CLAVE - Laboratorio 1: Introducción

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CLAVE - Laboratorio 1: Introducción"

Transcripción

1 CLAVE - Laboratoro 1: Introduccón ( x )( x ) x ( xy) x y a b a b a a a ( x ) / ( x ) x ( x ) x a b a b a b ab n! n( n 1)( n 2) 1 0! 1 x x x (1) Smplfque y evalúe las sguentes expresones: a x 10 =10 2+ =10 7 = f. 2 - x 2 3 = =1/22=1/=0.2 b. (10 6 )/(10 ) = =10 g. 2 /2 2 = (2 2 ) 2 /2 2 =2 /2 2 =2-2 =2 2 = c. 2 3 x 3 2 =8*9=72 h. ( x 3) 2 = (1) 2 =22 d. (3 3 ) 3 =3 9 = ( )/( ) = (10-2 /10-3 ) 2 =10 2 =100 e. 7! =7(6)()()(3)(2)(1)=00 j. (6!)/(3!) = 6()()(3)(2)(1)/(3)(2)(1)=120 (2) Notacón sumatora. Escrba los sumandos de cada una de las sumas sguentes: Ejemplo: a. X X X X X ( X a) X1-a)+ (X2-a)+ (X3-a)+ (X3-a)+ (X-a) = (X1+X2+X3+X)-a b. 6 XY X1Y1 + X2Y2 + X3Y3 + XY + XY + X6Y6 c. 3 X j X1+ X2+ X3 j1 d. a X a(x1+ X2+ X3 + X) = ax1+ ax2+ ax3 + ax (3) Para la muestra de tamaño n= presentada abajo, evalúe las sguentes sumatoras. Use las funcones en su calculadora que le permtan smplfcar los cálculos. X 119, X 98, X 79, X 89, X a. X =80 (La Suma) AGRO 00 CLAVE LAB 1 Page 1

2 b. c. X /( )/=96 (La meda) Esta expresón representa la desvacón de la meda ( X 96) (119-96)+(98-96)+(79-96)+(89-96)+(9-96)= La suma de desvacones de la meda =(23)+(2)+(-17)+(-7)+(-1) = 0 = 80 (96) = 0 Aquí la dea es ntentar desarrollar una expresón que mda la cantdad de varacón que exste en un conjunto de datos. Una posbldad sería sumar las desvacones de cada dato de la meda del conjunto de datos. Pero como algunas desvacones son postvas y otras negatvas, esta suma sempre será cero. Tenemos que consderar otra fórmula. d. 2 ( X 96) (119-96) 2 +(98-96) 2 +(79-96) 2 +(89-96) 2 +(9-96) 2 =(23) 2 +(2) 2 +(-17) 2 +(-7) 2 +(-1) 2 =872 Fórmula Teórca - Suma de Cuadrados Aquí, estamos elevando al cuadrado las desvacones ANTES DE SUMAR, y así elmnamos los valores negatvos. Esta fórmula se llama la suma de cuadrados de desvacones de la meda, o smplemente, la suma de cuadrados (S.C.). Es una medda de la cantdad de dspersón o varacón en una muestra. FAVOR DE APRENDER ESTA FORUMLA!! e. Esta parte de la expresón de llama factor de correccón 2 2 X ( X) / 692-(80 2 /)= =872 Esta es la fórmula de trabajo de la S.C. Tambén se llama la suma de cuadrados corregda o SCC (InfoStat usa este nombre). Esta fórmula es muy útl para hacer cálculos a mano cuando hay muchos datos. f. Repte la parte a, b y d para la sguente muestra: X1=9, X2=98, X3=9, X=97, X=96. Comente sobre los resultados. La suma y la meda de esta muestra son guales a las de la muestra anteror (decmos que las dos muestras tene la msma tendenca central). Pero la SC (SCC) es mucho menor en la segunda muestra comparada con la prmera debdo a la poca dspersón de los datos en esta muestra (los datos son muy parecdos) () Identfque las poscones en la matrz y evalúe las sumatoras usando los valores en la matrz. Recuerde que el prmer subíndce ndca la fla, y el segundo la columna. (Ejemplo: en la fla 2 y columna 3, el valor numérco puede ser dentfcado como X 2,3) AGRO 00 CLAVE LAB 1 Page 2

