Modelos Box-Jenkins. El paseo aleatorio X t = c + X t 1 + a t no es estacionario. Sin embargo, el proceso diferenciado regularmente

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Modelos Box-Jenkins. El paseo aleatorio X t = c + X t 1 + a t no es estacionario. Sin embargo, el proceso diferenciado regularmente"

Transcripción

1 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl El paso alatorio X t = c + X t 1 + a t no s stacionario. Sin mbargo, l procso difrnciado rgularmnt s stacionario. X t X t 1 = c + a t El procso X t = β 0 + β 1 t + V t (dond {V t } t s stacionario) no s stacionario. Sin mbargo, l procso difrnciado rgularmnt s stacionario. X t X t 1 = β 1 + (V t V t 1 ) Conclusión: A vcs, la difrnciación rgular consigu liminar la tndncia. Grmán Aniros Pérz Sris d Timpo

2 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl Los jmplos antriors mustran situacions n las qu la aplicación d 1 difrncia rgular consigu liminar la tndncia y transformar un procso no stacionario n otro stacionario. En bas a sto, ant una sri con tndncia, sugrimos: Eliminar la tndncia d la sri aplicando sucsivamnt d difrncias rgulars (n gnral, d 3). Esto s, si dspués d difrnciar rgularmnt la sri prsist la xistncia d tndncia, difrnciarmos la sri difrnciada, y así sucsivamnt hasta obtnr una sri sin tndncia. Si la sri obtnida s stacionaria, modlizarla a través d un procso ARMA (rcuérds la gran capacidad qu tin la clas ARMA para modlizar procsos stacionarios). Grmán Aniros Pérz Sris d Timpo

3 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Cómo construir un modlo qu aglutin las idas antriors? Sa {X t } t un procso con tndncia y sin componnt stacional. 1 Eliminación d la tndncia: Difrnciación (d = 1). Y t = (1 B) X t. 2 Modlización d la dpndncia: ARMA(1,1). 3 Modlo final: Y t = c + φ 1 Y t 1 + a t + θ 1 a t 1. Y t = c + φ 1 Y t 1 + a t + θ 1 a t 1, dond Y t = (1 B) X t. Slcción dl Grmán Aniros Pérz Sris d Timpo

4 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl OTRA FORMA DE EXPRESAR EL MODELO: 1 Y t = c + φ 1 Y t 1 + a t + θ 1 a t 1, dond Y t = (1 B) X t. 2 Y t φ 1 Y t 1 = c + a t + θ 1 a t 1, dond Y t = (1 B) X t. 3 (1 φ 1 B) Y t = c + (1 + θ 1 B) a t, dond Y t = (1 B) X t. 4 AR MA (1 φ 1 B) (1 B) X t = c + (1 + θ 1 B) a t. Dif. El modlo n custión s dnomina procso (1,1,1). Grmán Aniros Pérz Sris d Timpo

5 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Oprando n la xprsión dl (1,1,1) (1 φ 1 B) (1 B) X t = c + (1 + θ 1 B) a t s obtin la rprsntación: X t = c + (1 + φ 1 ) X t 1 φ 1 X t 2 + a t + θ 1 a t 1, qu mustra d una manra xpĺıcita la rlación xistnt ntr l prsnt y l pasado. Slcción dl Grmán Aniros Pérz Sris d Timpo

6 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl Un procso (p,d,q) s aquél qu, dspués d aplicarl d difrncias rgulars, s convirt n un procso ARMA(p,q). Es dcir: {X t } t s (p,d,q) (1 B) d X t s ARMA(p,q). Equivalntmnt: {X t } t s un procso (p,d,q) si admit una rprsntación dl tipo: φ (B) (1 B) d X t = c + θ (B) a t, dond l polinomio φ (z) no tin raícs d módulo 1. Grmán Aniros Pérz Sris d Timpo

7 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl En la práctica, ant una sri ral,... cuándo propondrmos un como su posibl gnrador? Cuando dtctmos no stacionaridad motivada por la prsncia d tndncia. La prsncia d tndncia n una sri (y, por tanto, la ncsidad d difrnciarla para convrtirla n stacionaria) sul sr dlatada por: El gráfico d la sri frnt al timpo. La fas mustral: Toma valors positivos, sindo próximo a 1 l corrspondint al primr rtardo. Dca lntamnt a cro (dcrciminto linal) a mdida qu l rtardo crc. Grmán Aniros Pérz Sris d Timpo

8 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz Sri original (tndncia) Sri difrnciada (stacionaria) stacionals: Slcción dl El análisis antrior sugir qu la sri difrnciada ha sido gnrada por un ruido blanco (sri original: (0,1,0)). Grmán Aniros Pérz Sris d Timpo

9 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl Sri original (tndncia) Grmán Aniros Pérz Sri difrnciada (tndncia) Sris d Timpo

10 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl Sri difrnciada (2 vcs) Grmán Aniros Pérz Conclusión Los gráficos studiados sugirn qu la sri original: Sris d Timpo 1 No s stacionaria. 2 Ha sido gnrada por un procso (1,2,0).

