1. Propiedades de las funciones
|
|
|
- Sandra Páez Macías
- hace 8 años
- Vistas:
Transcripción
1 . Propiedades de las funciones Una función, f, es una correspondencia entre dos conjuntos numéricos, A y B, que asocia a cada elemento de A, dominio de la función, un único elemento de B. La función f entre A y B se simboliza como f: A " B. Si los conjuntos A y B están formados por números reales, dicha correspondencia se denomina función real de variable real. El conjunto de los valores de x que tienen imagen por una función, f(x), se denomina dominio de la función. El dominio se designa de la forma Dom f. Una función queda definida por la relación algebraica entre x e y, expresada como y f(x), donde y es la imagen de x. El conjunto de todas las imágenes, f(x), se llama recorrido de la función. Se dice que una función f(x) es continua en un punto x a si alrededor de a todas sus imágenes están muy próximas a f(a). La monotonía de una función es la propiedad que estudia el crecimiento y decrecimiento de dicha función. Una función y f(x) se llama par si es simétrica con respecto al eje, es decir, si cumple que f(x) f(x) para todo valor de x. Una función y f(x) se llama impar si es simétrica con respecto al origen de coordenadas, esto es, si cumple que f(x) f(x) para todo valor de x. Una función es creciente en un intervalo si para cualquier par de valores x y x pertenecientes al intervalo donde x x se cumple que f(x ) f(x ). Si se cumple que f(x ) f(x ), la función es decreciente. Los valores en los cuales la función cambia su monotonía se denominan extremos relativos. Si a la izquierda es creciente y a la derecha decreciente, se denomina máximo relativo, y si a la izquierda es decreciente y a la derecha es creciente, se denomina mínimo relativo. Señala las correspondencias que sean funciones y determina sus dominios y las ecuaciones que las definen: a) x b) c) y x y x y Halla el dominio de las siguientes funciones reales de variable real: x a) y x b) y x c) y d) y e) y x x x MATERIAL FOTOCOPIABLE / Oxford University Press España, S. A. Matemáticas.º ESO
2 . Propiedades de las funciones Solucionario Son funciones a) y c). a) Dom f {7, 6,,,,,,,,,,, 6, 7}; Rec f {7, 6,,,,,,,,,,, 6, 7}; y x c) Dom f {,,,,, 6, 7, 8, 9, 0, }; Rec f {,,,,, 6, 7, 8, 9, 0, }; y x 0 a) El dominio son todos los números reales. b) El dominio son los números reales, x, tales que x 0, es decir, x. c) El dominio son los números reales, x, tales que x excluido el 0, que anula el denominador. d) El dominio son los números reales, x, tales que x 0, es decir, x. e) El dominio son los números reales, x, tales que x 0, es decir, x. Oxford University Press España, S. A. Matemáticas.º ESO
3 . Propiedades de las funciones II Estudia los intervalos de crecimiento y decrecimiento de la siguiente función, así como los máximos, mínimos, simetrías y continuidad: 6 O 6 Dibuja la gráfica de una función que cumpla las siguientes propiedades: Su dominio es el intervalo [, 8]. Es constante en el intervalo (, ). Es creciente en los intervalos (, ) y (, ). Es decreciente en los intervalos (, ) y (, 8). Es continua en su dominio. Calcula sus máximos y mínimos relativos. Completa la siguiente gráfica para construir dos funciones, una par y otra impar: O Estudia el dominio, el recorrido, la continuidad y la simetría de la función dada correspondiente a esta gráfica. 6 O MATERIAL FOTOCOPIABLE / Oxford University Press España, S. A. Matemáticas.º ESO
4 . Propiedades de las funciones II Solucionario Es creciente en los intervalos (, ) y (0, ) y decreciente en (, 0) y (, ). Tiene máximos relativos en los puntos (, ) y (, ), y mínimos relativos en (0, 0). Es par, es decir, es simétrica respecto del eje. Es continua en todo su dominio, que son los números reales. Respuesta abierta. La gráfica de una función que cumple esas condiciones es, por ejemplo: O Los máximos relativos son (, ) y (, ), y el mínimo relativo, (, ); sin embargo, las ordenadas de los máximos y mínimos relativos podrían ser otras. Función par Función impar O O Dom f. Rec f [, ). Continua excepto en x. No tiene simetría. Oxford University Press España, S. A. Matemáticas.º ESO
