( ) ( ) 4 ( ) ) ( ) ( ) y) ( ) o) ( ) 5 z) p) 4 4 ( ) 5 4 q) h) ( ) r) j) ( ) 4 s) 4 ( ) 7 7 ( ) 6 9 t) ( ) ( ) ) 5 ( ) 5 ( ) ) 5 ( ) 4 4 ( ) ) ( ) 4 4 ( ) ) 4 ( ) ) 6 u) ( ) ) ( 7) ( ) 4 ( ) 7 9 ( ) ( ) Marzo de 08

2 * )[, / ]; )[,4]; ) ; ) ; ) ; ) ; )(,); )(,0) ([, ); )(, Sol : a)[0, ); b)[,]; (, ] U(, ); d) ; (,); ; (,] U[4, ); h) ; [,4] U[4, ); j)(, ) U(, ] U([, ); (,9); l m n ñ o p q r U s.- Halla el dominio de las siguientes unciones: a) ( ) ln( ) * ] U(, ); t)(, ) U(,6) U(6, ); u) ; v)[, ); w)(,]; )(, ); y), ; z)(,]; ) 0, 5 ; ) ; )(, 7] U[0, ); ) ; ) 9 ; )[,) 7 j) ( ) log r) ( ) 4 ( ) log 9 ( ) log s) ( ) e b) ( ) ln(5 ) l) d) ( ) ln m) ( ) ln( ) ( ) log( ) ( ) log 5 o) h) ( ) ln p) ln ( ) q) ( ) 5 y) ( ) 5 u) ( ) v) ( ) w) ( ) ( ) e e ( ) e ln( ) ( ) e ( ) e ) 9 ( ) ( 5) y) 4 ( ) ( 5) z) ( ) log 9 log( 7) ( ) ( ) ln( ) 4.- Halla el dominio de las siguientes unciones: 5 ( ) cos ( ) sen 7 ( ) ln ( ) cos 9 l) ( ) sen ( ) h) ( ) m) ( ) cos ( ) ( ) ( ) 4 ln ( ) j) ( ) ( ) ln ln a) ( ) b) d) 5.- Dadas las siguientes unciones, eectúa las operaciones que se indican, indicando el dominio de la unción resultante: 6 ( ) g ( ) 6 h ( ) p ( ) 4 4 k ( ) l ( ) 4 m ( ) 4 s ( ) j ( ) r ( ) d) j k j r j) j s m) h k p) j s s) k s g g m h) m g m m j q) p r t) s p s p r s l) j r) g a) g b) p j Marzo de 08 m o) r u)

3 6.- Comprueba si los siguientes puntos están en los dominios de cada unción: a) Los puntos =, = y =-5 en la unción ( ) b) Los puntos =, =4 y =5 en la unción ( ) ln( 4) 6 Los puntos =, =- y =0 en la unción ( ) Sol: a) si,si,no; b) no,no,si; Si,no,si 7.- Estudia si los valores de la ordenada, y, están incluidos en los recorridos de estas unciones: a) Las ordenadas y=, y= e y=-5 en la unción ( ) b) Las ordenadas y=0, y=0 e y=- en la unción ( ) Las ordenadas y=, y=/6 e y=-7 en la unción ( ) Sol: a) si, si, no; b) y Todas sí. 8.- Sean las unciones: ( ) y g( ),calcular: a) g ; b) g 5 7 Sol: g ( ) g ( ) g g( ) g( ) Dadas las unciones: h g ; ; Probar que 0.- Dadas las unciones:.- Dadas las unciones: a) g, b) g ( ) ; g( ) y h( ) I ( ) ( ) sen y ; Probar que: I, calcular: a) g ; b) g ; h g ; d) a) g ( ) ; b) g ( ) ; h g ( ) ; d) h g ( ) Sol: y g( ) g, Calcular: a) g, b) g, ( ) cot 5, calcular: Sol: a) g( ) sen cot (5 ) ; b) g ( ) cot 5 sen ( ).- A partir de la gráica de la derecha, obtén la gráica de estas unciones: a) g( ) b) h( ) i( ) d) j( ) 4.- Comprueba con las unciones ( ) y g( ) que la composición de unciones no es conmutativa. Calcula además el dominio de g y de g. 4.- Determina y, d) Probar que I a) g ( ) ; b) g ( ) ; ( ) Sol: Sol: a) g( ) ; Dom g, ; b) g ( ) ; Dom g, en los pares de unciones siguientes para comprobar si son inversas o no. ( ) ( ) ( ) ( ) sin ( ) a) ) ) ) ) b c d e ( ) ( ) ( ) log ( ) arcsen ( ) Sol: a) No; b) No,, d) y si lo son. 5.- Calcula la inversa de las siguientes unciones: a) y 5 b) y y Sol: a) (-5)/; b) -; ( +)/ e e e e 6.- Calcula las inversas de las siguientes unciones: ( ) g( ) c 7.- Si la unción deinida por ( ), con veriica que ( ) Sol: ( ) ln ; g ( ) ln, cuánto vale c? Sol: c=-. Marzo de 08