11 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: La clas d procsos qu acabamos d studiar: Captura no stacionaridads provocadas por la prsncia d tndncia. No captura no stacionaridads provocadas por la prsncia d componnt stacional. A continuación, construirmos otra clas d procsos qu modliza no stacionaridads provocadas por la prsncia d tndncia y/o componnt stacional. Slcción dl Grmán Aniros Pérz Sris d Timpo

12 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl stacionals Sa X t = S t + V t, dond {V t } t s stacionario y 1 S t = S t s, ó 2 S t = S t s + W t dond {W t } t s stacionario con mdia 0. {X t } t no s stacionario, pus contin una componnt stacional S t (dtrminista ó alatoria). Sin mbargo, l procso difrnciado stacionalmnt 1 X t X t s = V t V t s ó 2 X t X t s = W t + V t V t s s stacionario. Conclusión: A vcs, la difrnciación stacional consigu liminar la componnt stacional. Grmán Aniros Pérz Sris d Timpo

13 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: stacionals Basándonos n los jmplos antriors, ant una sri con tndncia y/o componnt stacional, sugrimos: Eliminar la tndncia aplicando d difrncias rgulars ((1 B) d ). En gnral, s suficint d 3. Eliminar la componnt stacional aplicando D difrncias stacionals ((1 B s ) D ). En gnral, s suficint D = 1. Una vz qu la sri difrnciada s stacionaria, modlizarla a través d un Sólo dpndncia rgular: ARMA(p,q). Sólo dpndncia stacional: ARMA(P,Q) s. Ambos tipos d dpndncia: ARMA(p,q) (P,Q) s. Slcción dl Grmán Aniros Pérz Sris d Timpo

14 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl stacionals Cómo construir un modlo qu aglutin las idas antriors? Sa {X t } t un procso con tndncia y con componnt stacional d príodo s = 12. Eliminación d la tndncia: d = 1. (1 B) X t. Eliminación d la componnt stacional: D = 1. Y t = (1 B) ( 1 B 12) X t. Modlización d la dpndncia: ARMA(1,1) (1,1) 12. (1 φ 1 B) ( 1 Φ 1 B 12) Y t =c + (1 + θ 1 B) ( 1 + Θ 1 B 12) a t Modlo final: Dnotando Y t = (1 B) ( 1 B 12) X t, (1 φ 1 B) ( 1 Φ 1 B 12) Y t =c + (1 + θ 1 B) ( 1 + Θ 1 B 12) a t Grmán Aniros Pérz Sris d Timpo

15 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: stacionals OTRA FORMA DE EXPRESAR EL MODELO: AR rg. AR st. Dif. rg. Dif. st. (1 φ 1 B) ( 1 Φ 1 B 12) (1 B) ( 1 B 12) X t = c + (1 + θ 1 B) ( 1 + Θ 1 B 12) a t MA MA rg. st. Est modlo s dnomina procso (1,1,1) (1,1,1) 12. Slcción dl Grmán Aniros Pérz Sris d Timpo

16 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: stacionals Oprando n la xprsión dl (1,1,1) (1,1,1) 12 (1 φ 1 B) ( 1 Φ 1 B 12) (1 B) ( 1 B 12) X t = c + (1 + θ 1 B) ( 1 + Θ 1 B 12) a t s obtin la rprsntación: X t = c + (1 + φ 1 ) X t 1 φ 1 X t 2 + (1 + Φ 1 ) X t 12 (1 + φ 1 + Φ 1 + φ 1 Φ 1 ) X t 13 + (φ 1 + φ 1 Φ 1 ) X t 14 Φ 1 X t 24 + (Φ 1 + φ 1 Φ 1 ) X t 25 φ 1 Φ 1 X t 26 +a t + θ 1 a t 1 + Θ 1 a t 12 + θ 1 Θ 1 a t 13 Slcción dl Grmán Aniros Pérz Sris d Timpo

17 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: stacionals Un procso (p,d,q) (P,D,Q) s (o stacional multiplicativo) s aquél qu, dspués d aplicarl d difrncias rgulars y D difrncias stacionals d príodo s, s corvirt n un procso ARMA(p,q) (P,Q) s. Equivalntmnt: {X t } t s un procso (p,d,q) (P,D,Q) s (o stacional multiplicativo) si admit una rprsntación dl tipo: φ (B) Φ (B s ) (1 B) d (1 B s ) D X t = c + θ (B) Θ (B s ) a t, dond l polinomio φ (z) Φ (z s ) no tin raícs d módulo 1. Slcción dl Grmán Aniros Pérz Sris d Timpo

