EL ESPACIO AFÍN. se distinguen, además de su origen A y su extremo B, las siguientes

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EL ESPACIO AFÍN. se distinguen, además de su origen A y su extremo B, las siguientes"

Transcripción

1 VECTOR FIJO Y VECTOR LIBRE. Sea E el espacio ordinario. EL ESPACIO AFÍN Llamaremos vector fijo a cualquier segmento orientado dado por dos puntos A y B del espacio E. Al punto A lo llamamos origen del vector y al punto B lo llamamos extremo. Este vector se denota por. Si A y B coinciden, el vector determinado se llama vector nulo. En un vector fijo características: se distinguen, además de su origen A y su extremo B, las siguientes Módulo: es la longitud del segmento y se denota por. Dirección: la de la recta r que contiene a los puntos A y B (o la de cualquier otra paralela a ella). Sentido: el indicado por su origen y su extremo. Llamaremos F 3 al conjunto de todos los vectores fijos del espacio. Vamos a definir una relación de equivalencia en este conjunto: Diremos que dos vectores fijos y son equipolentes, cuando tienen el mismo módulo, dirección y sentido. Esta relación divide el espacio F 3 en clases de equivalencia, cada clase de equivalencia está formada por el conjunto de todos los vectores fijos que tienen mismo módulo, dirección y sentido. Cualquier vector de una clase puede considerarse como representante de ella. Llamaremos vector libre del espacio a cada una de las clases de equivalencia anteriores. Se denota por. Al conjunto de los vectores libres del espacio lo representamos por V 3. El módulo, dirección y sentido de un vector libre se define como el módulo, dirección y sentido de uno cualquiera de sus vectores fijos representantes. OPERACIONES CON VECTORES. a) Suma de vectores: dados los vectores libres y, la suma + es otro vector que se obtiene al colocar un vector a continuación del otro y unir el origen de con el extremo de. 1

2 Propiedades de la suma de vectores: Asociativa: Conmutativa: Elemento neutro:, Elemento opuesto:, Con estas propiedades el conjunto de los vectores libres del espacio V 3 tiene estructura de grupo abeliano. b) Producto de un escalar por un vector: dado un nº real λ y un vector, el producto λ es otro vector con la misma dirección que, el mismo sentido si λ es positivo (sentido contrario si λ es negativo) y cuyo módulo es igual a λ Propiedades del producto por un escalar: El conjunto de los vectores libres del espacio V 3 con las operaciones suma y producto por escalares tiene estructura de espacio vectorial. COMBINACIÓN LINEAL DE VECTORES Dado un sistema de vectores toda expresión del tipo llamaremos combinación lineal del sistema a donde Un vector diremos que es combinación lineal de los vectores si se puede expresar así: donde VECTORES LINEALMENTE DEPENDIENTES Dado un sistema de vectores existen escalares diremos que son linealmente dependientes si no todos nulos tales que 2

3 También se dirá que el sistema es ligado. Otra definición equivalente a la anterior: Los vectores son linealmente dependientes si uno de ellos se puede poner como combinación lineal de los restantes. VECTORES LINEALMENTE INDEPENDIENTES Dado un sistema de vectores se cumple diremos que son linealmente independientes si Es decir, la igualdad se cumple si todos los escalares son nulo. También se dirá que el sistema es libre. Los vectores son linealmente independientes cuando ninguno de ellos se puede poner como combinación lineal de los restantes. RANGO Dado un conjunto de vectores se define el rango como el nº máximo de vectores linealmente independientes. BASE Diremos que un sistema de vectores cumplen: es una base del espacio cuando son linealmente independientes. Son sistema generador: cualquier otro vector,, del espacio se puede escribir como combinación lineal de estos vectores TEOREMA DE LA BASE Todas las bases tienen el mismo número de elementos. COORDENADAS DE UN VECTOR Todo vector se puede expresar de modo único como combinación lineal de los vectores de una base. 3