3 Expansón de la expresón a. X,2 X12+ X22+ X32+ X2= =1 Valores de la matrz (ayuda: los posbles valores de X2 son X12, X22, X32 y X2) b. X, j X1+ X2+ X3+ X= = 6 j1 c. 2 X1, j X X X X1 2 = = 23 j1 (ayuda: elevar al cuadrado cada observacón antes de sumar las observacones) d. e., X, j X11+ X12+ X13+ X1 +X21+ X22+ X 23 + X2 +X31+, j1 X32+ X33+ X3 + X1+ X2+ X3+ X= Suma de todos los números =0 X, X11+ X22+ X33+ X = = 13 Infostat es un programa en español que permte realzar la mayoría de los cálculos estadístcos, tene capacdades gráfcas bastante avanzadas y un manejo de datos smlar a otros programas de bases de datos. La mayoría de los cálculos de resumen y de los gráfcos tambén pueden realzarse en Excel, pero los análss estadístcos normalmente no se pueden hacer en Excel sn programas adconales. Utlzando el menú Archvo, Nueva tabla, entre las columnas de datos (ncluyendo árbol ) que se encuentran abajo. Guarde sus datos en un jump drve utlzando la opcón de Archvo, Guardar tabla como. Vamos a utlzar estos datos para hacer varos ejerccos durante el día de hoy y en los próxmos laboratoros. Los datos representan una muestra aleatora smple de 0 árboles de café. Las varables meddas ncluyen presenca de roya (una enfermedad), altura (m) y dámetro (cm) de cada árbol. Después de entrar los datos, favor contnuar con los ejerccos en InfoStat (abajo). IMPORTANTE (favor de leer antes de entrar sus datos): InfoStat utlza el prmer valor que uno entra en una columna (en la prmera celda) para defnr el tpo de dato. Dependendo del tpo de dato, Infostat lo va a clasfcar como entero (s el dato es numérco sn decmales), real (para datos numércos con decmales), categoría (s los datos contenen letras), o fecha. S uno entra una letra en la prmera celda y luego entra un número en la 2da celda, AGRO 00 CLAVE LAB 1 Page 3

4 InfoStat va a consderar el número como una categoría, no un valor numérco (y no se puede hacer cálculos sobre datos categórcos). Smplemente borrando la letra en la prmera celda no solucona el problema porque la columna ya va a ser clasfcada como categórca. La solucón es borrar la columna y empezar de nuevo, o s hay muchos datos entrados, se puede selecconar la columna, oprmr el botón derecho del mouse, r a tpo de dato y cambar el formato. Árbol Enfermo? Altura Dámetro 1 no s no no no no s no no no s no no no no no no no s no no no no no no no no no no s s no s s no 3. AGRO 00 CLAVE LAB 1 Page

5 36 no s no no s 2.67 () Infostat nos provee la opcón de crear una nueva varable que se defne utlzando una o más varables prevamente defndas. Por ejemplo, dgamos que queremos transformar los datos de altura (m) a altura (pes). En el menú Datos, Fórmulas se entra el nombre de la nueva varable (dgamos Altura_pes), y se defne Altura_pes en térmnos de una o más varables ya exstentes (una lsta de varables aparecerá en una ventanlla a la derecha; operadores aparecerán en una ventana). Después de defnr la fórmula y oprmr calcular, InfoStat colocará los valores de Altura_pes en una nueva columna. Utlce el menú Datos, Fórmula para transformar altura en metros a altura en pes (1m=3.28ft). Esta fórmula defne la nueva varable en el contexto de una varable ya defnda AGRO 00 CLAVE LAB 1 Page

6 Usando la fórmula defnda arrba, InfoStat genera una nueva columna con los datos de altura en pes (6) Nos nteresa categorzar nuestros árboles de acuerdo con los sguentes categorías de dámetros: hasta cm, más de cm hasta 9cm, más de 9cm hasta 12cm, más de 12cm. Seleccone la columna Dámetro y haga un clck derecho. Usando el menú Categorzar, Asgnar categorías por ntervalos, Personalzado, crear clases de dámetro. Defna el límte superor (LS) de cada clase. Por ejemplo, el LS1 es. InfoStat automátcamente apuntará el LS de la últma clase. En Edtar categorías escrba las descrpcones correspondentes. (No es recomendable utlzar la opcón de dejar las categorías defndas como C1, etc. Varos meses después de categorzar sus datos es muy posble que no recuerde su sstema de clasfcacón! Selecconar la columna con los datos de dámetro AGRO 00 CLAVE LAB 1 Page 6