18 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: stacionals El procso (p,d,q) (P,D,Q) s : Es stacionario cuando d = D = 0 (s convirt n un procso ARMA(p,q) (P,Q) s ). Gnraliza a todos los procsos qu hmos studiado. Captura no stacionaridads provocadas por la prsncia d tndncia. Captura no stacionaridads provocadas por la prsncia d componnt stacional. Es, posiblmnt, l procso más utilizado n la modlización d sris d timpo univariants. Slcción dl Grmán Aniros Pérz Sris d Timpo

19 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl stacionals En la práctica, ant una sri ral,... cuándo propondrmos un stacional como su gnrador? Cuando dtctmos no stacionaridad motivada por la prsncia d componnt stacional. La prsncia d componnt stacional n una sri (y, por tanto, la ncsidad d difrnciarla stacionalmnt para liminarla) sul sr dlatada por: El gráfico d la sri frnt al timpo. La fas mustral: Prsnta furt corrlación n l rtardo stacional (y, posiblmnt, n sus múltiplos), Prsnta priodicidad dl mismo priodo qu la sri, Convrg lntamnt a cro a mdida qu l rtardo crc. Grmán Aniros Pérz Sris d Timpo

20 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz A vcs, la tndncia nmascara a la componnt stacional. Por tanto, si dtctamos tndncia comnzarmos por liminarla. Postriormnt, studiarmos la posibl prsncia d componnt stacional n la sri sin tndncia. stacionals: Slcción dl Sri original Grmán Aniros Pérz Sri difrnciada rgularmnt Sris d Timpo

21 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Sri dif. rg. y stac. (s=12) Conclusión Los gráficos studiados sugirn qu la sri original: 1 No s stacionaria. 2 Ha sido gnrada por un procso (0,1,1) (0,1,1) 12, o quizás por un (1,1,0) (0,1,1) 12. Slcción dl Grmán Aniros Pérz Sris d Timpo

22 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Htrocdasticidad En los studios tóricos y prácticos ralizados hasta ahora, la falta d stacionaridad vnía provocada por la prsncia d tndncia y/o componnt stacional (l valor mdio no s constant o stabl). Aplicando difrncias (rgulars y/o stacionals, rspctivamnt) consguíamos liminar st tipo d no stacionaridad. Otra funt qu provoca falta d stacionaridad s la htrocdasticidad (la varianza no s constant o stabl). A continuación vrmos cómo liminar la htrocdasticidad. Slcción dl Grmán Aniros Pérz Sris d Timpo

23 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: En l gráfico d la drcha, s intuy qu la variabilidad d la sri no s constant. Concrtamnt, parc qu la variabilidad aumnta al hacrlo l nivl d la sri. Sri htrocdástica Slcción dl Grmán Aniros Pérz Sris d Timpo

24 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: En l gráfico d la drcha, s mustra la sri transformada a través d la función logaritmo npriano. S obsrva qu la aplicación d dicha función ha consguido stabilizar la varianza. Sri homocdástica Slcción dl Grmán Aniros Pérz Sris d Timpo

25 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl TRANSFORMACIONES PARA ESTABILIZAR LA VARIANZA Transformacions d Box-Cox La familia d transformacions d Box-Cox s dfin como aquélla qu transforma a x t n: xt λ 1, si λ 0 λ ln(x t ), si λ = 0 Grmán Aniros Pérz Sris d Timpo Si la dsviación típica s una función potncial d la mdia (σ t = kµ t 1 λ ), ntoncs la transformación d Box-Cox con parámtro λ consigu stabilizar la varianza. Un situación muy usual s aquélla n qu σ t = kµ t. En st caso, la aplicación dl logaritmo npriano stabiliza la varianza.

26 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Rsumn D manra squmática, las tapas a sguir para idntificar un modlo como posibl gnrador d una sri d timpo son: 1 Si la sri prsnta htrocdasticidad, liminarla a través d una transformación d Box-Cox. 2 Si la sri (quizás transformada n la tapa 1) prsnta tndncia, liminarla a través d la difrnciación rgular. 3 Si la sri (quizás transformada n las tapas 1 y/o 2) prsnta componnt stacional, liminarla a través d la difrnciación stacional. 4 Idntificar un modlo ARMA para la sri (quizás transformada n las tapas 1, 2 y/o 3). Slcción dl Grmán Aniros Pérz Sris d Timpo

27 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Sri y sri transformada (ln) Sri transformada (ln) Slcción dl Grmán Aniros Pérz Sris d Timpo

28 Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl Dif. rg. dl ln d la sri Grmán Aniros Pérz Conclusión Los gráficos studiados sugirn qu: Sris d Timpo 1 La sri original no s stacionaria ni n mdia ni n varianza. 2 La sri transformada a través dl logaritmo npriano ha sido gnrada por un procso (1,1,0), (0,1,1) o (0,1,2).