4 8.- Dibuja unciones que cumplan las siguientes propiedades: a) Su dominio y su recorrido son todos los números reales b) Su dominio es Es creciente y su dominio es, d) Es logarítmica y su dominio es, Es logarítmica y su dominio es, Es Eponencial y su dominio es * 9.- Eplica cómo se pueden obtener por composición las unciones p() y q() a partir de () y g(), siendo: ( ) g( ) p( ) q( ) 5 Sol: p( ) g( ) q( ) g ( ) 0.- Sabiendo que: ( ) y g( ), eplica cómo se pueden obtener por composición, y a partir de ellas, las siguientes unciones: p( ) q( ) Sol: p( ) g ( ) q( ) g ( ).- Escriba la unción v() = 4 como la composición de dos unciones..- Escriba la unción w() = como la composición de dos unciones..- Escriba la unción s() = + + como a) el producto de dos unciones; b) la suma de dos unciones. 4.- En la siguiente gráica, calcula los siguientes límites: 5.- Calcula los límites: Sol: a) ; b)0 y - ; ; d)- y + ; 4 Marzo de 08 Sol: a) ; b)+ ; y + ; d) + y - ; +

5 6.- Calcula los límites: a) 6 5 d) Cos Calcula los límites: a) 4 5 b) 8 5 d) b) h) h) j) l) m) o) ( 4 ) Sol: a)/; b)0; ½; d)0; No eiste; ; ; h)0; 4; j)-0; ; l)/7; m)8; -7; ¼; o); p) 8.- Calcula los límites: 5 a) 0 Sen( a) 5 ( ) 4 5 ( ) Sen Cos Sol: a) 4/9; b) d) 5 N.E. 0 0; h) Cosa 0) 7 p) 4 q) 8 6 r) s) t) u) a a a a v) b) h) 0 d) j) 44 o) 5 4 w) ; q)+; r)/6; s) /; t) 4; u) 0; v); w) 9/4. 6 m) p) ( 5) l) q) Sol: a)0; b) +; ; d) ; ¼ ; 0 ; ; h) 0 ; 4/; j) 4/9; 6/8; l) e ;m) e ; e / ; e 9 / ; o) e ;p) e q) e 5 Marzo de 08

6 6 Marzo de 08 Funciones - Dominio 9.- Determinar el valor de a para que: a 0.- Calcular: a cos.- Calcular el límite de la unción ( ), en el punto 0, en el punto y en.- Calcular el siguiente límite:.- Calcular el valor de la constante c para que c e 4.- Estudiar en el cuerpo real la continuidad de la unción deinida por: Sol: Así que la unción () es una unción continua en e si 0 ( ) e si 0 Sol: a=4 Sol: a/ Sol: a) /; b) -cos; 0 Sol: e Sol: c=/ 0, donde presenta una discontinuidad de salto. sen ae b cos si Determinar a y b para que la unción deinida por ( ) sea continua. sen a b( ) si 0 Sol: No eisten a y b, porque en =0 no está deinida. 6.- Probar que la unción deinida por ( ) no es continua en =. Indicar que tipo de discontinuidad 7 8 presenta. Sol: La unción no está deinida en =, por tanto no es continua, presenta una discontinuidad de segunda especie, llamada d. asintótica. sen si 7.- Halla los valores de a y b para que la unción sea continua: ( ) a sen b si cos si Sol: a=-/; b=/ 8.- El manual de usuario de un vehículo airma que el ruido producido por el motor sigue aproimadamente la órmula: r = at +,8t + 8 donde t es el número de años de antigüedad del vehículo; a es un número ijo, que se denomina coeiciente de atenuación, y r es el nivel de ruido, medido en decibelios. La semana pasada llevé mi vehículo a pasar la revisión de los cuatro años y en el inorme igura que la medición ue de 7 decibelios. a) Cuál es el coeiciente de atenuación? b) Cuántos decibelios producirá a los ocho años? 9.- En una circunerencia de 5 cm de radio se inscribe un rectángulo de lado. Sol: a) a = 0,4875; b) 6,6 decibelios. a) Epresa el área en unción de. Cuál es su dominio? b) Realiza un tanteo para determinar el máimo valor que puede tomar esa unción. Cuánto medirán los lados del rectángulo en ese caso? Qué tanto por ciento de la supericie del círculo ocupa el rectángulo? Sol: a) Dom [0,0]; b) 7 y 7,; 6,64 % Una arola tiene 7 m de altura. En su base hay una persona de,80 m de altura que empieza a andar en línea recta, alejándose de la arola a una velocidad de m/s. Al cabo de 0 segundos, cuál será la longitud de su sombra? Halla una unción que eprese la longitud de la sombra en unción del tiempo, t, que se camina. 6 Sol: Sombra de 5,4 m; ( t) t 70

f p) 2 3x f q) f r) 4 x f s) x 6 f t) f u) x 3x f v) x 7x x x 9x

f p) 2 3x f q) f r) 4 x f s) x 6 f t) f u) x 3x f v) x 7x x x 9x .- Halla el dominio de deinición de las siguientes unciones polinómicas y racionales: a) b) 8 j) 9 4 d) 9 l) 7 ( ) 5 ( ) ( ) 4 p) q) r) 7 9 ( ) 8 7 9 ( ) 4 ( ) 4 ( ) ( ) s) 5 m) t) h) ( ) 7 ( ) 4 u) v)

Más detalles

DOSIER FUNCIONES, LÍMITES Y CONTINUIDAD MACS 1

DOSIER FUNCIONES, LÍMITES Y CONTINUIDAD MACS 1 DOSIER FUNCIONES, LÍMITES CONTINUIDAD MACS En qué intervalos es creciente esta función? decreciente? En =, es cóncava o convea? f() La función es creciente en (6, ) (, ). La función es decreciente en (,

Más detalles

Funciones. En busca de Klingsor LITERATURA Y MATEMÁTICAS

Funciones. En busca de Klingsor LITERATURA Y MATEMÁTICAS Funciones LITERATURA MATEMÁTICAS En busca de Klingsor Cierta vez, un reportero preguntó a Einstein: Eiste una fórmula para obtener éito en la vida? Sí, la hay. Cuál es? preguntó el reportero, insistente.