7 (7) Usando el menú datos, ordenar, contar cuántos árboles están enfermos. Seleccone todas las flas de datos enfermo = sí. Utlzando un clck derecho, se desactvan estos casos. Ahora mueva su cursor a otra parte de la págna. Los datos sombrados en color rosado no pueden ser utlzados en nngún análss hasta que no sean archvados nuevamente. Repta el proceso para reactvar los datos (verfque que se qutó el color rosado) AGRO 00 CLAVE LAB 1 Page 7

8 Las próxmas preguntas son para contestar en casa y dscutr en el próxmo laboratoro: (8) Certo tpo de desperdcos contamnantes (como excrementos de ganado lechero) puede traer problemas seros de contamnacón por ntratos a los acuíferos. Para estudar este problema se escogeron 80 muestras aleatoras de agua en los acuíferos del área norte de Puerto Rco. a. Identfque la poblacón de nterés. Acuíferos del área norte de PR b. Identfque la muestra. Las 80 muestras tomadas en los acuíferos c. Qué característcas de la poblacón le nteresaría medr para estudar el problema? La concentracón promedo de los ntratos en el área norte (meda), la varabldad de ntratos entre los dferentes acuíferos del área norte (varanza), el porcentaje de acuíferos con ntratos por encma del nvel máxmo permtdo. AGRO 00 CLAVE LAB 1 Page 8

9 d. Cómo resumría la nformacón obtenda en la muestra? Con gráfcos y/o meddas numércas de resumen (como la meda y la varanza) (9) Se desea estudar la capacdad respratora (VO2MAX) de estudantes unverstaros. Para ello se escogen 100 estudantes al azar en el RUM y a cada uno se le medrá la capacdad respratora. Además se regstrará el sexo, la edad, el nvel de actvdad físca, y otras característcas. a. Identfque la poblacón de nterés. Estudantes del RUM b. Identfque la muestra. Los 100 estudantes selecconados al azar c. Cómo podríamos selecconar esta muestra? Una posbldad sería un muestreo aleatoro estratfcado. Como necestamos 100 estudantes, de las cuatro Facultades exstentes, se escogen un certo número de estudantes al azar de cada Facultad, de acuerdo con su tamaño relatvo (por ejemplo, s Artes y Cencas tene el 0% de los estudantes, elegmos 0 estudantes; s Ingenería tene 3% de estudantes, elegmos 3 estudantes; s Admnstracón de Empresas tene el 1% de los estudantes, elegmos 1 estudantes, y s Cencas Agrícolas tene el 10% de los estudantes, elegmos 10 estudantes). Para selecconarlos al azar, se utlza un lstado de números generados al azar y se escogen de acuerdo a esta lsta, los correspondentes a los lstados de estudantes de cada Facultad. d. Qué preguntas de nvestgacón podrían formularse con la nformacón dsponble en los estudantes estudados en la muestra? Algunos ejemplos: Cuál es la capacdad respratora promedo (Meda) en los sguentes grupos de estudantes?: 1. Todos los estudantes 2. Las fémnas 3. Los varones. Según rangos de edad. Ej. Entre los 17 y 20 años y Mayores de 20 años. Según el nvel de actvdad físca 6. Según otras característcas meddas a los estudantes Cuál es la varabldad en la capacdad respratora en los dferentes grupos de estudantes (Varanza)? Ej. En hombres, en mujeres, menores de 20, mayores de 20. Cuál es el porcentaje en la capacdad respratora de los estudantes por debajo de un nvel mínmo establecdo para una persona saludable en esos rangos de edad? AGRO 00 CLAVE LAB 1 Page 9

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia MAT-3 Estadístca I Tema : Meddas de Dspersón Facltador: Félx Rondón, MS Insttuto Especalzado de Estudos Superores Loyola Introduccón Las meddas de tendenca central son ndcadores estadístcos que resumen

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Una empresa dedcada al transporte y dstrbucón de mercancías, tene una plantlla de 50 trabajadores. Durante el últmo año se ha observado que 5 trabajadores han faltado un solo día