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

TAMAÑO DE LA MUESTRA

TAMAÑO DE LA MUESTRA Rv. Epidm. Md. Prv. (003), : 8-4 TAMAÑO DE LA MUESTRA Enric Matu, Jordi Casal CRSA. Cntr d Rcrca n Sanitat Animal / Dp. Sanitat i Anatomia Animals, Univrsitat Autònoma d Barclona, 0893-Bllatrra, Barclona

Más detalles

2º BACHILLERATO CINETICA QUÍMICA

2º BACHILLERATO CINETICA QUÍMICA VELOCIDAD DE REACCIÓN 1.- Escrib la xprsión d la vlocidad d racción n función d la concntración d cada una d las spcis qu intrvinn n l procso d obtnción d amoniaco. N + 3 H NH 3 d 1 v = [N] = 3 d 1 [H]

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos: Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta.

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta. PRUEBAS DE BONDAD DE AJUSTE Estas prubas prmitn vrificar qu la población d la cual provin una mustra tin una distribución spcificada o supusta. Sa X: variabl alatoria poblacional f 0 (x) la distribución

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

Tema 5 El Mercado y el Bienestar. Las externalidades

Tema 5 El Mercado y el Bienestar. Las externalidades Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 5 El Mrcado

Más detalles

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional. Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

XVI.- COMBUSTIÓN pfernandezdiez.es

XVI.- COMBUSTIÓN pfernandezdiez.es XVI.- COMBUSTIÓN XVI.1.- INTRODUCCIÓN S ntind por combustión a toda racción química qu va acompañada d gran dsprndiminto d calor; pud sr sumamnt lnta, d tal manra qu l fnómno no vaya acompañado d una lvación

Más detalles

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA 4 FÍSICA CUÁNTICA 4.. LOS ORÍGENES DE LA FÍSICA CUÁNTICA. Calcula la longitud d onda qu corrsond a los icos dl sctro d misión d un curo ngro a las siguints tmraturas: a) 300 K (tmratura ambint). b) 500

Más detalles

Santiago, Chile PUC. Impresora Feyser Ltda. www.feyser.cl

Santiago, Chile PUC. Impresora Feyser Ltda. www.feyser.cl arios n o i t s u c t tipo d s n i b á t Es Santiago, Chil PUC. Imprsora Fysr Ltda. www.fysr.cl, hay l probl r n t d qu ma! Objtivos dl Estudio Dtrminar prvalncia, frcuncia y caractrísticas dl maltrato

Más detalles

Aplicaciones de la distribución weibull en ingeniería

Aplicaciones de la distribución weibull en ingeniería COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

Paso de los diagramas de grafos a los diagramas de bloques

Paso de los diagramas de grafos a los diagramas de bloques Capíítullo T Paso d los diagramas d graos a los diagramas d bloqus.. INTODUCCIÓN Uno d los lnguajs d simulación más antiguo y más utilizado s l d los diagramas d bloqus. D hcho, aún n la actualidad s l

Más detalles

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A. PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.. CONCEPTO DE DOSADO. PARÁMETROS GEOMÉTRICOS 3. PARÁMETROS INDICADOS 4. PARÁMETROS EFECTIVOS 5. PARÁMETROS DE PÉRDIDAS MECÁNICAS 6. RESUMEN DE PARÁMETROS 7. OTROS

Más detalles

Tema 3 La elasticidad y sus aplicaciones

Tema 3 La elasticidad y sus aplicaciones Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad

Más detalles

MONITOREO DE CONTROLADORES PREDICTIVOS.

MONITOREO DE CONTROLADORES PREDICTIVOS. MONITOREO DE CONTROLADORES PREDICTIVOS. Rachid A. Ghraizi, Ernsto Martínz, César d Prada Dpt. Ingniría d Sistmas y Automática Facultad d Cincias, Univrsidad d Valladolid c/ Ral d Burgos s/n, 47, Valladolid,

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

TEMA 4: LA OFERTA AGREGADA

TEMA 4: LA OFERTA AGREGADA TEMA 4: LA OFERTA AGREGADA Análisis d los ciclos conómicos INTRODUCCIÓN Abandono supusto rigidz n prcios Con prcios flxibls l modlo IS-LM sirv para drivar la curva d Dmanda Agrgada Ncsidad d analizar la

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

Astrofísica de altas energías

Astrofísica de altas energías Astrofísica d altas nrgías Un ión cósmico d nrgía suprior a 10 15 V al ntrar n la atmósfra intracciona con los átomos d las capas altas d ésta, producindo una racción nuclar qu da como rsultado una sri