Más detalles

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS CONTINUIDAD Y DERIVABILIDAD. DERIVADAS. Dada la función f (), (, ), definir f () y f () de forma que f sea continua sen(π ) en todo el intervalo cerrado [, ]. : f () f () π 5 si. Estudiar la continuidad

Más detalles

TEMA 4 FUNCIONES ELEMENTALES

TEMA 4 FUNCIONES ELEMENTALES TEMA 4 FUNCIONES ELEMENTALES 4.1. Funciones lineales, cuadráticas y polinómicas 4.1.1. Funciones lineales. Las unciones lineales o aines tienen por epresión analítica ( m n. Si m > 0, la unción aín tiene

Más detalles

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x)

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x) TEMA 9: :.- CONCEPTO DE FUNCIÓN: Función es una relación entre dos variables a las que, en general, se les llama e y. Viene representado por: y (, donde es la variable independiente e y es la variable

Más detalles

Funciones. Rectas y parábolas

Funciones. Rectas y parábolas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo de la figura, calcula: el perímetro. el área. P I E N S A C A L C U L A Perímetro = ( + ) = 6 Área = = Indica cuál de las siguientes gráficas

Más detalles

UNIDAD 5: FUNCIONES. CARACTERÍSTICAS

UNIDAD 5: FUNCIONES. CARACTERÍSTICAS I.E.S. Ramón Giraldo UNIDAD 5: FUNCIONES. CARACTERÍSTICAS. CONCEPTO DE FUNCIÓN Una unción real de variable real es una correspondencia de un conjunto D en el conjunto de los números reales, es decir, una

Más detalles

Dominio de una función

Dominio de una función Dominio de una unción Ejercicio nº.- Averigua cuál es el dominio de deinición de las siguientes unciones: a) 3 Ejercicio nº.- Halla el dominio de deinición de las siguientes unciones: a) 9 Ejercicio nº

Más detalles

Colegio Diocesano Sagrado Corazón de Jesús

Colegio Diocesano Sagrado Corazón de Jesús Colegio Diocesano Sagrado Corazón de Jesús MATEMÁTICAS I Actividades tipo eamen-recuperación de Pendientes / Nombre: Fecha de entrega: BLOQUE I: NÚMEROS REALES Ejercicio nº.- Clasiica los siguientes números

Más detalles

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar.

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar. . Estudia el dominio de las siuientes unciones a ( Función Racional, el dominio son todos los números reales ecepto los que anulen el denominador. R / 0 0 ± [ ( ] { } R ± { } b ( Función Racional, el dominio

Más detalles

, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2

, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2 Solucionario tema 9: Estudio de Funciones Ejercicio Estudia la gráica siguiente: Dominio Recorrido 0, 4 Puntos de corte con los Ejes Con el Eje Y: 0, 4 Puntos máimos y mínimos: Máimo absoluto: 0, No hay

Más detalles

Refuerzo Educativo Matemáticas - 1ºBachillerato - CCSS

Refuerzo Educativo Matemáticas - 1ºBachillerato - CCSS Reuero Educativo Matemáticas - ºBachillerato - CCSS PRIMERA EVALUACIÓN Temas. Números reales.. Toma logaritmos en los dos miembros de las guientes epreones: A B C. Pasa a orma algebraica las guientes epreones:

Más detalles

TEMA 10.- FUNCIONES ELEMENTALES

TEMA 10.- FUNCIONES ELEMENTALES º Bachillerato Matemáticas I Dpto de Matemáticas- I.E.S. Montes Orientales (Iznalloz)-Curso 20/202 TEMA 0.- FUNCIONES ELEMENTALES.- CONCEPTO DE FUNCIÓN. CARACTERÍSTICAS (Pág. 28) Deinición de unción. Decimos

Más detalles

Refuerzo Educativo Matemáticas - 1ºBachillerato - CCSS

Refuerzo Educativo Matemáticas - 1ºBachillerato - CCSS Reuero Educativo Matemáticas - ºBachillerato - CCSS Temas. Números reales.. Toma logaritmos en los dos miembros de las guientes epreones: A B C. Pasa a orma algebraica las guientes epreones: loga log log

Más detalles

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría 6 Funciones 1. Estudio gráfico de una función Piensa y calcula Indica cuál de las siguientes funciones es polinómica y cuál racional: 2 + 5 f() = f() = 3 5 2 + 6 4 2 4 Racional. Polinómica. Aplica la teoría

Más detalles

RESUMEN. Trigonométrica (variable como argumento de una razón trigonométrica) Varias fórmulas dependiendo de los valores de la variable.