5 . Propiedades de las funciones III Una función es periódica si existe un número mayor que cero, T, tal que cada T unidades del eje horizontal coinciden las imágenes; es decir: f(x) f(x T) f(x T) Decimos que x tiende a (se escribe x " ) cuando la x puede tomar valores tan grandes como queramos. Análogamente, x puede tender a (x " ). f(x) tiene una asíntota horizontal en y p si f(x) " p cuando x ". Si f(x) " p cuando x ", decimos que f(x) posee una asíntota horizontal, y p, cuando x tiende a menos infinito. Una función f(x) tiene asíntota vertical en x a si f(x) tiende a infinito o menos infinito cuando x tiende por la izquierda o por la derecha a a. A partir de las siguientes gráficas de funciones determina si son periódicas y en caso afirmativo indica su periodo: a) b) 6 O 6 O A partir de estas gráficas de funciones determina si tienen asíntotas y extremos relativos. a) b) O 76 O Dibuja gráficas de funciones que cumplan: a) Continua en, con un mínimo en x b) Tiene una asíntota horizontal en y 0 y dos verticales en x y x. c) Continua en, con un máximo y un mínimo relativo. MATERIAL FOTOCOPIABLE / Oxford University Press España, S. A. Matemáticas.º ESO
6 . Propiedades de las funciones III Solucionario a) Periódica, de periodo. b) Periódica, de periodo. a) Sin asíntotas. Tiene un mínimo relativo en x puesto que en el punto (, ) cambia de decreciente a creciente y un máximo relativo en x 0, puesto que en el punto (0, ) pasa de creciente a decreciente siendo la función continua en. b) Tiene una asíntota horizontal, y puesto que x " & f(x) ". Tiene un máximo relativo en x 0 puesto que en el punto (0, ) pasa de creciente a decreciente siendo la función continua en Respuesta abierta. Estos son ejemplos de gráficas de funciones que cumplen las condiciones. a) 76 O b) 6 O c) 6 O Oxford University Press España, S. A. Matemáticas.º ESO
7 AMPLIACIÓN. Propiedades de las funciones IV A partir de la siguiente gráfica: O a) Determina su dominio. b) Halla los límites laterales en x. c) Halla los límites laterales en x. Qué te indican esos resultados? d) Estudia su continuidad. A partir de la siguiente gráfica: O a) Determina su dominio y su recorrido. b) Halla los límites laterales en x. c) Calcula los límites laterales en x 0. Qué te indican esos resultados? d) Halla los límites laterales en x. e) Estudia su continuidad. f) Tiene asíntotas? Halla el dominio y el recorrido de la función f(x) 9. x Escribe una función con cada una de las siguientes características: a) Dom f {}. b) Tiene una asíntota vertical en x. Dada la siguiente función definida a trozos: f(x) si x f(x) x si x f(x) si x a) Represéntala gráficamente. b) Determina su dominio y su recorrido. c) Estudia su continuidad. * MATERIAL FOTOCOPIABLE / Oxford University Press España, S. A. Matemáticas.º ESO
8 AMPLIACIÓN. Propiedades de las funciones IV Solucionario a) Dom f b) Por la izquierda: x " & f(x) ". Por la derecha: x " & f(x) ". c) Por la izquierda: x " & f(x) ". Por la derecha: x " & f(x) ". El límite es. Representa el valor esperado de la función en x, pero en vez de ser es. d) Continua en su dominio salvo en x y x. a) Dom f. Rec f { [, 0) (0, )}. b) Por la izquierda: x " & f(x) ". Por la derecha: x " & f(x) ". c) Por la izquierda: x " 0 & f(x) " 0. Por la derecha: x " 0 & f(x) " 0. El límite es 0. Representa el valor esperado de la función en x 0 pero en vez de ser 0 es. d) Por la izquierda: x " & f(x) ". Por la derecha: x " & f(x) ". e) Continua en su dominio salvo en x, x 0 y x. f) Asíntota horizontal: y 0. Asíntota vertical: x. (x ) (x ) Se factoriza el radicando:. (x ) (x ) (x ) (x ) x x (, ) (, 0) (0, ) (, ) Dom f [, 0) (0, ] Cuando x " 0 & f(x) ", además f() 0. Como la función solo toma valores positivos y es continua en su dominio, entonces Rec f [0, ). Respuesta abierta. Estas son unas de las muchas funciones que cumplen las condiciones: x x a) f(x) b) f(x) x x a) 6 6 O 6 6 b) Dom f {}, Rec f { (, ]}. c) Continua en su dominio salvo en x. Oxford University Press España, S. A. Matemáticas.º ESO
Una función es una correspondencia única entre dos conjuntos numéricos.
