Estadística Inferencial. Resúmen
|
|
- Patricia Benítez Gómez
- hace 4 años
- Vistas:
Transcripción
1 Ofimega - Estadística inferencial - 1 Estadística Inferencial. Resúmen Métodos y técnicas que permiten inducir el comportamiento de una población. Muestreo o selección de la muestra: 1. Aleatorio simple: se numera la muestra y se elige al azar. 2. Aleatorio sistemático: se elige uno al azar y el resto por intervalos. 3. Aleatorio estratificado: Se divide en estratos o clases y se elige uno de cada clase. Teorema central del límite: Para medias de muestras grandes. Probabilidad de que la media de una muestra se encuentre en un intervalo. Ejemplo: μ = 500 g y σ = 35 g en cajas de 100 unidades. Calcular la probabilidad de que la media de los pesos de las bolsas de un paquete sea menor que 495 g Estimación de parámetros Nivel de confianza: Probabilidad de que se encuentre en un intervalo de confianza. Para un 95% 1 - =0,05 Nivel de significación: se designa mediante. Intervalo de confianza: Intervalo en el que sabemos que está un parámetro, con un nivel de confianza Para un nivel de confianza de 1- α, x de media, tamaño n y desviación σ. Error de estimación admisible: radio del intervalo de confianza Error máximo de estimación: Intervalo de confianza para una proporción: q = 1-p Hipótesis estadísticas Test estadístico para extraer conclusiones que permitan aceptar o rechazar una hipótesis previamente emitida. Hipótesis nula H 0. Hipótesis emitida que queremos probar. Hipótesis alternativa H 1: hipótesis contraria a la nula Contraste de hipótesis. A partir de un nivel de confianza = 1 - α (α nivel de significación de 0,05 ó 0,01) Proceso: 1º Enunciar la hipótesis nula H 0 y la alternativa H 1. 2º Hallar z α/2 bilateral y zona de aceptación del parámetro muestral (x o p') Si el valor del parámetro muestral está dentro de la zona de la aceptación, se acepta la hipótesis con un nivel de significación α. Si no, se rechaza. Región de aceptación para un intervalo de probabilidad x o p': Contraste bilateral: Contraste unilateral: Comparación de medias: t-student: Pruebas de muestras cuantitativas: Xi-Cuadrado: Pruebas de datos cualitativos. T-Student: Similar a la normal. Se desconoce la. Con n-1 grados de libertad:
2 Estadística Inferencial. La estadística inferencial nos permite estimar características desconocidas como la media de una población o la proporción de la población a partir de muestras. Existen dos tipos de estimaciones: Una estimación puntual: es el valor de un solo estadístico de muestra. Una estimación del intervalo de confianza: Rango de números, llamado intervalo, construido alrededor de la estimación puntual. El intervalo de confianza se construye de manera que la probabilidad del parámetro de la población se localice en algún lugar dentro del intervalo conocido. Ejemplo: Suponga que quiere estimar la media de todos los alumnos en su universidad. Sin embargo, la media de la muestra puede variar de una muestra a otra porque depende de los elementos seleccionados en la muestra. Tomando en cuenta la variabilidad de muestra a muestra, se aprenderá a desarrollar la estimación del intervalo para la media poblacional. Estimación del intervalo de confianza para la media Se emplea la siguiente fórmula: Donde: Z = valor crítico de la distribución normal estandarizada Se llama valor crítico al valor de Z necesario para construir un intervalo de confianza para la distribución. El 95% de confianza corresponde a un valor ( de 0,05. El valor crítico Z correspondiente al área acumulativa de 0,975 es 1,96 porque hay 0,025 en la cola superior de la distribución y el área acumulativa menor a Z = 1,96 es 0,975. Un nivel de confianza del 95% lleva a un valor Z de 1,96. El valor de Z es aproximadamente 2,58 porque el área de la cola alta es 0,005 y el área acumulativa menor a Z = 2,58 es 0,995. Ejemplo ilustrativo Solución:
3 Ofimega - Estadística inferencial - 3 Leyendo en la tabla de la distribución normal tenemos que para un área de 0,025 se obtiene Z = -1,96. Por simetría se encuentra el otro valor Z = 1,96 Remplazando valores y realizando lo cálculos se obtiene: Los cálculos en Excel se muestran en la siguiente figura: Interpretación: Existe un 95% de confianza de que la media poblacional se encuentre entre 23,02 y 24,98 Estimación de intervalo de confianza para la media Antes de seguir continuando es necesario estudiar la distribución t de Student, especialista en Estadística de la Guinness Breweries en Irlanda llamado William S. Gosset deseaba hacer inferencias acerca de la media cuando la fuera desconocida. Publicado bajo el seudónimo de "Student".