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Estadística Unidimensional: SOLUCIONES

Estadística Unidimensional: SOLUCIONES 4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa. MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan

Más detalles

MUESTREO EN POBLACIONES FINITAS

MUESTREO EN POBLACIONES FINITAS MUESTREO EN POBLACIONES FINITAS Antono Morllas A.Morllas: Muestreo 1 MUESTREO EN POBLACIONES FINITAS 1. Conceptos estadístcos báscos. Etapas en el muestreo 3. Tpos de error 4. Métodos de muestreo 5. Tamaño

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN

SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN Estadístca SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN LOGRO DE APRENDIZAJE: Al fnalzar la sesón, el estudante estará en la capacdad de calcular e nterpretar meddas de tendenca central y poscón de

Más detalles

Tema 1: Estadística Descriptiva Unidimensional

Tema 1: Estadística Descriptiva Unidimensional Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS.

5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. 5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. Para organzar los datos a medda que el número de observacones crece, es necesaro condensar más los datos en tablas apropadas, a fn de presentar, analzar e nterpretar

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

ESTADÍSTICA. Definiciones

ESTADÍSTICA. Definiciones ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una

Más detalles

Regresión Lineal Simple y Correlación

Regresión Lineal Simple y Correlación 4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse

Más detalles

2 Dos tipos de parámetros estadísticos

2 Dos tipos de parámetros estadísticos Dos tpos de parámetros estadístcos Págna 198 1. Calcula la meda, la medana y la moda de cada una de estas dstrbucones estadístcas: a) 4, 5, 6, 6, 6, 6, 7, 11, 1, 17 b), 1, 6, 9,, 8, 9,, 14, c), 3, 3, 3,

Más detalles

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias.

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias. Estadístca (Q) Dana M. Kelmansky 5 Varables Aleatoras Nos nteresa asgnar probabldades a valores numércos obtendos a partr de fenómenos aleatoros, es decr a varables aleatoras. Por ejemplo, calcular la

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

7ª SESIÓN: Medidas de concentración

7ª SESIÓN: Medidas de concentración Curso 2006-2007 7ª Sesón: Meddas de concentracón 7ª SESIÓN: Meddas de concentracón. Abrr el rograma Excel. 2. Abrr el lbro utlzado en las ráctcas anterores. 3. Insertar la Hoja7 al fnal del lbro. 4. Escrbr

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL La estadístca undmensonal trata de resumr la nformacón contenda en una tabla que contene nformacón de una sola varable en unos pocos números. Las meddas de poscón pueden ser:

Más detalles

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria).

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria). Unversdad de Sonora Dvsón de Cencas Exactas y Naturales Departamento de Físca Laboratoro de Mecánca II Práctca #3: Cálculo del momento de nerca de un cuerpo rígdo I. Objetvos. Determnar el momento de nerca

Más detalles

SEGUNDA PARTE RENTAS FINANCIERAS

SEGUNDA PARTE RENTAS FINANCIERAS SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de

Más detalles

Modelos triangular y parabólico

Modelos triangular y parabólico Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,.

1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,. º. a Deducr la expresón de la fórmula de dervacón numérca de tpo x,x,x,x,. nterpolatoro que permte aproxmar f (x* con el soporte { } 3 x 4 b Demostrar que en el caso de que el soporte sea de la forma:

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II)

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II) LECTURA 03 DISTRIBUCIONES DE FRECUENCIAS (PARTE II) DISTRIBUCIONES DE FRECUENCIAS EN INTERVALOS DE CLASE Y DISTRIBUCIONES DE FRECUENCIAS POR ATRIBUTOS O CATEGORÍAS TEMA 6 DISTRIBUCIÓN DE FRECUENCIAS EN

Más detalles

Comparación de Tasas. Ejemplo StatFolio: comparerates.sgp

Comparación de Tasas. Ejemplo StatFolio: comparerates.sgp STATGRAPHICS Rev. 9/4/2006 Comparacón de Tasas Resumen El procedmento Comparacón de Tasas esta dseñado para comparar las tasas observadas de un evento entre muestras. Este realza una prueba de dspersón

Más detalles

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza Maestría en Admnstracón Meddas Descrptvas Formularo e Interpretacón Dr. Francsco Javer Cruz Arza A contnuacón mostramos el foco de atencón de las dstntas meddas que abordaremos en el presente manual. El

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Pronósticos. Humberto R. Álvarez A., Ph. D.