Más detalles

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE

Más detalles

LIMITES DE FUNCIONES EN 1D

LIMITES DE FUNCIONES EN 1D LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE

Más detalles

Anexo V "Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios

Anexo V Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios Anxo V "Acurdos d Sistmas para la Facturación' dl Convnio poro la Comrcialización o ANEXO V ACUERDOS DE SISTEMAS PARA LA FACTURACIÓN QUE SE ADJUNTA AL CONVENIO PARA LA COMERCIALIZACIÓN O REVENTA DE SERVICIOS

Más detalles

EQUILIBRIO QUIMICO. aa + bb cc + Dd

EQUILIBRIO QUIMICO. aa + bb cc + Dd EQUILIBRIO QUIMICO Una racción rvrsibl s aqulla n qu los productos d la racción intractúan ntr sí y forman nuvamnt los raccionants. En la siguint rprsntación d una racción rvrsibl aa + bb cc + Dd los raccionants

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

4.2. Ejemplo de aplicación.

4.2. Ejemplo de aplicación. HEB 8 Dsarrollo dl método d los dsplazamintos 45 4.. Ejmplo d aplicación. ontinuando con l pórtico dscrito n l apartado (3.8), s van a calcular las cargas y, postriormnt, sguir con l cálculo matricial,

Más detalles

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA DISPERSIÓN - ESPECTRÓMETRO DE PRISMA OBJETIVOS Invstigación d la rgión visibl dl spctro dl átomo d Hidrógno y dtrminación d la constant d Ridbrg. Calibración d la scala dl spctrómtro d prisma. Dtrminación

Más detalles

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ Capítulo Nº 8: La rntabilidad n monda nacional d una invrsión n monda xtranjra Marco Antonio Plaza Vidaurr APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

Rutas críticas para la elaboración del trabajo de titulación en las diferentes modalidades. Planes de estudio 2012

Rutas críticas para la elaboración del trabajo de titulación en las diferentes modalidades. Planes de estudio 2012 Rutas críticas trabajo d titulación n las difrnts modalidads. Ruta Crítica d la Modalidad: Inform d Prácticas Profsionals smana y mdia smana y mdia 2 Smanas Analizar con dtall los documntos normativos

Más detalles

Tema 3 (cont.). Birrefringencia.

Tema 3 (cont.). Birrefringencia. Tma 3 (cont.). Birrfringncia. 3.8 Anisotropía. Dobl rfracción. 3.9 Modlo d Lorntz para la birrfringncia 3.10 Polarizadors dicroicos. Ly d Malus 3.11 Propagación a través d una lámina rtardadora 3.1 Aplicacions

Más detalles

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN El almán Gottfrid Libniz (66-76), quin, junto con su antagonista l inglés Isaac Nwton (6-77), fu l crador dl cálculo infinitsimal. MATEMÁTICAS II

Más detalles

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo.

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo. Valldupar como vamos: Dmografía, Pobrza y Pobrza Extrma y mplo. Tradicionalmnt l programa Valldupar Cómo Vamos, lugo d prsntar la Encusta d Prcpción Ciudadana (EPC), raliza la ntrga d Indici d Calidad

Más detalles

núm. 117 lunes, 24 de junio de 2013 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BRIVIESCA

núm. 117 lunes, 24 de junio de 2013 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BRIVIESCA III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BRIVIESCA C.V.E.: BOPBUR-2013-04928 Por acurdo dl Plno dl Ayuntaminto d Brivisca d fcha 29 d mayo d 2013, s adoptó l Acurdo dl tnor litral siguint: Antcdnts d

Más detalles

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control TERMODINAMICA 1 1 Ly d la Trmodinámica aplicada a Volumns d Control Prof. Carlos G. Villamar Linars Ingniro Mcánico MSc. Matmáticas Aplicada a la Ingniría CONTENIDO PRIMERA LEY DE LA TERMODINAMICA PARA

Más detalles

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no

Más detalles

CENTRO UNIVERSITARIO DEL FUTBOL Y CIENCIAS DEL DEPORTE, S. C. PROCEDIMIENTO PARA LA ENTREGA DE DOCUMENTOS A IHEMSYS Vigente a partir de:

CENTRO UNIVERSITARIO DEL FUTBOL Y CIENCIAS DEL DEPORTE, S. C. PROCEDIMIENTO PARA LA ENTREGA DE DOCUMENTOS A IHEMSYS Vigente a partir de: Vignt a partir d: Clav: 15 d Julio d 2005 Vrsión: Página 1 d 12 1. Objtivo Asgurar qu la Entrga d Documntos al Instituto Hidalguns d Educación Mdia Suprior y Suprior (IHEMSYS) por part d la Coordinación