4 Llamaremos coordenadas de un vector respecto de la base a los escalares tales que DIMENSIÓN Al número de elementos de una base cualquiera se le llama dimensión del espacio. El espacio de los vectores libres V 3 es un espacio de dimensión tres, en el todas las bases están formas por tres vectores. Por tanto los vectores en cualquier base de este espacio tiene tres coordenadas (, estas coordenadas también reciben el nombre de componentes del vector. Podemos afirmar que en V 3, tres vectores, no nulos, linealmente independientes siempre forman una base. ESPACIO AFÍN Entre los pares de puntos del espacio E y los vectores de V 3 existe una correspondencia f: a cada par de puntos (A,B) de E le corresponde un único vector V 3 tal que. Se llama Espacio Afín, y lo denotamos, a la terna donde es el espacio ordinario, es el espacio de los vectores libres y f es la correspondencia anterior. SISTEMA DE REFERENCIA Un sistema de referencia en el espacio está formado por un punto O y una base del espacio. Se denota y se llama sistema de referencia afín. A O se le llama origen de coordenadas y a las rectas definidas por O y los vectores se les llama ejes coordenados. Fijado un sistema de referencia, a cada punto P del espacio se le asocia un vector al que llamaremos vector de posición del punto P, cuyas coordenadas serán una única terna (x,y,z) de R 3, y a las que llamaremos coordenadas del punto respecto del sistema de referencia. 4

5 Sistema de Referencia Canónico: se denota por, donde El origen de coordenadas es O(0,0,0) Los vectores de la base son de módulo 1 y perpendiculares entre sí. La base B = recibe el nombre de base canónica. Las coordenadas de sus vectores respecto de ella misma son. En un sistema de referencia, dados dos puntos A( y B( las coordenadas de un vector se obtienen Operaciones con vectores. = ( Suma de vectores: dados los vectores y referidos a un sistema de referencia, el vector suma + es: + = Producto de un escalar por un vector: dado un nº real λ y un vector es: (a, b, c), el vector λ ECUACIONES DE LA RECTA λ = λ (a, b, c) = Sea A un punto del espacio y un vector no nulo. La recta r definida por A y por es el conjunto de puntos P tales que = λ con λ. A se le llama vector director de la recta. Llamando al vector de posición de A y al vector de posición del punto P, tenemos como = λ λ, λ expresión que se conoce como ecuación vectorial de la recta r. 5

6 Sean A ( y (a,b,c) el punto y el vector dados referidos al sistema de referencia canónico, y P(x,y,z) un punto cualquiera de la recta r, la ecuación anterior se puede expresar. λ de donde λ que son las ecuaciones paramétricas de la recta r. Despejando λ de las tres ecuaciones e igualándola, se obtiene que son las ecuaciones en forma continua de la recta r. Realizando las operaciones oportunas (multiplicar en cruz, ) en la expresión anterior nos queda que es la ecuación general de la recta r. con A, B, A y B despejando obtenemos con m, n, m y n que son las ecuaciones explícitas (o reducidas) de la recta r. ECUACIONES DEL PLANO Sea A un punto del espacio y y dos vectores linealmente independientes. El conjunto π de puntos P del espacio tales que = λ con λ, es el plano determinado por A y los vectores y. A y los llamamos vectores directores del plano. 6

7 Consideramos los vectores de posición de A y P: y. Tenemos que y como = λ entonces: que es la ecuación vectorial del plano π. ; λ, Sean A (, y las coordenadas del punto y de los vectores dados referidos al sistema de referencia canónico, y P(x,y,z) un punto cualquiera del plano, la ecuación anterior se puede expresar: + λ, de donde λ, que son las ecuaciones paramétricas del plano π. De la ecuación vectorial del plano se obtiene + λ, es decir, los vectores, y son linealmente dependientes, lo que se puede expresar así: desarrollando el determinante queda la siguiente ecuación: que se llama ecuación general o implícita del plano π. con A, B, C y D PUNTO MEDIO DE UN SEGMENTO Dados puntos del espacio A ( y B (, el punto medio del segmento determinado por A y B se calcula 7

8 CONDICIÓN PARA QUE TRES PUNTOS ESTÉN ALINEADOS Dados tres puntos A (, B ( y C (, diremos que están alineados cuando se encuentran en una misma recta. Calculamos la ecuación de la recta que pasa por A y B, cuyo vector director es Su ecuación en forma continua es = ( Si el punto C está alineado con A y B es también un punto de esta recta y por tanto cumple su ecuación, es decir expresión que se conoce como la condición para que tres puntos estén alineados. POSICIONES RELATIVAS DE DOS RECTAS Consideramos dos rectas: r definida por el punto A ( y el vector s definida por el punto B ( y el vector Las rectas r y s pueden ocupar las siguientes posiciones: 1. Paralelas: r y s son paralelas cuando y tienen la misma dirección, es decir cuando y son proporcionales y por tanto / = o lo que es lo mismo Por tanto la condición de paralelismo es En este caso r y s pueden no tener ningún punto en común o ser coincidentes (coinciden en todos los puntos) 2. Se cortan: si r y s se cortan en un punto P, los vectores, y son coplanarios, por lo tanto linealmente dependientes, es decir: 8