Pronósticos. Humberto R. Álvarez A., Ph. D. Pronóstcos Humberto R. Álvarez A., Ph. D. Predccón, Pronóstco y Prospectva Predccón: estmacón de un acontecmento futuro que se basa en consderacones subjetvas, en la habldad, experenca y buen juco de las

Más detalles

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es

Más detalles

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos:

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos: MEDIDAS DE POSICIÓN Y DISPERSIÓN Estadístca En la clase anteror vmos como resumr la nformacón contenda en un conjunto de datos medante tablas y gráfcos. En esta clase vamos a ver como resumrlos medante

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

Inferencia en Regresión Lineal Simple

Inferencia en Regresión Lineal Simple Inferenca en Regresón Lneal Smple Modelo de regresón lneal smple: Se tenen n observacones de una varable explcatva x y de una varable respuesta y, ( x, y)(, x, y),...,( x n, y n ) el modelo estadístco

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una muestra de observacones formadas por pares de varables: (x 1, y 1 ), (x, y ),.., (x n, y n ) A través de esta muestra, se desea estudar la relacón

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

EXPERIMENTOS ANIDADOS O JERARQUICOS NESTED

EXPERIMENTOS ANIDADOS O JERARQUICOS NESTED EXPERIMENTOS ANIDADOS O JERARQUICOS NESTED Exsten ocasones donde los nveles de un factor B son smlares pero no déntcos para dferentes nveles del factor A. Es decr, dferentes nveles del factor A ven nveles

Más detalles

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA LABORATORIO 1-008 PRACTICA 4: LEYES DE LOS GASES 1. OBJETIVOS ) Comprobacón expermental de las leyes de los gases. En este caso nos vamos a concentrar en el estudo

Más detalles

1. Variable aleatoria. Clasificación

1. Variable aleatoria. Clasificación Tema 7: Varable Aleatora Undmensonal 1. Varable aleatora. Clasfcacón. Caracterzacón de una varable aleatora. Varable Aleatora dscreta. Varable Aleatora contnua 3. Característcas de una varable aleatora.

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca descrptva. ESTADÍSTICA DESCRIPTIVA POBLACIÓN Y MUESTRA. VARIABLES ESTADÍSTICAS DISTRIBUCIÓN DE FRECUENCIAS DE UNA MUESTRA AGRUPACIÓN DE DATOS REPRESENTACIONES GRÁFICAS DE LAS MUESTRAS PRINCIPALES

Más detalles

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme Una hpótess estadístca es una afrmacón con respecto a una característca que se desconoce de una poblacón de nterés. En la seccón anteror tratamos los casos dscretos, es decr, en forma exclusva el valor

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

EJERCICIOS RESUELTOS TEMA 2

EJERCICIOS RESUELTOS TEMA 2 EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones;

Más detalles

Análisis de Resultados con Errores

Análisis de Resultados con Errores Análss de Resultados con Errores Exsten dos tpos de errores en los expermentos Errores sstemátcos errores aleatoros. Los errores sstemátcos son, desde lejos, los más mportantes. Errores Sstemátcos: Exsten

Más detalles

Muestra: son datos de corte transversal correspondientes a 120 familias españolas.

Muestra: son datos de corte transversal correspondientes a 120 familias españolas. Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas 3. APLICACIONES INFORMÁTICAS Fchero : cp.wf (modelo de regresón smple) Seres: : consumo famlar mensual en mles de pesetas RENTA: renta

Más detalles

UNIDAD 1: Tablas de frecuencias

UNIDAD 1: Tablas de frecuencias UIDAD : Tablas de recuencas Cuando sobre una poblacón hemos realzado una encuesta o cualquer regstro para conocer los valores que toman las varables, nos encontramos ante una gran cantdad de datos que

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

TÍTULO I Aspectos Generales TÍTULO II Alcance TÍTULO III Metodología de Cálculo de FECF... 3

TÍTULO I Aspectos Generales TÍTULO II Alcance TÍTULO III Metodología de Cálculo de FECF... 3 PROCEDIMIENTO DO DESEMPEÑO DEL CONTROL DE FRECUENCIA EN EL SIC DIRECCIÓN DE OPERACIÓN ÍNDICE TÍTULO I Aspectos Generales... 3 TÍTULO II Alcance... 3 TÍTULO III Metodología de Cálculo de FECF... 3 TÍTULO