4 Si la variable aleatoria X se distribuye normalmente, entonces el siguiente estadístico tiene una distribución t con n - 1 grados de libertad. Esta expresión tiene la misma forma que el estadístico Z en la ecuación para la distribución muestral de la media con la excepción de que S se usa para estimar la desconocida. Entre las principales propiedades de la distribución t se tiene: En apariencia, la distribución t es muy similar a la distribución normal estandarizada. Ambas distribuciones tienen forma de campana. Sin embargo, la distribución t tiene mayor área en los extremos y menor en el centro, a diferencia de la distribución normal. Los grados de libertad de esta distribución se calculan con la siguiente fórmula: Donde n = tamaño de la muestra Ejemplo: Imagínese una clase con 40 sillas vacías, cada uno elige un asiento de los que están vacíos. Naturalmente el primer alumno podrá elegir de entre 40 sillas, el segundo de entre 39, y así el número irá disminuyendo hasta que llegue el último alumno. En este punto no hay otra elección (grado de libertad) y aquel último estudiante simplemente se sentará en la silla que queda. De este modo, los 40 alumnos tienen 39 o n-1 grados de libertad. Para leer en la tabla de la distribución t se procede de la siguiente manera:
5 Ofimega - Estadística inferencial - 5 Usted encontrará los valores críticos de t para los grados de libertad adecuados en la tabla para la distribución t. Las columnas de la tabla representan el área de la cola superior de la distribución t. Cada fila representa el valor t determinado para cada grado de libertad específico. Por ejemplo, con 10 grados de libertad, si se quiere un nivel de confianza del 90%, se encuentra el valor t apropiado como se muestra en la tabla. El nivel de confianza del 90% significa que el 5% de los valores (un área de 0,05) se encuentran en cada extremo de la distribución. Buscando en la columna para un área de la cola superior y en la fila correspondiente a 10 grados de libertad, se obtiene un valor crítico para t de Puesto que t es una distribución simétrica con una media 0, si el valor de la cola superior es , el valor para el área de la cola inferior (0,05 inferior) sería Un valor t de significa que la probabilidad de que t sea menor a , es 0,05, o 5% (vea la figura). Ejemplos ilustrativos: Solución: Con lectura en la tabla En la tabla con 12 grados de libertad y 0,025 de área se obtiene un valor de t =2,1788, y por simetría es igual también a t = -2,1788 Los cálculos en Excel y el gráfico se muestran en las siguientes figuras:
6 2) Un fabricante de papel para computadora tiene un proceso de producción que opera continuamente a lo largo del turno. Se espera que el papel tenga una media de longitud de 11 pulgadas. De 500 hojas se selecciona una muestra de 29 hojas con una media de longitud del papel de 10,998 pulgadas y una desviación estándar de 0,02 pulgadas. Calcular la estimación del intervalo de confianza del 99% Solución: Datos del problema: Como en los datos aparece el tamaño de la población, se debe verificar si el tamaño de la nuestra es mayor que el 5% para emplear la fórmula con el factor finito de corrección. Se remplaza valores en la siguiente fórmula: Por lo tanto se debe utilizar la fórmula con el factor finito de corrección. Calculando la proporción de la cola superior e inferior de la distribución se obtiene: Los cálculos en Excel y el gráfico se muestran en las siguientes figuras: Interpretación: Existe un 99% de confianza de que la media poblacional se encuentra entre 10,998 y 11,008