9 Que es la condición para que r y s se corten en un punto P, se halla resolviendo el sistema formado por ambas rectas. 3. Se cruzan: si r y s se cruzan, los vectores, y no son coplanarios, por lo tanto son linealmente independientes, es decir: Si las rectas vienen dadas por su ecuación general, es decir como la intersección de dos planos, el problema se reduce al estudio del sistema formado por las ecuaciones de los planos. Sean r y s Formamos el sistema La matriz del sistema y la matriz ampliada son: y Tenemos los siguientes casos: 1. Rg M = 3 el sistema es incompatible y no tiene solución. En este caso las rectas se cruzan. 2. Rg M = 3 = el sistema es compatible determinado y tiene una única solución. En este caso las rectas se cortan en un punto. 3. Rg M = 2 el sistema es incompatible y no tiene solución. En este caso las rectas son paralelas y no coincidentes. 4. Rg M = 2 = el sistema es compatible indeterminado y tiene infinitas soluciones. En este caso las rectas se son coincidentes. CONDICIÓN PARA QUE CUATRO PUNTOS SEAN COPLANARIOS Dados los puntos A (, B (, C ( y D ( diremos que son coplanarios cuando los cuatro pertenecen a un mismo plano. 9

10 Calculamos la ecuación del plano que pasa por A, B y C. Su vectores son directores son = ( y = ( Su ecuación general viene dado por el determinante Si el punto D pertenece al plano formado por A, B y C entonces debe cumplir la ecuación anterior y por tanto que es la condición que deben cumplir 4 puntos para ser coplanarios. POSICIONES RELATIVAS DE DOS PLANOS Sean los planos π y π Consideramos el sistema: Estudiar la posición relativa de los dos planos se reduce a discutir el sistema formado por sus ecuaciones. Nos encontramos con los siguientes casos: 1. Rg M = 2 = el sistema es compatible indeterminado y tiene infinitas soluciones. En este caso los planos se cortan en una recta. 2. Rg M = 1 el sistema es incompatible y no tiene solución. En este caso los planos son paralelos. Además como Rango M = 1, los coeficientes A y A, B y B, y C y C son proporcionales, es decir: que es la condición de paralelismo entre dos planos. 3. Rg M = 1 = el sistema es compatible indeterminado y tiene infinitas soluciones. En este caso los planos son coincidentes. 10

11 POSICIONES RELATIVAS DE RECTAS Y PLANOS Sea la recta r cuya ecuación general es r y el plano π cuya ecuación general es. Para determinar la posición relativa de r y π estudiamos el sistema planteado por sus ecuaciones: Al discutir el sistema nos encontramos los siguientes casos: 1. Rg M = 3 = Rg M* el sistema es compatible determinado y tiene una única solución. En este caso la recta y el plano se cortan en un punto. 2. Rg M = 2 el sistema es incompatible y no tiene solución. En este caso la recta y el plano son paralelos y no coincidentes. 3. Rg M = 2 = el sistema es compatible indeterminado y tiene infinitas soluciones. En este caso la recta está contenida en el plano. POSICIONES RELATIVAS DE TRES PLANOS Sean los planos de ecuaciones: Discutimos el sistema planteado por sus ecuaciones. Nos encontramos con los siguientes casos: 1. Rg M = 3= Rg M* el sistema es compatible determinado y tiene una única solución. En este caso los planos se cortan en un punto. 2. Rg M = 2 el sistema es incompatible y no tiene solución. En este caso los planos no tienen ningún punto en común. 3. Rg M = 2 = el sistema es compatible indeterminado y tiene infinitas soluciones. En este caso los planos se cortan en una recta. 4. Rg M = 1 el sistema es incompatible y no tiene solución. En este caso los planos son paralelos. 5. Rg M = 1 = Rg M* el sistema es compatible indeterminado y tiene infinitas soluciones. En este caso los planos son coincidentes. 11

TEMA 5. RECTAS Y PLANOS. INCIDENCIA.