RESUMEN. Trigonométrica (variable como argumento de una razón trigonométrica) Varias fórmulas dependiendo de los valores de la variable. 9 RESUMEN TIPOS DE FUNCIONES Polinómicas ALGEBRAICAS Racionales Irracionales Eponenciales TRASCENDENTES Logarítmicas Trigonométricas DEFINIDAS A TROZOS FÓRMULA Polinomio Cociente de polinomios Raíz de

Más detalles

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto

Más detalles

A partir de ella: Solución: 0 2 porque. EJERCICIO 10 : Halla la función inversa de: x 3. e) 3. 5 Solución: a) Cambiamos x por y, y despejamos la y :

A partir de ella: Solución: 0 2 porque. EJERCICIO 10 : Halla la función inversa de: x 3. e) 3. 5 Solución: a) Cambiamos x por y, y despejamos la y : Tema Funciones eponenciales, logarítmicas trigonométricas Matemáticas CCSSI º Bachillerato EJERCICIO 9 : Esta gráica corresponde a la unción = (): A partir de ella: a) Calcula. Representa, en los mismos

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS APLICACIONES DE LAS DERIVADAS Apuntes de A. Cabañó. Calcula la tasa de variación media de la función +- en los intervalos: a) [-,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación

Más detalles

= x De este modo: Esto es un ejemplo de FUNCIÓN.

= x De este modo: Esto es un ejemplo de FUNCIÓN. IES Padre Poveda (Guadi) UNIDAD 6 FUNCIONES REALES. PROPIEDADES GLOBALES.. CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO. Recuerda que hay distintas ormas de epresar una unción. Enunciado o descripción verbal:

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.3. CONCEPTO DE DERIVADA. CÁLCULO DE DERIVADAS

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.3. CONCEPTO DE DERIVADA. CÁLCULO DE DERIVADAS TEMA. FUNCIONES REALES DE VARIABLE REAL.. CONCEPTO DE DERIVADA. CÁLCULO DE DERIVADAS . FUNCIONES REALES DE VARIABLE REAL.. CONCEPTO DE DERIVAD. CÁLCULO DE DERIVADAS... Derivada de una unción en un punto...

Más detalles

Derivadas En este tema, además de definir tal concepto, se mostrará su significado y se hallarán las derivadas de las funciones más usuales.

Derivadas En este tema, además de definir tal concepto, se mostrará su significado y se hallarán las derivadas de las funciones más usuales. Derivadas En este tema, además de deinir tal concepto, se mostrará su signiicado y se hallarán las derivadas de las unciones más usuales. Es de capital importancia dominar la derivación para después poder

Más detalles

2.- Realiza la operación siguiente y expresa el resultado de la forma más sencilla posible:

2.- Realiza la operación siguiente y expresa el resultado de la forma más sencilla posible: .- Eectúa y simpliica :.- Realiza la operación siguiente y epresa el resultado de la orma más sencilla posible: 7 7.- Calcula el valor de c, para el cual se veriica: n n lim n n cn e... n.- Halla el límite

Más detalles

Funciones. En busca de Klingsor LITERATURA Y MATEMÁTICAS

Funciones. En busca de Klingsor LITERATURA Y MATEMÁTICAS Funciones LITERATURA MATEMÁTICAS En busca de Klingsor Cierta vez, un reportero preguntó a Einstein: Eiste una fórmula para obtener éito en la vida? Sí, la hay. Cuál es? preguntó el reportero, insistente.

Más detalles

FUNCIONES DE VARIAS VARIABLES

FUNCIONES DE VARIAS VARIABLES FUNCIONES DE VARIAS VARIABLES Deinición: Si D es un conjunto de n-uplas de números reales... n una unción de valores reales sobre es una regla que asigna un número real w... n a cada elemento de D donde

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD TEMA. FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD . FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD... LÍMITE DE UNA FUNCIÓN EN UN PUNTO... LÍMITES INFINITOS... LÍMITES EN EL INFINITO..4.

Más detalles

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro)

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro) (temas 6 del libro). EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera ila o columna iguran los valores

Más detalles

ANTES DE COMENZAR RECUERDA

ANTES DE COMENZAR RECUERDA ANTES DE COMENZAR RECUERDA 00 Determina cuáles de estos vectores son paralelos y cuáles son perpendiculares a v (, ). a) v ( 6, ) b) v (, ) c) v (, ) a) v v Los vectores son paralelos. b) v v 0 Los vectores

Más detalles

UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES

UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES 1. EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera

Más detalles

{ 0} - Dominio de. f(x) f(x) g(x) g(x) = f(x) = g(x) x 16. f g. Solución: Para hallar el punto de equilibrio basta resolver el sistema: + =

{ 0} - Dominio de. f(x) f(x) g(x) g(x) = f(x) = g(x) x 16. f g. Solución: Para hallar el punto de equilibrio basta resolver el sistema: + = Funciones Se ha hecho un estudio de mercado en el que la curva de oferta de un determinado producto viene dada por la función,7 8 la curva de demanda por, -. Si el punto de corte de ambas curvas es el

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS Derivadas EJERCICIOS PROPUESTOS y. Ejercicios resueltos.. Aplicando la deinición de derivada, decide si las siguientes unciones son derivables en los puntos indicados y calcula, si eiste, la derivada.

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

TRABAJO DE SEPTIEMBRE Matemáticas 1º Bachillerato

TRABAJO DE SEPTIEMBRE Matemáticas 1º Bachillerato Trabajo de Verano 04 º BACHILLERATO TRABAJO DE SEPTIEMBRE Matemáticas º Bachillerato. Página Trabajo de Verano 04 º BACHILLERATO BLOQUE I: CÁLCULO TEMA (UNIDAD DIDÁCTICA 9): Propiedades globales de las

Más detalles

(Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA

(Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA (Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA Esta clasiicación obedece a la orma en que están relacionados los elementos del dominio con los del codominio.