7 Ofimega - Estadística inferencial - 7 Estimación del intervalo de confianza para una proporción Sirve para calcular la estimación de la proporción de elementos en una población que tiene ciertas características de interés. Ejemplo ilustrativo En un almacén se está haciendo una auditoria para las facturas defectuosas. De 500 facturas de venta se escoge una muestra de 30, de las cuales 5 contienen errores. Construir una estimación del intervalo de confianza del 95%. Solución: Los datos del problema son: Como en los datos aparece el tamaño de la población, se debe verificar si el tamaño de la nuestra es mayor que el 5% para emplear la fórmula con el factor finito de corrección. Se remplaza valores en la siguiente fórmula:
8 Con lectura en la tabla de la distribución normal para un área de 0,025 se obtiene Z = -1,96, y por simetría Z =1,96 Calculando la proporción de la muestra se obtiene: Los cálculos en Excel y gráficos se muestran en la siguiente figura:
9 Ofimega - Estadística inferencial - 9 INTERVALO DE CONFIANZA PARA ; CON DESCONOCIDA Si y s son la media y la desviación estándar de una muestra aleatoria de una población normal con varianza, desconocida, un intervalo de confianza de ( )100% para es: donde /2 es el valor t con = n-1 grados de libertad, que deja un área de /2 a la derecha. Se hace una distinción entre los casos de conocida y desconocida al calcular las estimaciones del intervalo de confianza. Se debe enfatizar que para el primer caso se utiliza el teorema del límite central, mientras que para desconocida se hace uso de la distribución muestral de la variable aleatoria t. Sin embargo, el uso de la distribución t se basa en la premisa de que el muestreo se realiza de una distribución normal. En tanto que la distribución tenga forma aproximada de campana, los intervalos de confianza se pueden calcular cuando la varianza se desconoce mediante el uso de la distribución t y se puede esperar buenos resultados. Con mucha frecuencia los estadísticos recomiendan que aun cuando la normalidad no se pueda suponer, con desconocida y n 30, s puede reemplazar a y se puede utilizar el intervalo de confianza: Por lo general éste se denomina como un intervalo de confianza de muestra grande. La justificación yace sólo en la presunción de que con una muestra grande como 30, s estará muy cerca de la real y de esta manera el teorema del límite central sigue valiendo. Se debe hacer énfasis en que esto es solo una aproximación y que la calidad de este enfoque mejora a medida que el tamaño de la muestra crece más. Ejemplo: El contenido de siete contenedores similares de ácido sulfúrico son 9.8, 10.2, 10.4, 9.8, 10.0, 10.2, y 9.6 litros. Encuentre un intervalo de confianza del 95% para la media de todos los contenedores si se supone una distribución aproximadamente normal. Solución: La media muestral y la desviación estándar para los datos dados son: 10 y s= En la tabla se encuentra que t 0.025=2.447 con 6 grados de libertad, de aquí, el intervalo de confianza de 95% para es: Con un nivel de confianza del 95% se sabe que el promedio del contenido de los contenedores está entre 9.47 y litros.
Imprimir INSTITUTO TECNOLOGICO DE CHIHUAHUA << Contenido >> UNIDAD III TEORIA DE PEQUEÑAS MUESTRAS O TEORIA EXACTA DEL MUESTREO
Imprimir INSTITUTO TECNOLOGICO DE CHIHUAHUA > UNIDAD III TEORIA DE PEQUEÑAS MUESTRAS O TEORIA EXACTA DEL MUESTREO En las unidades anteriores se manejó el uso de la distribución z, la cual
CONTRASTE DE HIPÓTESIS TEMA 4.1 CONTRASTES BILATERALES
CONTRASTE DE HIPÓTESIS TEMA 4.1 CONTRASTES BILATERALES INTRODUCCIÓN Un fabricante de pilas afirma que la duración media de sus pilas, funcionando ininterrumpidamente, es de 53 horas como mínimo y su desviación
INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica
INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables
Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.