Más detalles

Ofertas y Contratos Agiles

Ofertas y Contratos Agiles Ofrtas y Contratos Agils algunas idas xtraídas dl libro Obra bajo licncia Crativ Commons los pilar s d transp arncia, ins adaptación pc, junto con l nfoqu d ción y continua q mjora u forman part d lo Agils,

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

EL FILTRO DE KALMAN. Introducción. Qué es el Filtro de Kalman

EL FILTRO DE KALMAN. Introducción. Qué es el Filtro de Kalman L FILRO D LMN Introducción n l siguint documnto s xplicará un método para stimar los stados d un sistma stocástico. l método fu dscrito por Rudolf. alman n 1958. n un sistma dtrminístico trabajaríamos

Más detalles

Enfrentando Comportamientos Difíciles Usando el Sistema de Guía

Enfrentando Comportamientos Difíciles Usando el Sistema de Guía Enfrntando Comportamintos Difícils Usando l Sistma d Guía R s o u r c & R f r r a l H a n d o u t Agrsión Obsrvación - Prguntas Trata la niña d hacr contacto d una manra inapropiada? Está tratando d sr

Más detalles

Luis G. Cabral Rosetti. El Enigma del Radio de Carga del Neutrino p.1

Luis G. Cabral Rosetti. El Enigma del Radio de Carga del Neutrino p.1 E Enigma d Radio d Carga d Nutrino Luis G. Cabra Rostti Dpartamnto d Física d Atas Enrgías, ICNUNAM. E Enigma d Radio d Carga d Nutrino p.1 Pan d a Chara: 1. Introducción 2. Factors d forma d Nutrino 3.

Más detalles

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones Método d los Elmntos Finitos para Análisis Estructural Alisado d tnsions Campo d tnsions Tnsions n cualquir punto dl lmnto, sgún l MEF: = Dε= DBδ Matriz B contin las drivadas d las N: no son continuas

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

MANUAL DE BUENAS PRÁCTICAS PARA EL DESARROLLO DE OBJETOS DE APRENDIZAJE VERSIÓN 1

MANUAL DE BUENAS PRÁCTICAS PARA EL DESARROLLO DE OBJETOS DE APRENDIZAJE VERSIÓN 1 MANUAL DE BUENAS PRÁCTICAS PARA EL DESARROLLO DE OBJETOS DE APRENDIZAJE VERSIÓN 1 Chil, agosto d 2005 El prsnt manual rprsnta la visión dl quipo d profsionals prtncints al Proycto FONDEF Aprndindo con

Más detalles

Coeficiente de correlación parcial

Coeficiente de correlación parcial Coficint d corrlación parcial.- Introducción....- Corrlación parcial mdiant l rcurso d diagramas d Vnn.... 3 3.- Corrlación parcial como corrlación ntr rsiduals... 6 4.- Coficint d rgrsión múltipl y coficint

Más detalles

El Riesgo de Interés

El Riesgo de Interés Juan Mascarñas Univrsidad Complutns d Madrid Vrsión inicial: mayo 4 - Última vrsión: nro 8 - El risgo d intrés, - La duración modificada como mdida dl risgo d intrés, 4 - El risgo d rinvrsión, . EL RIESGO

Más detalles

GRUPOS Y SEMIGRUPOS. Unidad 5

GRUPOS Y SEMIGRUPOS. Unidad 5 GRUPOS Y SEMIGRUPOS En sta unidad studiarmos algunas d las structuras algbraicas qu s utilizan n Toría d Codificación y también n l studio d máquinas d stado finito, como por jmplo los autómatas qu vrmos

Más detalles

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General Univrsidad Austral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 8 Mrcados Financiros y Expctativas Profsor: Carlos R. Pitta Macroconomía Gnral, Prof. Carlos R. Pitta, Univrsidad Austral

Más detalles

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r. (Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA CÓDIGO TÉCNICO DE LA EDIFICACIÓN ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO: CÁLCULO SEGÚN CTE El acondicionaminto térmico higrométrico s rcog n l Documnto Básico HE Ahorro d Enrgía, cuyo índic s: HE 1 Limitación

Más detalles

ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación

ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación LÍMITES Cálculo y rprsntación...... 7. 8. - + + - - + + - + - ( + ) - + + - - + + 9. + - +. + - + - 9. + -. + + + - +. + + +. + + + -. +. + - ASÍNTOTAS Y RAMAS INFINITAS Cálculo y rprsntación. y = - +.

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas ap. Ecuacions Difrncials d Primr ordn. Introducción. Ecuacions Linals. Ecuacions d Brnoulli. Ecuacions sparabls.5 Ecuacions Homogénas.6 Ecuacions actas.7 Factor Intgrant.8 Estabilidad dinámica dl quilibrio.9

Más detalles

TEMA 4. APLICACIONES DE LA DERIVADA.