FUNCIONES Qué es una función? Una función es una correspondencia entre dos conjuntos de números de modo que a cada valor del conjunto inicial, llamado dominio, se le hace corresponder un valor del conjunto
Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones
Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a
9 Funciones. Las funciones no tienen una forma única de expresión, y sin embargo, de todas ellas podemos extraer propiedades. Unidad 9: Funciones
9 Funciones LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD Las funciones no tienen una forma única de expresión, y sin embargo, de todas ellas podemos extraer propiedades. G. W. Leibniz Busca en la web El
SOLUCIÓN. BLOQUE DE FUNCIONES.
SOLUCIÓN. BLOQUE DE FUNCIONES. Análisis de funciones 1. a) y c) son funciones, porque para cada valor de hay un único valor de y. b) no es una función, porque para cada valor de hay dos valores de y. 2.
EL BLOG DE MATE DE AIDA 4º ESO: apuntes de funciones pág. 1 FUNCIONES
EL BLOG DE MATE DE AIDA 4º ESO: apuntes de funciones pág. 1 FUNCIONES 1.- DEFINICIÓN DE FUNCIÓN Una función es una relación de dependencia entre dos variables de modo que a cada valor de la primera le
REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x
1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.
REPRESENTACIÓN GRÁFICA DE CURVAS - II
REPRESENTACIÓN GRÁFICA DE CURVAS - II 1.- Representa gráficamente la función a) Dominio: f(x) es el cociente del valor absoluto de una función polinómica de 2º grado entre la variable x. Ambas son continuas
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al
La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.
Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio
TEMA 8. FUNCIONES (I). GENERALIDADES
TEMA 8. FUNCIONES (I). GENERALIDADES Contenido 1. Definición y formas de definir una función 2 1.1. Definición de función 2 1.2. Formas de definir la función: 4 1.2.1. A partir de una representación gráfica
A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. ( (
A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. 1. Calcula el dominio de las siguientes funciones: ( ( ( ( ( ( 2. Calcula la imagen de las siguientes
RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I
RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1.- INTRODUCCIÓN Definición: Una función real de variable real es una aplicación entre dos subconjuntos de los números reales, de modo
1.- DOMINIO DE LA FUNCIÓN
En este resumen vamos a tratar los puntos que necesitamos para poder representar gráficamente una función. Empezamos viendo la información que podemos obtener de la expresión matemática de la función.
Si se pueden obtener las imágenes de x por simple sustitución.
TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,
GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES
UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos
FUNCIONES REALES DE VARIABLE REAL
Pag. 1 FUNCIONES REALES DE VARIABLE REAL 1.- Aplicaciones y Funciones. Definiciones. 2.- Tipos de funciones. 3.-Operaciones con funciones. 4.-Composición de funciones. 5.- Función identidad y funciones
CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS.
pág.1 CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que
Alonso Fernández Galián
Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de
REPRESENTACION GRÁFICA DE FUNCIONES
REPRESENTACION GRÁFICA DE FUNCIONES 1 REPRESENTACION GRÁFICA DE FUNCIONES UNIDADES Pag. 1. DEFINICIÓN DE DOMINIO UNA FUNCIÓN.3 2. CORTES CON LOS EJES...5 3. SIMETRÍA..7 4. PERIODICIDAD 9 5. FUNCIONES INVERSAS....10
El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.
Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 2º BACHILLERATO
LÍMITES: OPERACIONES CON INFINITOS LÍMITES: RESOLUCIÓN DE INDETERMINACIONES DEL TIPO 1 Estas indeterminaciones están relacionadas con el número e se calculan de la siguiente forma: 1 DOMINIO E IMAGEN DE
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,
Bloque 3. Funciones. 1. Análisis de funciones
Bloque 3. Funciones 1. Análisis de funciones 1. Concepto de función Una función es una relación entre dos magnitudes, de tal manera que a cada valor de la primera le corresponde un único valor de la segunda,
UNIDAD 12. ESTUDIO Y REPRESENTACIÓN DE FUNCIONES CARACTERÍSTICAS DE UNA FUNCIÓN I SOLUCIONES ACTIVIDADES COMPLEMENTARIAS C-09-01
UNIDAD 12. ESTUDIO Y REPRESENTACIÓN DE FUNCIONES CARACTERÍSTICAS DE UNA FUNCIÓN I C-09-01 1. a) Dom f = - { 3, 1}. Asíntotas: x = 3; x = 1; y = 0 ( 5, 0), ( 1, 0), (3, 0), (7, 0), (0, 3) c) Discontinuidad
TEMA 7. FUNCIONES. - Variables dependiente e independiente.