Teorema Central del Límite (1)
Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico
Tema 8: Contraste de hipótesis
Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste
1 CÁLCULO DE PROBABILIDADES
1 CÁLCULO DE PROBABILIDADES 1.1 EXPERIENCIAS ALEATORIAS. SUCESOS 1.1.1 Definiciones Experiencia aleatoria: experiencia o experimento cuyo resultado depende del azar. Suceso aleatorio: acontecimiento que
LIMITES O INTERVALOS DE CONFIANZA LUIS FRANCISCO HERNANDEZ CANDELARIA ATENCIA ROMERO
LIMITES O INTERVALOS DE CONFIANZA LUIS FRANCISCO HERNANDEZ CANDELARIA ATENCIA ROMERO TRABAJO DE ESTADISTICA PROBABILISTICA PRESENTADO A LA PROFESORA MARIA ESTELA SEVERICHE SINCELEJO CORPORACIÓN UNIVERSITARIA
Técnicas de Muestreo Métodos
Muestreo aleatorio: Técnicas de Muestreo Métodos a) unidad muestral elemental: a.1) muestreo aleatorio simple a.2) muestreo (seudo)aleatorio sistemático a.3) muestreo aleatorio estratificado b) unidad
Ejemplos Resueltos Tema 4
Ejemplos Resueltos Tema 4 2012 1. Contraste de Hipótesis para la Media µ (con σ conocida) Dada una muestra de tamaño n y conocida la desviación típica de la población σ, se desea contrastar la hipótesis
Solución Examen Parcial IV Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005
Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta o llene los espacios en blanco (0,5 puntos c/u): 1. (V F) La prueba
viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos
Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................
Objetivo: Comprender cómo se calculan los intervalos de confianza y determinar el tamaño ideal de una muetra
PROBABILIDAD Y ESTADÍSTICA Sesión 8 (Hasta tema 7.5) 7. PRUEBA DE HIPÓTESIS 7.1 Errores tipo I y tipo II 7.2 Potencia de la prueba 7.3 Formulación de hipótesis estadística 7.4 Prueba de hipótesis para
ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA
www.jmontenegro.wordpress.com UNI ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA PROF. JOHNNY MONTENEGRO MOLINA Objetivos Desarrollar el concepto de estimación de parámetros Explicar qué es una
Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.
(1 punto) (1.5 puntos)
Ejercicios de inferencia estadística. 1. Sea la población {1,2,3,4}. a) Construya todas las muestras posibles de tamaño 2, mediante muestreo aleatorio simple. b) Calcule la varianza de las medias muestrales.
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Mag. María del Carmen Romero 2014 romero@econ.unicen.edu.ar Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo
ESTADÍSTICA II UNIDAD I: ESTIMACIÓN DE PARÁMETROS 3RA PARTE (CLASE 20/09)
ESTADÍSTICA II UNIDAD I: ESTIMACIÓN DE PARÁMETROS 3RA PARTE (CLASE 20/09) Estimación de una media de población: σ conocida Requisitos 1. La muestra es aleatoria simple. (Todas las muestras del mismo tamaño
INFERENCIA ESTADISTICA
1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,
Intervalos de Confianza
Intervalos de Confianza Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Intervalo de Confianza Se puede hacer una estimación puntual de
Tema 7. Contrastes de Hipótesis
7.1. Conceptos básicos Tema 7. Contrastes de Hipótesis Uno de los problemas comunes en inferencia consiste en contrastar una hipótesis estadística. Ejemplo: El fabricante de un determinado tipo de piezas
Estimación de Parámetros.
Estimación de Parámetros. Un estimador es un valor que puede calcularse a partir de los datos muestrales y que proporciona información sobre el valor del parámetro. Por ejemplo la media muestral es un
10.3. Sec. Prueba de hipótesis para la media poblacional. Copyright 2013, 2010 and 2007 Pearson Education, Inc.
Sec. 10.3 Prueba de hipótesis para la media poblacional (μ) Para probar una hipótesis con respecto a la media poblacional, cuando la desviación estándar poblaciónal es desconocida, usamos una distribución-t
UNIVERSIDAD DE ATACAMA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA N 3 Profesor: Hugo S. Salinas. Segundo Semestre 200. Se investiga el diámetro
Capítulo. Distribución de probabilidad normal. Pearson Prentice Hall. All rights reserved
Capítulo 37 Distribución de probabilidad normal 2010 Pearson Prentice Hall. All rights 2010 reserved Pearson Prentice Hall. All rights reserved La distribución de probabilidad uniforme Hasta ahora hemos
MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.
MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En
Pruebas de Hipótesis
Pruebas de Hipótesis Tipos de errores Se pueden cometer dos tipos de errores: Decisión Población Ho es erdadera Ho es falsa No rechazar Ho Decisión correcta. Error tipo II Rechazar Ho Error tipo I Decisión
Notas de clase Estadística R. Urbán R.
Inferencia estadística Sabemos que una población puede ser caracterizada por los valores de algunos parámetros poblacionales, por ello es lógico que en muchos problemas estadísticos se centre la atención
Capítulo 8 Métodos de Muestreo y el Teorema de Límite Central
Capítulo 8 Métodos de Muestreo y el Teorema de Límite Central Objetivos: Al terminar este capítulo podrá: 1. Explicar por qué una muestra es la única forma posible de tener conocimientos acerca de una
UNIVERSIDAD DE MANAGUA Al más alto nivel
UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Encuentro #9 Tema: Estimación puntual y por Intervalo de confianza Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /2016 Objetivos:
EJERCICIOS DE SELECTIVIDAD
EJERCICIOS DE SELECTIVIDAD INFERENCIA 1998 JUNIO OPCIÓN A Un fabricante de electrodomésticos sabe que la vida media de éstos sigue una distribución normal con media μ = 100 meses y desviación típica σ
TEMA 8: INFERENCIA ESTADÍSTICA
TEMA 8: INFERENCIA ESTADÍSTICA 1. Conceptos básicos 2. Distribución en el muestreo: Intervalo característico, Teorema Central del Límite. 3. Estimación de parámetros: Intervalos de confianza 4. Contrastes
Estadísticas y distribuciones de muestreo
Estadísticas y distribuciones de muestreo D I A N A D E L P I L A R C O B O S D E L A N G E L 7/11/011 Estadísticas Una estadística es cualquier función de las observaciones en una muestra aleatoria que
Esta proposición recibe el nombre de hipótesis
Pruebas de hipótesis tesis. Refs: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua, Apuntes de Estadística, Dr. Pedro Juan Rodríguez Esquerdo, Departamento de Matemáticas,
UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8
UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO
Teoría de muestras 2º curso de Bachillerato Ciencias Sociales
TEORÍA DE MUESTRAS Índice: 1. Introducción----------------------------------------------------------------------------------------- 2 2. Muestras y población-------------------------------------------------------------------------------
SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004
Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/004 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta (0,5 puntos c/u): 1. (V F) Los contrastes de hipótesis de dos muestras
INFERENCIA ESTADÍSTICA
INFERENCIA ESTADÍSTICA 1. DEFINICIÓN DE INFERENCIA ESTADÍSTICA Llamamos Inferencia Estadística al proceso de sacar conclusiones generales para toda una población a partir del estudio de una muestra, así
Introducción a la Inferencia Estadística
Introducción a la Inferencia Estadística Prof. Jose Jacobo Zubcoff Universidad de Alicante 2008 1 Introducción En este tema explicaremos los contrastes para la media de una población normal. e estudiarán
INFERENCIA ESTADISTICA
INFERENCIA ESTADISTICA ESTIMACION 2 maneras de estimar: Estimaciones puntuales x s 2 Estimaciones por intervalo 2 ESTIMACION Estimaciones por intervalo Limites de Confianza LCI
DISTRIBUCION JI-CUADRADA (X 2 )
DISTRIBUCION JI-CUADRADA (X 2 ) En realidad la distribución ji-cuadrada es la distribución muestral de s 2. O sea que si se extraen todas las muestras posibles de una población normal y a cada muestra
Prueba de Hipotesis de Grandes Muestras INFERENCIA ESTADÍSTICA JTP. JUAN PABLO QUIROGA
Prueba de Hipotesis de Grandes Muestras INFERENCIA ESTADÍSTICA JTP. JUAN PABLO QUIROGA Estadístico de Prueba de Muestra Grande para μ 1) Hipotesis Nula H 0 : μ = μ 0 2) Hipótesis Alternativa : Prueba de
Muestreo y Distribuciones en el Muestreo
Muestreo y Distribuciones en el Muestreo Departamento de Estadística-FACES-ULA 03 de Abril de 2013 Introducción al Muestreo En algunas ocaciones es posible y práctico examinar a cada individuo en el Universo
Juan Carlos Colonia INFERENCIA ESTADÍSTICA
Juan Carlos Colonia INFERENCIA ESTADÍSTICA PARÁMETROS Y ESTADÍSTICAS Es fundamental entender la diferencia entre parámetros y estadísticos. Los parámetros se refieren a la distribución de la población
= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =
El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60kg y desviación típica 8kg. Se toman 100 muestras aleatorias simples de 64
Cuál es el campo de estudio de la prueba de hipótesis?