TEMA 4. APLICACIONES DE LA DERIVADA. 7 Unidad 4. Funcions. Aplicacions d la drivada TEMA 4. APICACIONES DE A DERIVADA.. Monotonía. Crciminto y dcrciminto d una función. Etrmos rlativos 3. Optimización 4. Curvatura 5. Punto d Inflión 6. Propidads

Más detalles

núm. 234 miércoles, 11 de diciembre de 2013

núm. 234 miércoles, 11 de diciembre de 2013 NÚMERO 220 ORDENANZA FISCAL REGULADORA DE LA TASA POR LA PRESTACIÓN DE SERVICIOS DE ABASTECIMIENTO Y SANEAMIENTO DE AGUAS Artículo 1. I. PRECEPTOS GENERALES El prsnt txto s apruba n jrcicio d la potstad

Más detalles

ANÁLISIS (Selectividad 2014) 1

ANÁLISIS (Selectividad 2014) 1 ANÁLISIS (Slctividad 4) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD EN 4 ( Obsrvación: La slcción s ha hcho dando prioridad a las custions más tóricas) Andalucía, junio 4 San

Más detalles

PRÁCTICAS DE FUNDAMENTOS DE REGULACIÓN AUTOMÁTICA CON MATLAB

PRÁCTICAS DE FUNDAMENTOS DE REGULACIÓN AUTOMÁTICA CON MATLAB PRÁCTICAS DE FUNDAMENTOS DE REGULACIÓN AUTOMÁTICA CON MATLAB PRÁCTICA Nº 3: RESPUESTA DE SISTEMAS 4. RESPUESTA TEMPORAL DE SISTEMAS Contnido: D las funcions d transfrncia y sistmas antriors, s prtnd obtnr

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

MATERIALES Y METODOS RESULTADOS

MATERIALES Y METODOS RESULTADOS 1000 RVISTA D BILOA TROPICAL albinas normotnsas hiprtnsas, ants y dspués d la administración, ya qu st rfljo rgula (n corto plazo) la prsión artrial y la frcuncia cardíaca. La disminución d la prsión artrial,

Más detalles

núm. 76 miércoles, 22 de abril de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS

núm. 76 miércoles, 22 de abril de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS C.V.E.: BOPBUR-2015-03235 465,00 GERENCIA MUNICIPAL DE SERVICIOS SOCIALES, JUVENTUD E IGUALDAD DE OPORTUNIDADES Concjalía d Juvntud Mdiant rsolución d la

Más detalles

Problemas directo e inverso de la Geodesia

Problemas directo e inverso de la Geodesia Problmas dircto invrso d la Godsia J. B. Mna 1. Introducción. Estudiarmos a continuación algunos d los métodos clásicos para rsolvr los dnominados problmas godésicos principals. Como sabmos, n Godsia sfroidal

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

Prof: Bolaños D. Electrónica

Prof: Bolaños D. Electrónica Elctrónica Introducción a línas d transmisión Dfinición Es un sistma d conductors capacs d transmitir potncia léctrica dsd una funt a una carga. D acurdo a sta dfinición tanto la lína d alta tnsión provnint

Más detalles

EXTENSIÓN DE LA ADSORCIÓN DE COMPUESTOS FENÓLICOS SOBRE CARBÓN ACTIVADO VEGETAL

EXTENSIÓN DE LA ADSORCIÓN DE COMPUESTOS FENÓLICOS SOBRE CARBÓN ACTIVADO VEGETAL EXTENSIÓN DE LA ADSORCIÓN DE COMPUESTOS FENÓLICOS SOBRE CARBÓN ACTIVADO VEGETAL María dl Carmn Jiménz Molón (*) Univrsidad Autónoma dl Estado d México (UAEM) Profsora-Invstigadora dl Cntro Intramricano

Más detalles

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005 OCUMNO INSIGACIÓN ÓRICA L MOLO SCUNO IINOS M. Marco Anonio Plaza idaurr Julio 5 l Modlo d scuno d ividndos (Ms M. Marco Anonio Plaza idaurr Rsumn s documno dsarrolla y xplica l modlo d dscuno d dividndos,

Más detalles

Becas INSTITUTO, CIUDEN-ULE PARA LA REALIZACION DE PROGRAMAS DE POSGRADO 2013.