Más detalles

Universidad de Buenos Aires. Instituto Libre de Segunda Enseñanza MATEMÁTICA GUÍA DE TRABAJOS PRÁCTICOS QUINTO AÑO

Universidad de Buenos Aires. Instituto Libre de Segunda Enseñanza MATEMÁTICA GUÍA DE TRABAJOS PRÁCTICOS QUINTO AÑO Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA GUÍA DE TRABAJOS PRÁCTICOS QUINTO AÑO Se agradece el aporte de los proesores María Inés Sáinz y Daniel Dacunti TRABAJO PRÁCTICO

Más detalles

Matemáticas, 4º de ESO, opción B Ejercicios de repaso para las recuperaciones. (junto con los explicados en clase)

Matemáticas, 4º de ESO, opción B Ejercicios de repaso para las recuperaciones. (junto con los explicados en clase) Matemáticas, 4º de ESO, opción B Ejercicios de repaso para las recuperaciones. (junto con los eplicados en clase) Unidad : Trigonometría Ejercicio. Dado el siguiente triángulo obtén (sin utilizar Pitágoras)

Más detalles

ANTES DE COMENZAR RECUERDA

ANTES DE COMENZAR RECUERDA 5 ANTES DE COMENZAR RECUERDA 00 Dada la función f() = log (sen ): Está definida para? para = =? f sen 0 La función está definida para =. = log = log = La función no está definida para = f sen, = log =

Más detalles

x 3 x x 2 9 x 2 x 6 x(x + 1)(x 2) x 4 x 3 14x x 1 4x x 2

x 3 x x 2 9 x 2 x 6 x(x + 1)(x 2) x 4 x 3 14x x 1 4x x 2 . Calcula las asíntotas de las siguientes funciones: a) f() = 22 + 2 + 2 b) f() = 2 + + 2 2. Calcular el dominio de la función y = 3 3. Calcula el dominio de la función y = 2 + 9 4. Calcula el dominio

Más detalles

Cálculo I (Grados TICS UAH) Cálculo diferencial Curso 2018/19

Cálculo I (Grados TICS UAH) Cálculo diferencial Curso 2018/19 Cálculo I (Grados TICS UAH Cálculo diferencial Curso 08/9. Calcular, utilizando la definición rigurosa de derivada, las derivadas de las siguientes funciones: (a f( = 3 (b f( = 3 + 3 (c f( = + (d f( =

Más detalles

2. Calcula las velocidades medias anteriores tomando valores sobre la ecuación del movimiento de dicha partícula: s = 2

2. Calcula las velocidades medias anteriores tomando valores sobre la ecuación del movimiento de dicha partícula: s = 2 Matemáticas aplicadas a las Ciencias Sociales I Resuelve Página 8 Movimiento de una partícula Un investigador, para estudiar el movimiento de una partícula, la a iluminado con destellos de las cada décima

Más detalles

Funciones. En busca de Klingsor LITERATURA Y MATEMÁTICAS

Funciones. En busca de Klingsor LITERATURA Y MATEMÁTICAS 7 Funciones LITERATURA MATEMÁTICAS En busca de Klingsor Cierta vez, un reportero preguntó a Einstein: Eiste una fórmula para obtener éito en la vida? Sí, la hay. Cuál es? preguntó el reportero, insistente.

Más detalles

f x e ; b) Teniendo en cuenta la gráfica anterior,

f x e ; b) Teniendo en cuenta la gráfica anterior, MATEMÁTICAS II. º BTO A Fecha: -- ANÁLISIS: C El eamen se realiará con tinta de un solo color: aul ó negro Se valorará positivamente: ortograía, redacción, márgenes, presentación clara ordenada Todas las

Más detalles

DERIVADAS. Dada una función y =f(x), llamamos derivada de la función f en el punto x = a, f (a), al límite f '( y es un número real.

DERIVADAS. Dada una función y =f(x), llamamos derivada de la función f en el punto x = a, f (a), al límite f '( y es un número real. .-Deinición DERIVADAS Dada una unción y (), llamamos derivada de la unción en el punto a, (, ( a + ) al límite '( y es un número real. 0 Cuando eiste este límite, decimos que la unción es derivable en

Más detalles

Tema 1. Funciones: Límites y Continuidad. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 1

Tema 1. Funciones: Límites y Continuidad. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 1 Tema Funciones: Límites y Continuidad.- Introducción.- Deinición de Función..- Funciones elementales..- Operaciones con unciones...- Composición de unciones...- Función inversa o recíproca.- Transormaciones

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

LAS FUNCIONES ELEMENTALES 1º BACH MATE I

LAS FUNCIONES ELEMENTALES 1º BACH MATE I FUNCIONES ELEMENTALES MATEMÁTICAS I º Bach. LAS FUNCIONES ELEMENTALES º BACH MATE I Son funciones? EJERCICIO : Indica cuáles de las siguientes representaciones corresponden a la gráfica de una función.

Más detalles

= x. o bien: De este modo, 3 6. Esto es un ejemplo de FUNCIÓN.