TEMA 5. RECTAS Y PLANOS. INCIDENCIA. TEMA 5. RECTAS Y PLANOS. INCIDENCIA. SISTEMA DE REFERENCIA EN EL ESPACIO. Un sistema de referencia en el espacio está formado por un punto y tres vectores linealmente independientes. A partir de ahora

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Luisa Martín Horcajo U.P.M. Definición: Vector libre. Operaciones Un vector fijo es una segmento orientado, que queda caracterizado por su origen A y su extremo B y se representa por

Más detalles

TEMA 11.- VECTORES EN EL ESPACIO

TEMA 11.- VECTORES EN EL ESPACIO TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos

Más detalles

Ecuaciones de la recta en el espacio

Ecuaciones de la recta en el espacio Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu

Más detalles

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO 1.- PUNTOS Y VECTORES. ESPACIO AFÍN y una base de vectores de V cualquiera {,, B = u1 u2 u} A cada punto del espacio, P, le asociamos el vector OP, que tendrá unas

Más detalles

EL ESPACIO AFÍN EUCLIDEO

EL ESPACIO AFÍN EUCLIDEO EL ESPACIO AFÍN EUCLIDEO DEFINICIÓN: Dado el Espacio Afín donde es el espacio ordinario, es el espacio de los vectores libres y f es la aplicación que a cada par de puntos (A,B) asocia el vector libre.

Más detalles

TEMA 12. RECTAS Y PLANOS. INCIDENCIA.

TEMA 12. RECTAS Y PLANOS. INCIDENCIA. TEMA 12. RECTAS Y PLANOS. INCIDENCIA. Un sistema de referencia en el espacio está formado por un punto y tres vectores linealmente independientes. A partir de ahora consideraremos el sistema de referencia

Más detalles

el blog de mate de aida MI: repaso de vectores pág. 1 VECTORES

el blog de mate de aida MI: repaso de vectores pág. 1 VECTORES el blog de mate de aida MI: repaso de vectores pág. VECTORES.- LOS EJES CARTESIANOS Y EL ORIGEN El eje horizontal se llama eje de abscisas el eje vertical se llama eje de ordenadas. El punto de corte de

Más detalles

en el espacio queda caracterizado por un par de puntos A y B, o bien por su módulo, dirección y sentido junto con el origen, siendo:

en el espacio queda caracterizado por un par de puntos A y B, o bien por su módulo, dirección y sentido junto con el origen, siendo: TEMA 10: VECTORES EN EL ESPACIO. 10.1 Vectores fijos y libres en el espacio vectorial. 10. Operaciones con vectores libres. Bases del espacio vectorial. 10.3 Producto escalar. Módulo y ángulo de vectores.

Más detalles

GEOMETRIA EN EL ESPACIO

GEOMETRIA EN EL ESPACIO GEOMETRIA EN EL ESPACIO ECUACIONES DE LA RECTA Y EL PLANO EN EL ESPACIO Una recta queda determinada por un punto conocido P, y un vector director. Luego, si X es un punto genérico de la recta, se obtiene

Más detalles

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero.

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero. RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: Dirección de un vector: La dirección del vector es la dirección

Más detalles

el blog de mate de aida 4º ESO: apuntes de vectores pág. 1

el blog de mate de aida 4º ESO: apuntes de vectores pág. 1 el blog de mate de aida 4º ESO: apuntes de vectores pág. VECTORES.- LOS EJES CARTESIANOS Y EL ORIGEN El eje horizontal se llama eje de abscisas y el eje vertical se llama eje de ordenadas. El punto de

Más detalles

TEMA 11. VECTORES EN EL ESPACIO

TEMA 11. VECTORES EN EL ESPACIO TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR:

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Componentes de un vector Si las coordenadas de los puntos A y B son ELEMENTOS DE UN VECTOR:

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO Alonso Fernández Galián Tema 6: Geometría analítica en el plano TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO La geometría analítica es el estudio de objetos geométricos (rectas, circunferencias, ) por medio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos.