ESTIMACIÓN Establecer generalizaciones acerca de una población a partir de una muestra es el campo de estudio de la inferencia estadística. La inferencia estadística se divide en estimación y prueba de
Estadística Inferencial. Sesión 2. Distribuciones muestrales
Estadística Inferencial. Sesión 2. Distribuciones muestrales Contextualización. Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico muestral
DISTRIBUCION "F" FISHER
Imprimir INSTITUTO TECNOLOGICO DE CHIHUAHUA > DISTRIBUCION "F" FISHER La necesidad de disponer de métodos estadísticos para comparar las varianzas de dos poblaciones es evidente a partir
Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B
Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Abril 2010 Contenidos...............................................................
Tema 5: Contraste de hipótesis
Tema 5: Contraste de hipótesis 1 (a partir del material de A. Jach (http://www.est.uc3m.es/ajach/) y A. Alonso (http://www.est.uc3m.es/amalonso/)) Conceptos fundamentales: hipótesis nula y alternativa,
PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07
PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 TEMAS A ESTUDIAR En esta guía nos dedicaremos a estudiar el tema de Estimación por intervalo y comenzaremos a estudiar las pruebas de hipótesis paramétricas.
Contrastes de hipótesis paramétricos
Estadística II Universidad de Salamanca Curso 2011/2012 Outline Introducción 1 Introducción 2 Contraste de Neyman-Pearson Sea X f X (x, θ). Desonocemos θ y queremos saber que valor toma este parámetro,
ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua
ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:
Estadística Inferencial. Sesión 3. Estimación de parámetros y por intervalos
Estadística Inferencial. Sesión 3. Estimación de parámetros y por intervalos Contextualización. Se denomina estadístico a un estimador insesgado de un parámetro poblacional si la media o la esperanza del
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo
Tema 5. Contraste de hipótesis (I)
Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar
BLOQUE 3 TEMA 11 ESTIMACIÓN DE PARÁMETROS. ERRORES DE ESTIMACIÓN
BLOQUE 3 TEMA 11 ESTIMACIÓN DE PARÁMETROS. ERRORES DE ESTIMACIÓN Aproximación intutitiva a la inferencia estadística La Estadística es la ciencia que se ocupa de la ordenación y análisis de datos procedentes
Estadísticas Pueden ser
Principios Básicos Para iniciar en el curso de Diseño de experimentos, es necesario tener algunos conceptos claros en la parte de probabilidad y estadística. A continuación se presentan los conceptos más
Muestreo e intervalos de confianza
Muestreo e intervalos de confianza Intervalo de confianza para la media (varianza desconocida) Intervalo de confinza para la varianza Grados en Biología y Biología sanitaria M. Marvá. Departamento de Física
Tema 7. Contrastes no paramétricos en una población
Tema 7. Contrastes no paramétricos en una población Resumen del tema 7.1. Introducción a la Estadística Inferencial. Estimación de parámetros Como ya sabemos, la Estadística estudia los métodos científicos
Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste
1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y
UNIVERSIDAD ALONSO DE OJEDA ESTADISTICA II
UNIVERSIDAD ALONSO DE OJEDA ESTADISTICA II UNIDAD I MUESTREO Y ESTIMACION DE PARAMETROS (GUIA DE ESTUDIO) DR. DENY GONZALEZ MAYO 2016 La Estadística es un conjunto de métodos para la toma de decisiones
Teorema del límite central
TEMA 6 DISTRIBUCIONES MUESTRALES Teorema del límite central Si se seleccionan muestras aleatorias de n observaciones de una población con media y desviación estándar, entonces, cuando n es grande, la distribución
INFERENCIA ESTADÍSTICA MUESTRAL TEMA 3: PRUEBAS DE HIPÓTESIS
UNIDAD 2 INFERENCIA ESTADÍSTICA MUESTRAL TEMA 3: PRUEBAS DE HIPÓTESIS Probar una afirmación acerca del valor de un parámetro poblacional 1 Probar una afirmación acerca del valor de un parámetro poblacional
para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua
Pruebas de hipótesis para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua En muchas situaciones cuando queremos sacar conclusiones sobre una muestra,
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:
Estimación de Parámetros. Jhon Jairo Padilla A., PhD.