Becas INSTITUTO, CIUDEN-ULE PARA LA REALIZACION DE PROGRAMAS DE POSGRADO 2013. lón él Bcas INSTITUTO, CIUDEN-ULE PARA LA REALIZACION DE PROGRAMAS DE POSGRADO 2013. BASES El Instituto Ciun-UL Tcnologías CAC y Dsarrollo Trritorial convoca cuatro bcas para ralización, n Institucions

Más detalles

Tema 3 La economía de la información

Tema 3 La economía de la información jrcicios rsultos d Microconomía. quilibrio gnral y conomía d la información rnando Prra Tallo Olga María odríguz odríguz Tma La conomía d la información http://bit.ly/8l8u jrcicio : na mprsa d frtilizants

Más detalles

Respuestas y adaptaciones funcionales a la actividad física

Respuestas y adaptaciones funcionales a la actividad física Rspustas y adaptacions funcionals a la actividad física Sistma cardiovascular Introducción Hay qu difrnciar las adaptacions a un stímulo concrto aislado y a un ntrnaminto constant ESTÍMULO RESPUESTA AL

Más detalles

LÍMITES DE FUNCIONES. CONTINUDAD

LÍMITES DE FUNCIONES. CONTINUDAD LÍMITES DE FUNCIONES. CONTINUDAD Signiicado dl it Ejrcicio nº.- Rprsnta gráicamnt y plica l gniicado d la prón: Ejrcicio nº.- Eplica l gniicado d la guint prón y rprséntalo gráicamnt: 9 Ejrcicio nº.- Escrib

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles

CAPITULO 3 PER: UN INDICADOR PARA MEDIR VALOR

CAPITULO 3 PER: UN INDICADOR PARA MEDIR VALOR CAPITULO 3 : UN INDICADOR PARA MEDIR VALOR Valor s la prcpción d bnficio o utilidad qu da un bin a una prsona (vr capítulo 1). En invrsions l valor sta dado por l dinro futuro qu gnra un capital n l día

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

12 Representación de funciones

12 Representación de funciones Rprsntación d funcions ACTIVIDADES INICIALES.I. Factorizando prviamnt las prsions, rsulv las siguints cuacions: a) 6 7 5 0 6 c) 0 7 b) 6 d) 0 a) 6 7 5 0 ( )(6 5) 0 5 6 5 0, b) 7 6 ( )( ) 6 6 ( ) 7 ( )

Más detalles

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015 Asambla Nacional Scrtaría Gnral TRÁMITE LEGISLATIVO 2014-2015 ANTEPROYECTO DE LEY: 106 PROYECTO DE LEY: 171 LEY: GACETA OFICIAL: TÍTULO: QUE ESTABLECE EL RECICLAJE DE PAPEL, LATAS DE ALUMINIO Y BOTELLAS

Más detalles

- SISTEMA DE INFORMACION DE GESTION -

- SISTEMA DE INFORMACION DE GESTION - - SISTEMA DE INFORMACION DE GESTION - INFORME Nº 4 Jf d División y Encargados d Cntros d Rsponsabilidad NIVEL 2 GOBIERNO REGIONAL DE MAGALLANES Y ANTARTICA CHILENA - DICIEMBRE 2008 - 1 Mta Mdidas Rsponsabl

Más detalles

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO OPERCIONES UNIRIS PROF PEDRO VRGS UNEFM DPO ENERGÉIC Disponibl n: wwwopracionswordprsscom INERCMBIDORES UBO Y CRCZ: NÁLISIS ÉRMICO NÁLISIS ÉRMICO, CONSIDERCIONES GENERLES nts d scribir las cuacions qu

Más detalles

Sobre Regresión Logística

Sobre Regresión Logística Modlo caractrizado por la naturalza singular d su variabl rspusta o dpndint, Y, al tratars d una variabl dicotómica o d Brnoulli, n su modlo más sncillo: no ocurr l vnto d int rés Y sí ocurr l vnto d int

Más detalles

Material del curso Recursos metodológicos y estadísticos para la docencia e investigación Manuel Miguel Ramos Álvarez

Material del curso Recursos metodológicos y estadísticos para la docencia e investigación Manuel Miguel Ramos Álvarez Crso d Rcrsos Mtodológicos y Estadísticos 1 UNIVERSIDAD DE JAÉN Índic Matrial dl crso Rcrsos mtodológicos y stadísticos para la docncia invstigación Manl Migl Ramos Álvarz MÓÓDDUULLOO XII EXXPPLLIICCAACCIIÓÓNN

Más detalles

Aspectos Técnicos para la Determinación de la Prima de Riesgo en el Seguro de Gastos Médicos Mayores

Aspectos Técnicos para la Determinación de la Prima de Riesgo en el Seguro de Gastos Médicos Mayores Aspctos Técnicos para la Dtrminación d la Prima d Risgo n l guro d Gastos édicos ayors igul Angl Bltrán Prado Dicimbr 1992 ri Documntos d Trabajo Documnto d Trabajo No. 11 Índic Introducción 1 1. Objto

Más detalles