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos. Opción A. Ejercicio 1. Valor: 3 puntos. Dado el sistema de ecuaciones lineales: { x ay = 2 se pide: ax y = a + 1 a) (2 puntos) Discutir el sistema según los valores del parámetro a. Resolverlo cuando la

Más detalles

6 Vectores. Dependencia e independencia lineal.

6 Vectores. Dependencia e independencia lineal. 6 Vectores. Dependencia e independencia lineal. Introducción Hay fenómenos reales que se pueden representar adecuadamente mediante un número con su adecuada unidad de medida. Sin embargo para representar

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 3, Opción A Reserva, Ejercicio

Más detalles

Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría

Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría 6 Espacio afín 1. Rectas en el espacio Piensa y calcula Calcula las coordenadas de un vector que tenga la dirección de la recta que pasa por los puntos A2, 1, 5 y B3, 1, 4 AB 1, 2, 1 Aplica la teoría 1.

Más detalles

Rectas y planos en el espacio

Rectas y planos en el espacio Rectas y planos en el espacio 1. 2. 3. Discute el siguiente sistema según el valor del parámetro a: ax 4y z 1 y az a x 14y 2az 8 Dada la recta x 4 y z 1, 5 2 averigua si el punto P(6, 2, 2) está contenido

Más detalles

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano. CAPÍTULO 1 El plano vectorial Consideremos P como el plano intuitivo de puntos: A,,C... 1.1. El espacio vectorial de los vectores Definición 1.1 Vectores fijos Dado dos puntos cualesquiera A e del espacio

Más detalles

Geometría Analítica Espacios Vectoriales VECTORES EN EL PLANO

Geometría Analítica Espacios Vectoriales VECTORES EN EL PLANO VECTORES EN EL PLANO 1 ESPACIO VECTORIAL Un vector fijo es una pareja ordenada de puntos en el plano (origen y extremo) Si A y B son dichos puntos, representaremos el vector por AB Gráficamente, lo representamos

Más detalles

Problemas resueltos del libro de texto. Tema 8. Geometría Analítica.

Problemas resueltos del libro de texto. Tema 8. Geometría Analítica. Problemas resueltos del libro de texto Tema 8 Geometría Analítica Combinación lineal de vectores 9- Es evidente que sí es combinación lineal de estos dos vectores, ya que -4 y permiten escribir z como

Más detalles

4. Espacios vectoriales

4. Espacios vectoriales Contents 4 Espacios vectoriales 2 4.1 Dependencia e independencia lineal.................................. 4 4.2 Subespacios vectoriales.............................................. 7 4.3 Bases y dimensión..................................................

Más detalles

UNIDAD 3 : ELEMENTOS GEOMÉTRICOS

UNIDAD 3 : ELEMENTOS GEOMÉTRICOS UNIDAD 3 : ELEMENTOS GEOMÉTRICOS 3.A.1 Características de un lugar geométrico 3.A ELEMENTOS DE GEOMETRÍA PLANA Se denomina lugar geométrico a todo conjunto de puntos que cumplen una misma propiedad o que

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 22 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

2. PUNTOS, RECTAS Y PLANOS

2. PUNTOS, RECTAS Y PLANOS 2. PUNTOS, RECTAS Y PLANOS 2.1. RELACIONES ENTRE LOS PUNTOS DEL ESPACIO Y LOS VECTORES. AXIOMAS DEL ESPACIO AFÍN Entendemos por espacio afín tridimensional como el conjunto de puntos del espacio intuitivo

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO.. ESPACIOS VECTORIALES VECTOR FIJO Segmento orientado. Queda determinado por Origen A(a, a, a ); extremo B(b, b, b ) Módulo: Longitud del AB ( b a) ( b a) ( b a) segmento AB Características:

Más detalles

Ejercicios de Rectas y planos.

Ejercicios de Rectas y planos. Matemáticas 2ºBach CNyT. Ejercicios Rectas, planos. Pág 1/9 Ejercicios de Rectas y planos. 1. Las coordenadas de los vértices consecutivos de un paralelogramo son A(1, 0, 0) y B(0, 1, 0). Las coordenadas

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO DEF.- Se llama vector fijo de extremos A y B al segmento orientado AB, y se representa por Todo vector fijo queda caracterizado por { Dos vectores fijos se dice que son equivalentes,

Más detalles

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio. Valor: 2 puntos. Se considera la función real de variable real definida por: f(x) = a) ( punto) Determinar sus máximos y mínimos relativos x x 2 + b) ( punto) Calcular el valor de

Más detalles

VECTORES DEL ESPACIO EUCLIDEO.