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

DATOS AGRUPADOS POR INTERVALOS DE CLASE

DATOS AGRUPADOS POR INTERVALOS DE CLASE 3. Datos agrupados por ntervalo (Varable contnua) Generalmente los datos se agrupan por medo de ntervalos de clase, los cálculos son una aproxmacón a la realdad, se faclta los cálculos. En la agrupacón

Más detalles

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de: Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES

GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES PRONÓSTICOS PREDICCIÓN, PRONÓSTICO Y PROSPECTIVA Predccón: estmacón de un acontecmento futuro que

Más detalles

MÓDULO DE ADMINISTRACIÓN DE DOCUMENTOS EN IRON MOUNTAIN CONNECT C

MÓDULO DE ADMINISTRACIÓN DE DOCUMENTOS EN IRON MOUNTAIN CONNECT C Búsqueda smple MÓDULO DE ADMINISTRACIÓN DE DOCUMENTOS EN IRON MOUNTAIN CONNECT C3.2 07.16 2016 Iron Mountan Incorporated. Todos los derechos reservados. Iron Mountan y el dseño de montaña son marcas regstradas

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas )

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) MUETREO ALEATORIO IMPLE I Este esquema de muestreo es el más usado cuando se tene un marco de muestreo que especfque la manera de dentfcar cada undad en la poblacón. Además no se tene conocmento a pror

Más detalles

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica?

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica? Relacones entre varables cualtatvas Problema: xste relacón entre el estado nutrconal y el rendmento académco de estudantes de enseñanza básca? stado Nutrconal Malo Regular Bueno TOTAL Bajo 13 95 3 55 Rendmento

Más detalles

GUÍA DE APOYO AL APRENDIZAJE N 1

GUÍA DE APOYO AL APRENDIZAJE N 1 GUÍA DE APOYO AL APRENDIZAJE N 1 1.- Dencones de conceptos báscos. Estadístca: la estadístca es un conjunto de métodos y procedmentos que srven para recolectar, organzar y presentar los datos obtendos,

Más detalles

La adopción y uso de las TICs en las Microempresas Chilenas

La adopción y uso de las TICs en las Microempresas Chilenas Subdreccón Técnca Depto. Investgacón y Desarrollo Estadístco Subdreccón de Operacones Depto. Comerco y Servcos INFORME METODOLÓGICO DISEÑO MUESTRAL La adopcón y uso de las TICs en las Mcroempresas Clenas

Más detalles

METODOLOGÍA MUESTRAL ENCUESTA LONGITUDINAL DE EMPRESAS AÑO CONTABLE 2009

METODOLOGÍA MUESTRAL ENCUESTA LONGITUDINAL DE EMPRESAS AÑO CONTABLE 2009 METODOLOGÍA MUESTRAL ENCUESTA LONGITUDINAL DE EMPRESAS AÑO CONTABLE 009 INSTITUTO NACIONAL DE ESTADÍSTICAS Novembre / 0 DEPARTAMENTO DE INVESTIGACIÓN Y DESARROLLO Metodología Muestral Encuesta Longtudnal

Más detalles

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE MEDICINA VETERINARIA Y ZOOTECNIA MÉTODOS DE MUESTREO PARA LA PRODUCCIÓN Y LA SALUD ANIMAL

UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE MEDICINA VETERINARIA Y ZOOTECNIA MÉTODOS DE MUESTREO PARA LA PRODUCCIÓN Y LA SALUD ANIMAL UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE MEDICINA VETERINARIA Y ZOOTECNIA MÉTODOS DE MUESTREO PARA LA PRODUCCIÓN Y LA SALUD ANIMAL José C. Segura Correa Profesor Investgador Ttular Facultad de Medcna

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 0 INSTITUTO NACIONAL DE ESTADÍSTICAS 03 ÍNDICE I. METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE INTERURBANO DE PASAJEROS POR CARRETERA.