= x. o bien: De este modo, 3 6. Esto es un ejemplo de FUNCIÓN. IES Padre Poveda (Guadi) UNIDAD 8 FUNCIONES.. CONCEPTO DE FUNCIÓN. Recuerda que hay distintas ormas de epresar una unción. Enunciado o descripción verbal: A cada número se le hace corresponder su doble.

Más detalles

FUNCIONES. La variable x se denomina variable independiente y la variable y es la variable dependiente. x y

FUNCIONES. La variable x se denomina variable independiente y la variable y es la variable dependiente. x y . DEFINICIÓN FUNCIONES Una unción real de variable real es una relación entre dos variables numéricas e y de orma que a cada valor de la variable le corresponde un único valor del la variable y. La variable

Más detalles

FUNCIONES PRÁCTICA RESUELTA N 2

FUNCIONES PRÁCTICA RESUELTA N 2 FUNCIONES PRÁCTICA RESUELTA N. En cada uno de los siguientes casos dar la ley de la unción descripta: a) El área de un rectángulo es de 0 cm². Epresar el perímetro del mismo en unción de la longitud de

Más detalles

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera:

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera: Funciones cuadráticas Función cuadrática Deinición: Una unción cuadrática es una unción : R R deinida por la ormula = a + b + c Donde a, b y c son números reales y a 0. Esta epresión de la unción cuadrática

Más detalles

TEMA 2: CÁLCULO DIFERENCIAL DE UNA VARIABLE.

TEMA 2: CÁLCULO DIFERENCIAL DE UNA VARIABLE. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingeniería Industrial (GITI/GITI+ADE) Ingeniería de Telecomunicación (GITT/GITT+ADE) CÁLCULO Curso 05-06 TEMA : CÁLCULO

Más detalles

x+3 3. f(x) = x 2 -x-2 x-2 x f(x) = 22. f(x) = tag(x+1) 23. f(x) = cos(x+1) x+2 x+2, x< f(x) =

x+3 3. f(x) = x 2 -x-2 x-2 x f(x) = 22. f(x) = tag(x+1) 23. f(x) = cos(x+1) x+2 x+2, x< f(x) = . Hallar el dominio de la función:. f() = +. f() = - + +. f() = -- + 4. f() = 4 +8 +- 5. f() = + 6. f() = - 7. f() = ++ 8. f() = -- 9. f() = +4 0. f() = + - -. f() = +4+. f() = - -4. f() = - + 6. f() =

Más detalles

CONTINUIDAD DEFINICIÓN CONTINUIDAD LATERAL. es continua en un punto. Una función. si:

CONTINUIDAD DEFINICIÓN CONTINUIDAD LATERAL. es continua en un punto. Una función. si: CONTINUIDAD DEFINICIÓN Una función 1) l a ) f (a) ) f ( a) a un punto a Si una función no cumple alguna de estas condiciones es discontinua en : a CONTINUIDAD LATERAL Ejemplo a por la izquierda f ( a)

Más detalles

MATEMÁTICAS APLICADAS A LAS CCSS I

MATEMÁTICAS APLICADAS A LAS CCSS I MATEMÁTICAS APLICADAS A LAS CCSS I Curso: 00-0 ACTIVIDADES PARA ALUMNOS DE º DE BACHILLERATO QUE TIENEN PENDIENTE MATEMÁTICAS APLICADAS A LAS CCSS I SEGUNDA PARTE Determine los dominios de las siuientes

Más detalles

UNIDAD 6: FUNCIONES. Intuitivamente, una función real de variable real asigna a cada elemento x de D un elemento y de, y solo uno.

UNIDAD 6: FUNCIONES. Intuitivamente, una función real de variable real asigna a cada elemento x de D un elemento y de, y solo uno. . CONCEPTO DE FUNCIÓN UNIDAD 6: FUNCIONES Las unciones son las herramientas para la descripción matemática de una situación real. De hecho, todas las órmulas de la Física no son más que unciones, que epresan

Más detalles

f : R R Definición 2. Se llama dominio de una función f (lo denotaremos por Dom f) al conjunto de valores para los que está bien definida f(x) :

f : R R Definición 2. Se llama dominio de una función f (lo denotaremos por Dom f) al conjunto de valores para los que está bien definida f(x) : Resumen Tema 2: Funciones Concepto de función. Gráficas Definición. Se llama función (real de variable real) a toda aplicación f : R R que a cada número le hace corresponder otro valor f(). f() Definición

Más detalles

PROBLEMAS DE RECTA TANGENTE. 6 en el punto de abscisa 2. Halla la ecuación de la recta tangente a. ( en el punto de abscisa. x 3x

PROBLEMAS DE RECTA TANGENTE. 6 en el punto de abscisa 2. Halla la ecuación de la recta tangente a. ( en el punto de abscisa. x 3x PROBLEMAS DE RECTA TANGENTE º Bachillerato CCSS Halla la ecuación de la recta tangente a ( ) 6 en el punto de abscisa Halla la ecuación de la recta tangente a Halla la ecuación de la recta tangente a (

Más detalles

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..

Más detalles

EJERCICIOS DE REPASO PARA PREPARAR EL EXAMEN DE SEPTIEMBRE 2007 DE MATEMÁTICAS B PARA LOS CURSOS 4º ESO A Y 4º ESO B

EJERCICIOS DE REPASO PARA PREPARAR EL EXAMEN DE SEPTIEMBRE 2007 DE MATEMÁTICAS B PARA LOS CURSOS 4º ESO A Y 4º ESO B EJERCICIOS DE REPASO PARA PREPARAR EL EXAMEN DE SEPTIEMBRE 007 DE MATEMÁTICAS B PARA LOS CURSOS 4º ESO A Y 4º ESO B ) Clasifica los siguientes números como naturales, enteros, racionales e irracionales,

Más detalles

UNIDAD 10 DERIVADAS Y APLICACIONES.