Estimación de Parámetros Jhon Jairo Padilla A., PhD. Inferencia Estadística La inferencia estadística puede dividirse en dos áreas principales: Estimación de Parámetros Prueba de Hipótesis Estimación de
Estimación de Parámetros. Jhon Jairo Padilla A., PhD.
Estimación de Parámetros Jhon Jairo Padilla A., PhD. Inferencia Estadística La inferencia estadística puede dividirse en dos áreas principales: Estimación de Parámetros Prueba de Hipótesis Estimación de
6. Inferencia con muestras grandes. Informática. Universidad Carlos III de Madrid
6. Inferencia con muestras grandes 1 Tema 6: Inferencia con muestras grandes 1. Intervalos de confianza para μ con muestras grandes 2. Determinación del tamaño muestral 3. Introducción al contraste de
478 Índice alfabético
Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión
Tema 7 Intervalos de confianza Hugo S. Salinas
Intervalos de confianza Hugo S. Salinas 1 Introducción Hemos definido la inferencia estadística como un proceso que usa información proveniente de la muestra para generalizar y tomar decisiones acerca
Técnicas de Inferencia Estadística II. Tema 2. Contrastes de hipótesis en poblaciones normales
Técnicas de Inferencia Estadística II Tema 2. Contrastes de hipótesis en poblaciones normales M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2010/11 Tema 2. Contrastes
PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL
1 PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL Prof.: MSc. Julio R. Vargas A. I. INTRODUCCION El presente trabao está orientado a aplicar los conocimientos de estadística inferencial a un caso práctico
Unidad 15 Estadística inferencial. Estimación por intervalos. Pruebas de hipótesis
Unidad 15 Estadística inferencial. Estimación por intervalos. Pruebas de hipótesis PÁGINA 353 SOLUCIONES 1. El peso de azúcar por confitura se distribuye según la normal N (465;30). Veamos el porcentaje
Ms. C. Marco Vinicio Rodríguez
Ms. C. Marco Vinicio Rodríguez mvrodriguezl@yahoo.com http://mvrurural.wordpress.com/ Uno de los objetivos de la estadística es saber acerca del comportamiento de parámetros poblacionales tales como:
Conceptos Básicos de Inferencia
Conceptos Básicos de Inferencia Intervalos de confianza Álvaro José Flórez 1 Escuela de Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos
Contraste de Hipótesis
Contraste de Hipótesis Introducción Ejemplo El peso de plantines de un arbusto forrajero, almacenado a temperatura y humedad relativa ambientes, obtenido a los 20 días desde la germinación es en promedio
ESTADÍSTICA Y PROBABILIDAD
(distribución normal) 1 1.- Calcular las probabilidades de los siguientes intervalos, empleando para ello las tablas de la distribución de probabilidad normal estándar N(0, 1): (1) P(z 2 14) (2) P(z 0
ESTADÍSTICA INFERENCIAL
ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 10 Nombre: Pruebas de hipótesis referentes al valor de la media de la población Contextualización En estadística existen dos métodos para la
Especialización en Métodos Estadísticos (EME) CURSO PROPEDÉUTICO ESTADÍSTICA BÁSICA
Especialización en Métodos Estadísticos (EME) CURSO PROPEDÉUTICO ESTADÍSTICA BÁSICA Enrique Rosales Ronzón, Patricia Díaz Gaspar, mayo 2015 Estadística??? Ciencia, Técnica, Arte Reunir, Organizar, presentar,
UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL
VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL PROGRAMA: ESTADISTICA II CÓDIGO ASIGNATURA: 1215-22 PRE-REQUISITO: 1215-311 SEMESTRE: CUARTO UNIDADES DE
Ejercicios T.5 CONTRASTES PARAMÉTRICOS
Ejercicios T.5 CONTRASTES PARAMÉTRICOS 1. Un fabricante de perfume asegura que los frascos que produce contienen por término medio 100 ml. distribuyéndose el contenido de dichos frascos según una distribución