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ C. DE LA ESCUELA PREPARATORIA

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ C. DE LA ESCUELA PREPARATORIA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ C. DE LA ESCUELA PREPARATORIA PROBLEMARIO DE ESTADÍSTICA MÓDULO I. REPRESENTACIÓN DE DATOS MÓDULO II. MEDIDAS DE TENDENCIA CENTRAL ELABORADO

Más detalles

Práctica 2 Caracterización de un dinamómetro

Práctica 2 Caracterización de un dinamómetro Págna 1/9 Práctca Caracterzacón de un dnamómetro Págna 1 Págna /9 1. Segurdad en la ejecucón Pelgro o fuente de energía 1 Peso de las masas patrón Resgo asocado Al manpular las masas nadecuadamente se

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un expermento, un número real.

Más detalles

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS.

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS. 4. REPRESETACIOES GRÁFICAS PARA DATOS CATEGÓRICOS. Cuando se manejan fenómenos categórcos, se pueden agrupar las observacones en tablas de resumen, para después representarlas en forma gráfca como dagramas

Más detalles

DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO

DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO Clascacón: Emtdo para Observacones de los Coordnados Versón: 1.0 DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO Autor Dreccón de Operacón Fecha Creacón 06-04-2010 Últma Impresón 06-04-2010 Correlatvo

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

Regresión Binomial Negativa

Regresión Binomial Negativa Regresón Bnomal Negatva Resumen El procedmento Regresón Bnomal Negatva está dseñado para ajustar un modelo de regresón en el cual la varable dependente Y consste de conteos. El modelo de regresón ajustado

Más detalles

1.- Objetivo Alcance Metodología...3

1.- Objetivo Alcance Metodología...3 PROCEDIMIENTO DO PARA EL CÁLCULO DEL FACTOR DE DESEMPEÑO DEL CONTROL DE FRECUENCIA (FECF) EN EL SIC DIRECCIÓN DE OPERACIÓN ÍNDICE 1.- Objetvo...3 2.- Alcance...3 3.- Metodología...3 3.1.- Cálculo de la

Más detalles

Modelos unifactoriales de efectos aleatorizados

Modelos unifactoriales de efectos aleatorizados Capítulo 4 Modelos unfactorales de efectos aleatorzados En el modelo de efectos aleatoros, los nveles del factor son una muestra aleatora de una poblacón de nveles. Este modelo surge ante la necesdad de

Más detalles

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA.

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Programacón en Pascal 5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Exsten numerosas stuacones que pueden representarse medante relacones de recurrenca; entre ellas menconamos las secuencas y las

Más detalles

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla.

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla. EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. Consdere la sguente tabla, donde 0 : 0 y y0 y Deducr la fórmula para el polnomo de Lagrange de grado a lo más uno que Interpola la tabla.. Consdere la sguente

Más detalles

Riesgos Proporcionales de Cox

Riesgos Proporcionales de Cox Resgos Proporconales de Cox Resumen El procedmento Resgos Proporconales de Cox esta dseñado para ajustar un modelo estadístco sem-parámetrco a los tempos de falla de una o mas varables predctoras. Los

Más detalles

Mª Dolores del Campo Maldonado. Tel: :

Mª Dolores del Campo Maldonado. Tel: : Mª Dolores del Campo Maldonado Tel: : 918 074 714 e-mal: ddelcampo@cem.mtyc.es Documentacón de referenca nternaconalmente aceptada ISO/IEC GUIDE 98-3:008 Uncertanty of measurement Part 3: Gude to the n

Más detalles

MEDIDAS DESCRIPTIVAS

MEDIDAS DESCRIPTIVAS Tema 2: MEDIDAS DESCRIPTIVAS DE LOS DATOS 1. MEDIDAS DE CETRALIZACIÓ: Meda Medana Moda Cuantles Otras 2. MEDIDAS DE DISPERSIÓ: Desvacón típca Varanza Rango Otras 3. MEDIDAS DE FORMA: Asmetría Apuntamento

Más detalles

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas

Más detalles

Tema 1 Descripción de datos: Estadística descriptiva unidimensional Estadística descriptiva

Tema 1 Descripción de datos: Estadística descriptiva unidimensional Estadística descriptiva Descrpcón de datos: Estadístca descrptva undmensonal Estadístca descrptva Objetvos: Ordenar, clasfcar, resumr grandes conjuntos de datos de modo que puedan ser fáclmente nterpretables Defncones báscas:

Más detalles