UNIDAD 10 DERIVADAS Y APLICACIONES. IES Padre Poveda (Guadi UNIDAD 0 DERIVADAS Y APLICACIONES.. Tasa de variación media.. Derivada de una unción en un punto. Función derivada. Derivadas sucesivas.. Reglas de derivación. 4. Interpretación

Más detalles

1 x. y = en los puntos de intersección con la recta. La ecuación de una recta en forma punto pendiente es y y = m x x, entonces las rectas pedidas son

1 x. y = en los puntos de intersección con la recta. La ecuación de una recta en forma punto pendiente es y y = m x x, entonces las rectas pedidas son Eamen de Cálculo Dierencial Curso / Opción A Ejercicio. (Puntuación máima: puntos) Halla las ecuaciones de las rectas tangentes a la curva y. e y en los puntos de intersección con la recta Calculemos los

Más detalles

Apuntes de A. Cabañó. Matemáticas II REPRESENTACIÓN GRÁFICA DE FUNCIONES.

Apuntes de A. Cabañó. Matemáticas II REPRESENTACIÓN GRÁFICA DE FUNCIONES. REPRESENTACIÓN GRÁFICA DE FUNCIONES. TEORÍA - ESQUEMA A SEGUIR EN LA REPRESENTACIÓN DE FUNCIONES. Para dibujar la curva (C) de la unción :->y() se estudiará sucesivamente los siguientes puntos: * Dominio

Más detalles

Matemáticas aplicadas ás CC.SS. (Pendentes) Temas: Clasifica los siguientes números como naturales, enteros, racionales o reales:

Matemáticas aplicadas ás CC.SS. (Pendentes) Temas: Clasifica los siguientes números como naturales, enteros, racionales o reales: Matemáticas aplicadas ás CC.SS. (Pendentes) Temas: -5. Clasifica los siguientes números como naturales, enteros, racionales o reales: 8 8,5. Escribe cada uno de los siguientes números donde corresponda

Más detalles

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. . [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos

Más detalles

TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD

TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD º CONCEPTOS PREVIOS Ejercicio º Valor absoluto a,b, TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD º Intervalos: a, b, a, b, a, b Semirrectas:, a, -,a, a,, a, Representa gráficamente las siguientes funciones,

Más detalles

FUNCIONES PRÁCTICA N 2

FUNCIONES PRÁCTICA N 2 Capitulo II FUNCIONES PRÁCTICA N. En cada uno de los siguientes casos dar la ley de la función descripta: a) El área de un rectángulo es de 0 cm². Epresar el perímetro del mismo en función de la longitud

Más detalles

9 Continuidad ACTIVIDADES INICIALES EJERCICIOS PROPUESTOS. 9.I. Dibuja la gráfica de las siguientes funciones.

9 Continuidad ACTIVIDADES INICIALES EJERCICIOS PROPUESTOS. 9.I. Dibuja la gráfica de las siguientes funciones. 9 Continuidad 9.I. Dibuja la gráfica de las guientes funciones. ACTIVIDADES INICIALES a) < f( ) > b) f ( ) 9.II. Escribe la epreón algebraica de la función. Y O X EJERCICIOS PROPUESTOS 9.. Indica las guientes

Más detalles

IES Padre Poveda (Guadix) Matemáticas I UNIDAD 8 FUNCIONES.

IES Padre Poveda (Guadix) Matemáticas I UNIDAD 8 FUNCIONES. IES Padre Poveda (Guadi) UNIDAD 8 FUNCIONES.. Concepto de unción.. Monotonía y etremos. Acotación... Monotonía... Etremos relativos y absolutos... Funciones acotadas.. Simetría y periodicidad... Funciones

Más detalles

FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa

FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa Funciones de ecuación: ( ) FUNCIONES = m + n ; m y n son números reales Dom = R. Es continua en su dominio. Gráica: una recta m es la pendiente de la recta La pendiente de una recta es el cociente entre

Más detalles

APELLIDOS Y NOMBRE: Fecha:

APELLIDOS Y NOMBRE: Fecha: MATEMÁTICAS I. º BTO B Control. Trigonometría I APELLIDOS Y NOMBRE: Fecha: 5-0-00 El eamen se realizará con tinta de un solo color: azul ó negro No se puede usar corrector Se valorará positivamente: ortografía,

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

Funciones elementales

Funciones elementales 8 Funciones elementales LITERATURA MATEMÁTICAS El árbol de la ciencia Al decir Andrés [estudiante de medicina] que la vida, según su profesor Letamendi, es una función indeterminada entre la energía individual

Más detalles

Funciones elementales

Funciones elementales 8 Funciones elementales LITERATURA MATEMÁTICAS El árbol de la ciencia Al decir Andrés [estudiante de medicina] que la vida, según su profesor Letamendi, es una función indeterminada entre la energía individual

Más detalles

******* Enunciados de Problemas *******

******* Enunciados de Problemas ******* ******* Enunciados de Problemas ******* CÁLCULO ESCUELA SUPERIOR DE LA MARINA CIVIL DIPLOMADO EN MÁQUINAS NAVALES DIPLOMADO EN NAVEGACIÓN MARÍTIMA ISIDORO PONTE ESMC EL NÚMERO REAL Sea o un número racional

Más detalles

Funciones elementales.