para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua
Pruebas de hipótesis para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua Las secciones anteriores han mostrado cómo puede estimarse un parámetro de
ESTIMACION INFERENCIA ESTADISTICA
P M INFERENCIA ESTADISTICA Desde nuestro punto de vista, el objetivo es expresar, en términos probabilísticos, la incertidumbre de una información relativa a la población obtenida mediante la información
Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis
Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José
Mantenimiento Eléctrico
Universidad Tecnológica de Pereira - 1/27 Mantenimiento Eléctrico Intervalos estadísticos, pruebas de hipótesis Mauricio Holguín Londoño Programa de Ingeniería Eléctrica 2016 Universidad Tecnológica de
Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11
Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11 Distribución de Probabilidad Recordamos conceptos: Variable aleatoria: es aquella que se asocia un número o un dato probabilístico, como
Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio
Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población),
de Muestreo de Medias, Inferencia Estadística (Naturaleza de las Pruebas ) (Cap. 7 y Sec. 8.3)
Variabilidad Muestral, Distribuciones de Muestreo de Medias, Inferencia Estadística (Naturaleza de las Pruebas ) (Cap. 7 y Sec. 8.3) Distribución muestral de un estadístico Es la distribución de valores
PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2
PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 UNIDAD II: DISTRIBUCIONES MUESTRALES OBJ. 2.1 2.2 2.3 2.4 1.- Un plan de muestreo para aceptar un lote, para
Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico
Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más
MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.
UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía
Anota aquí tus respuestas para esta sección Distribución Z
Tarea 2. Estadística Inferencial Cada sección vale 25%. Cada inciso tiene el mismo peso. Hacer la tarea en equipo de dos personas y entregar solo una copia por cada equipo. 1. Cálculo lo siguiente. Ten
Parte de las notas tomadas de: Prof. Edgar Acuña UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ
Estadística stica No Paramétrica Parte de las notas tomadas de: Prof. Edgar Acuña http://math.uprm math.uprm/edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ METODOS ESTADISTICOS
Maestría en Investigación de la Salud
Universidad de Cuenca Facultad de Ciencias Médicas Maestría en Investigación de la Salud Módulo V: Metodología de la investigación Universo y muestra Docente: S. Mayo de 2010 Universo y muestra Universo:
Tema 6: Introducción a la inferencia estadística
Tema 6: Introducción a la inferencia estadística Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 6: Introducción a la inferencia estadística
Inferencia estadística Selectividad CCSS Andalucía. MasMates.com Colecciones de ejercicios
1. [2014] [EXT-A] La concejalía de Educación de una determinada localidad afirma que el tiempo medio dedicado a la lectura por los jóvenes de entre 15 y 20 años de edad es, a lo sumo, de 8 horas semanales.
Verificación de una hipótesis sobre una media
Sesión 14 Verificación de una hipótesis sobre una media Verificación de una hipótesis sobre una media Procedimiento de verificación de una hipótesis si el parámetro de interés es una media poblacional.
Juan Carlos Colonia PRUEBA DE HIPÓTESIS
Juan Carlos Colonia PRUEBA DE HIPÓTESIS HIPÓTESIS ESTADÍSTICA Una hipótesis estadística es un supuesto acerca de la distribución de probabilidad de una o mas variables aleatorias o de los parámetros de