VECTORES DEL ESPACIO EUCLIDEO. VECTORES DEL ESPACIO EUCLIDEO. VECTORES. VECTOR LIBRE. Se llama vector fijo, al par ordenado (A,B), siendo A y B dos puntos del espacio formado por todos los puntos geométricos. Origen del vector será

Más detalles

a) Como mucho puede haber 3 vectores linealmente independientes. 1 2 = 3 x = 1, y = 2 3 No tiene solución, luego no se puede.

a) Como mucho puede haber 3 vectores linealmente independientes. 1 2 = 3 x = 1, y = 2 3 No tiene solución, luego no se puede. Ejercicios y problemas propuestos Página Para practicar Dependencia e independencia lineal. Base y coordenadas Dados estos vectores: u(,, ), v (,, ), w (,, ), z (,, ) a) Cuántos de ellos son linealmente

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

R 3 = { ( x, y, z ) / x R, y R, z R }

R 3 = { ( x, y, z ) / x R, y R, z R } El conjunto R 3 Es un conjunto de ternas ordenadas de números reales R 3 = { ( x, y, z ) / x R, y R, z R } Primera componente Segunda componente Tercera componente Igualdad de ternas: (x, y, z) = (x',

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

Ecuación Vectorial de la Recta

Ecuación Vectorial de la Recta Ecuación Vectorial de la Recta Definimos una recta r como el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. Si P(x 1, y 1 ) es un punto de la recta r, el vector tiene

Más detalles

Capítulo 8: Vectores

Capítulo 8: Vectores Capítulo 8: Vectores 1. Lección 30. Operaciones con vectores 1.1. Vectores El concepto de vector aparece en Física para describir magnitudes, tales como la fuerza que actúa sobre un punto, en las que no

Más detalles

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano. CAPÍTULO 1 El plano vectorial Consideremos P como el plano intuitivo de puntos: A,B,C... 1.1. El espacio vectorial de los vectores Definición 1.1 Vectores fijos Dado dos puntos cualesquiera A e B del espacio

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas Un sistema de dos ecuaciones lineales de primer grado con dos incógnitas tiene la siguiente forma Ax + By + C = 0 A x + B y + C (1) = 0 Ya sabemos que una ecuación lineal de primer grado con dos incógnitas

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA EJERCICIOS DE GEOMETRÍA MATEMÁTICAS II LOGSE Antonio López García Juan Fernández Maese Angeles Juárez Martín GEOMETRÍA GEOMETRÍA Índice Temático.- VECTORES... 5..- VECTORES. OPERACIONES CON VECTORES...

Más detalles

Tema 2: Álgebra vectorial

Tema 2: Álgebra vectorial Tema 2: Álgebra vectorial FISICA I, 1º Grado en Ingeniería Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Magnitudes escalares y vectoriales Definición de vector Vectores

Más detalles

Ecuaciones de rectas y planos. Un punto O y una base B B = { i, j,

Ecuaciones de rectas y planos. Un punto O y una base B B = { i, j, Ecuaciones de rectas y planos. Coordenadas en el espacio. Planos coordenados. El vector OP tiene unas coordenadas( x, y, z ) respecto de la base B, que se pueden tomar como coordenadas del punto P respecto

Más detalles

V E C T O R E S L I B R E S E N E L P L A N O

V E C T O R E S L I B R E S E N E L P L A N O V E C T O R E S L I B R E S E N E L P L A N O 1. V E C T O R E S F I J O S Y V E C T O R E S L I B R E S E N E L P L A N O Existen magnitudes como la fuerza, la velocidad, la aceleración, que no quedan

Más detalles

MATRICES Y SISTEMAS DE ECUACIONES

MATRICES Y SISTEMAS DE ECUACIONES MATRICES Y SISTEMAS DE ECUACIONES Definición Una matriz real de orden m n es una tabla ordenada de m n números reales a 11 a 12 a 1n a A = 21 a 22 a 2n a m1 a m2 a mn en la cual las líneas horizontales

Más detalles

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica Vectores 1) Vectores en R 2 Vector fijo en el plano Elementos de un vector fijo ( módulo, dirección, sentido, origen y extremo) Vectores equipolentes Vector libres Propiedad fundamental de los vectores

Más detalles

Un vector es un segmento orientado que consta de los siguientes elementos:

Un vector es un segmento orientado que consta de los siguientes elementos: El conjunto R 3 : Conjunto formado por todas las ternas de números reales. Un vector es un segmento orientado que consta de los siguientes elementos: - Módulo: Es la longitud del vector. - Dirección: es