Funciones elementales. Funciones elementales. Ejercicio nº.- Halla el dominio de definición de las siguientes funciones: a) b) a) 0 Dominio R b) 0 Dominio, Ejercicio nº.- A partir de la gráfica de estas funciones, indica cuál

Más detalles

Soluciones a los ejercicios propuestos Unidad 5. Funciones reales de variable real Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 5. Funciones reales de variable real Matemáticas aplicadas a las Ciencias Sociales I Soluciones a los ejercicios propuestos Unidad. Funciones reales de variable real Matemáticas aplicadas a las Ciencias Sociales I CONCEPTO DE FUNCIÓN. EXPRESIÓN ANALÍTICA DE UNA FUNCIÓN. A partir de los

Más detalles

FUNCIONES DE VARIABLE COMPLEJA

FUNCIONES DE VARIABLE COMPLEJA Análisis Matemático C T.P. Nº7 TRABAJO PRÁCTICO Nº 7 FUNCIONES DE VARIABLE COMPLEJA FUNCIONES ANALÍTICAS ) Identificar los puntos del plano compleo que satisfagan las siguientes relaciones en forma analítica

Más detalles

( x) = D) k( x) ( ) = es una función: x = = 3 x es una función: = C) ( ) g x A) B) Sesión 4. Unidad II Funciones. D. Clasificación de funciones.

( x) = D) k( x) ( ) = es una función: x = = 3 x es una función: = C) ( ) g x A) B) Sesión 4. Unidad II Funciones. D. Clasificación de funciones. Sesión Unidad II Funciones. D. Clasificación de funciones. h ( ) 0.- La función es una función: Creciente Trascendente Irracional D) Constante Logarítmicas.- Una función creciente en todo su dominio es:

Más detalles

MATEMÁTICAS BÁSICAS LÍMITES Y CONTINUIDAD ENTORNOS. a, donde δ es la. = x

MATEMÁTICAS BÁSICAS LÍMITES Y CONTINUIDAD ENTORNOS. a, donde δ es la. = x MATEMÁTICAS BÁSICAS LÍMITES Y CONTINUIDAD ENTORNOS Se denomina entorno de un punto a en, al intervalo abierto ( δ a δ ) semiamplitud del intervalo. a, donde δ es la El entorno de a, en notación de conjuntos

Más detalles

TEMA 3 FUNCIONES ELEMENTALES.

TEMA 3 FUNCIONES ELEMENTALES. TEMA 3 FUNCIONES ELEMENTALES. 1. Concepto de unción.. Propiedades. 3. Funciones elementales. (Polinómicas, racionales, irracionales, trozos, valor absoluto) 4. Transormaciones elementales. 5. Composición

Más detalles

MATEMÁTICAS VI (ÁREA1)

MATEMÁTICAS VI (ÁREA1) MATEMÁTICAS VI (ÁREA) VERSIÓN Unidad I. Funciones..- El dibujo de la gráfica de... 8 9 9 0.- El Lim 0 cuando tiende a 0 es :....- La función es continua en :...,,, 0,, 0.- El lim Sen 0....- El dominio

Más detalles

derivable en x = 0. b) Para los valores encontrados, calcula la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x = 0.

derivable en x = 0. b) Para los valores encontrados, calcula la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x = 0. . [04] [EXT-A] a) Calcula los intervalos de concavidad y conveidad de la función f() = - +. Estudia si tiene puntos de infleión. b) En qué puntos de la gráfica de f() la recta tengente es paralela a la

Más detalles

Definición de derivada Observación: Algunos de los enunciados de estos problemas se han obtenido de Selectividad.

Definición de derivada Observación: Algunos de los enunciados de estos problemas se han obtenido de Selectividad. Definición de derivada Observación: Algunos de los enunciados de estos problemas se an obtenido de Selectividad Halla, utilizando la definición, la derivada de la función f ( ) en el punto = Comprueba

Más detalles

. (Nota: ln x denota el logaritmo neperiano de x).

. (Nota: ln x denota el logaritmo neperiano de x). e - si 0. [04] [ET-A] Sea la función f() = k si = 0 a) Determine razonadamente el valor del parámetro k para que la función sea continua para todos los números reales. b) Estudie si esta función es derivable

Más detalles

Guía de Matemáticas 4 Plan General

Guía de Matemáticas 4 Plan General Guía de Matemáticas Plan General Unidad de Aprendizaje: FUNCIÓN EXPONENCIAL Y LOGARÍTMICA. Recuerda: Nombre: Curso :. El dominio de una unción es el conjunto de valores para los cuales está deinida la

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA : NÚMEROS REALES. Clasiica los siguientes números según sean naturales, enteros, racionales o reales: ), 7, 8 7 8 8 9,,888.... Escribe en orma de potencia de eponente raccionario y simpliica: 6 a

Más detalles

tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo.

tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo. Selectividad CCNN 006. [ANDA] [SEP-A] Sea f: la función definida por f() = -. a) Estudia la derivabilidad de f. b) Determina los intervalos de crecimiento y decrecimiento de f. c) Calcula los etremos relativos

Más detalles