Más detalles

Geometría analítica del plano

Geometría analítica del plano 8 Geometría analítica del plano Objetivos En esta quincena aprenderás a: Reconocer los elementos de un vector identificando cuando dos vectores son equipolentes. Hacer operaciones con vectores libres tanto

Más detalles

PROBLEMAS RESUELTOS del espacio vectorial curso

PROBLEMAS RESUELTOS del espacio vectorial curso PROBLEMAS RESUELTOS del espacio vectorial curso - - Consideremos el conjunto R formado por todas las parejas () de números reales Se define en R la operación interna ()( )( ) una de las operaciones eternas

Más detalles

RECTAS Y PLANOS EN EL ESPACIO

RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EN EL ESPACIO 4 6 7 8 9 0 Calcula las ecuaciones paramétricas de la recta que pasa por el punto P(7,, ) y tiene la dirección del vector k. ACTIVIDADES x 7 y z Halla la ecuación continua

Más detalles

Temas 4 y 5: El espacio afín. Variedades lineales. Paralelismo.

Temas 4 y 5: El espacio afín. Variedades lineales. Paralelismo. ALGEBRA II: Temas 4-5 DIPLOMATURA DE ESTADÍSTICA 1 Temas 4 y 5: El espacio afín Variedades lineales Paralelismo 1 Introducción La Geometría afín sobre R tiene como objetos básicos los siguientes: un conjunto

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

5 = z. 2. Hallar el valor de m para que los puntos A(3,m,1), B(1,1,-1) y C(-2,10,-4) pertenezcan a la misma recta.

5 = z. 2. Hallar el valor de m para que los puntos A(3,m,1), B(1,1,-1) y C(-2,10,-4) pertenezcan a la misma recta. . Expresar en forma paramétrica y reducida la recta x+ 3 = y- 5 = z -. Hallar el valor de m para que los puntos A(3,m,), B(,,-) y C(-,0,-4) pertenezcan a la misma recta. 3. Probar que todos los planos

Más detalles

TEMA 6 Ejercicios / 3

TEMA 6 Ejercicios / 3 TEMA 6 Ejercicios / 1 TEMA 6: RECTAS Y PLANOS EN EL ESPACIO 1. Ecuaciones de los planos cartesianos en forma vectorial, paramétrica e implícita. Ecuaciones del plano XY: Punto del plano P 0, 0, 0 Vectores

Más detalles

VECTORES : Las Cantidades Vectoriales cantidades escalares

VECTORES : Las Cantidades Vectoriales cantidades escalares VECTORES En física hay dos tipos de cantidades: Las Cantidades Vectoriales son aquellas que tiene tanto magnitud como dirección y sentido sobre la dirección), mientras que las cantidades escalares son

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Junio, Ejercicio 4, Opción A Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

Espacios vectoriales. Vectores del espacio.

Espacios vectoriales. Vectores del espacio. Espacios vectoriales. Vectores del espacio. Consideremos un paralelepípedo de bases ABCD y EFGH, siendo A(1,1,1), B(2,1,1), C(2,4,1) y E(1,2,7). Halla: a) el área de una de las bases; b) el volumen del

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos

Más detalles

Bloque 2. Geometría. 3. La recta. 1. Definición de recta

Bloque 2. Geometría. 3. La recta. 1. Definición de recta Bloque 2. Geometría 3. La recta 1. Definición de recta Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares, cuyo corte es el punto 0 de

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

G E O M E T R Í A M É T R I C A P L A N A

G E O M E T R Í A M É T R I C A P L A N A G E O M E T R Í A M É T R I C A P L A N A. PUNTO MEDIO D E UN SEGME NTO. S IMÉTRICO DE U N PUNTO Sean A y a,a b B,b las coordenadas de dos puntos del plano que determinan el segmento AB. Las coordenadas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Problemas de Geometría Analítica del Espacio

Problemas de Geometría Analítica del Espacio 1) Dados los vectores u(4, 4, 8), v( 2,, 5), w(3, 5, 8) y a(22,, 11). Hallar los valores de x, y, z que verifican la combinación lineal a = x u + y v + z w. 2) Dados los vectores a( 5, 19, n) y b( h, 3,

Más detalles

Matrices y determinantes. Sistemas de ecuaciones lineales

Matrices y determinantes. Sistemas de ecuaciones lineales Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo

Más detalles

La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín

La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín Una ecuación lineal es una ecuación polinómica de grado uno con una o varias incógnitas. Si la ecuación solamente tiene

Más detalles

Tema 6: Ángulos y distancias en el espacio

Tema 6: Ángulos y distancias en el espacio Tema 6: Ángulos y distancias en el espacio February, 017 1 Ángulos entre elementos del espacio Los ángulos entre elementos del espacio, es una aplicación sencilla del producto escalar. Recuerdo las condiciones

Más detalles

VECTORES EN EL ESPACIO RECTAS Y PLANOS EN EL ESPACIO PROBLEMAS MÉTRICOS EJERCICIOS

VECTORES EN EL ESPACIO RECTAS Y PLANOS EN EL ESPACIO PROBLEMAS MÉTRICOS EJERCICIOS VECTORES EN EL ESPACIO RECTAS Y PLANOS EN EL ESPACIO PROBLEMAS MÉTRICOS EJERCICIOS Matemáticas 2º de Bachillerato Ciencias y Tecnología Profesor: Jorge Escribano Colegio Inmaculada Niña Granada www.coleinmaculadanina.org

Más detalles

Definición 1.28 (Determinación de una recta) Una recta en el plano viene determinada por un punto y un vector libre, no nulo, r (P; u )

Definición 1.28 (Determinación de una recta) Una recta en el plano viene determinada por un punto y un vector libre, no nulo, r (P; u ) 1.3. La recta en el plano afín La recta está formada por puntos del plano en una dirección dada. La ecuación de la recta es la condición necesaria y suficiente que deben cumplir las coordenadas de un punto

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO

TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO TEMA 7 Ejercicios / TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO. Calcula el ángulo que forman las rectas x y 4 z 5 y x y 4 z 5 Como los vectores directores u,4,5 y v,4,5 son perpendiculares, las rectas son

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO UNIDAD VECTORES EN EL ESPACIO Página 13 Problema 1 Halla el área de este paralelogramo en función del ángulo α: cm Área = 8 sen α = 40 sen α cm α 8 cm Halla el área de este triángulo en función del ángulo

Más detalles

Dado un vector fijo, existen infinitos vectores fijos que tienen igual módulo, dirección y sentido

Dado un vector fijo, existen infinitos vectores fijos que tienen igual módulo, dirección y sentido 1. VECTORES. DEFINICIONES. OPERACIONES Un vector fijo AB queda determinado por dos puntos, el origen A y el extremo B Se llama módulo del vector AB a la distancia que hay entre A y B. Se designa por AB

Más detalles

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular

Más detalles

Espacios Vectoriales

Espacios Vectoriales Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido

Más detalles

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i

Más detalles

Resuelve. Unidad 4. Vectores en el espacio. BACHILLERATO Matemáticas II. Diagonal de un ortoedro y volumen de un paralelepípedo.

Resuelve. Unidad 4. Vectores en el espacio. BACHILLERATO Matemáticas II. Diagonal de un ortoedro y volumen de un paralelepípedo. Resuelve Página Diagonal de un ortoedro y volumen de un paralelepípedo. Expresa la diagonal de un ortoedro en función de sus dimensiones, a, b y c. c b a c c b b a Diagonal = a + b + c. Calcula el volumen

Más detalles

Geometría del plano y el espacio

Geometría del plano y el espacio Geometría del plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Geometría del plano y el espacio 1 / 21 Objetivos Al final de este tema tendréis que Conocer

Más detalles

SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales.

SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales. SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales. A) Soluciones a las Cuestiones C-1) a) Sí, por ejemplo el eje X, formado por los vectores de la forma (λ, 0), que se identificarían con el número

Más detalles

ESPACIO AFÍN 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO.

ESPACIO AFÍN 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO. ESPACIO AFÍN 1.- CONCEPTO DE ESPACIO AFÍN. 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO. 4.- PROBLEMAS DE INCIDENCIA. 5.- POSICIONES RELATIVAS

Más detalles

1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes)

1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes) Bloque 7. VECTORES. ECUACIONES DE LA RECTA. (En el libro Tema 9, página 159) 1. Coordenadas en el plano. 2. Definiciones: vector libre, módulo, dirección, sentido, vectores equipolentes, vector fijo, coordenadas

Más detalles

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean

Más detalles