TEMA 7. FUNCIONES 7.1. Definiciones. - Función. - Variables dependiente e independiente. - Imagen y antiimagen. - Interpretación de gráficas. - Dominio y recorrido. 7.2. Propiedades de las funciones. -
1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas:
LIMITE DE FUNCIONES Tema: Introducción a límite 1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: a) Cuál es el valor de la función si x = 2? b) Cuál es el valor de la función
Una función es una relación o correspondencia entre dos magnitudes o variables x e y, de manera que a cada valor
RESUMEN TEORÍA FUNCIONES: 4º ESO Op. B DEFINICIONES: Una función es una relación o correspondencia entre dos magnitudes o variables x e y, de manera que a cada valor de x le corresponde un único valor
m = 0 constante m > 0 creciente m < 0 decreciente n es la ordenada en el origen (donde la función corta al eje Y, imagen de x=0)
1. FUNCIONES POLINÓMICAS. D(f) = R A. FUNCIONES LINEALES: n = 1 Su gráfica es una recta. D (f) = R. Im (f) = R m = 0 constante m es la pendiente (inclinación) m > 0 creciente y = mx + n m < 0 decreciente
TEMA 0: REPASO DE FUNCIONES
TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento
Funciones. 1. Indica, de forma razonada, si las siguientes gráficas corresponden a funciones. a) b) c)
Funciones 1. Indica, de forma razonada, si las siguientes gráficas corresponden a funciones.. Representa las funciones dadas a partir de las siguientes tablas. 3 1 0 4 4 1 0 1 5 6 3 0 1 3 y 7 1 14 y 6
= +1. A la hora de representar funciones tenemos que tener en cuenta los siguientes puntos.
Ejemplo 1 Dibujar la función: = +1 A la hora de representar funciones tenemos que tener en cuenta los siguientes puntos. Dominio Puntos de corte con los ejes Simetría Asíntotas Crecimiento decrecimiento/máximos
REPRESENTACIÓN DE FUNCIONES
8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
Matemáticas I. 1 o de Bachillerato - Suficiencia. 13 de junio de 2011
Matemáticas I. o de Bachillerato - Suficiencia. de junio de 20. Juan y Ana ven desde las puertas de sus casas una torre de televisión situada entre ellas bajo ángulos de 5 y 60 grados. La distancia entre
Ejemplos de formas de expresar una función
1.- CONCEPTO DE FUNCIÓN Definición de función Una función es una forma de hacerle corresponder a un número cualquiera x otro número y. Lo que vale la y depende de lo que vale la x. La y se llama variable
Una curva del plano correspondiente a la gráfica de una función si y sólo si ninguna recta vertical intercepta a la curva más de una vez
Función Una función f de un conjunto D a un conjunto E, es una regla de correspondencia que asigna a cada elemento x de D un elemento único y de E. Características de las funciones Dominio de una función:
TEMA 5. FUNCIONES (I). GENERALIDADES
TEMA 5. FUNCIONES (I). GENERALIDADES Contenido 1. Definición y formas de definir una función 2 1.1. Definición de función 2 1.2. Formas de definir la función: 4 1.2.1. A partir de una representación gráfica
Funciones. Rectas y parábolas
0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo de la figura, calcula: el perímetro. el área. P I E N S A C A L C U L A Perímetro = ( + ) = 6 Área = = Indica cuál de las siguientes gráficas
CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3,
RESUMEN LÍMITES Y CONTINUIDAD Límite de una función en un punto El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan
Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9
Asignatura: Matemáticas II ºBachillerato página 1/8 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Hoja 1. Problema 9 Resuelto por José Antonio Álvarez
TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 1º E.S.O. TEMA 08: Funciones. TEMA 08: FUNCIONES. 1. Correspondencia.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.
IES Padre Poveda (Guadi) UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.. Límite de una función en un punto... Límites laterales... Límite de una función en un punto.. Límites en el infinito... Comportamiento
Bloque 3. Análisis. 2. Tipos de funciones
Bloque 3. Análisis 2. Tipos de funciones 1. Función lineal Es una función polinómica de primer grado y tiene una ecuación del tipo: y = mx. Su gráfica es una línea recta que pasa por el origen de coordenadas,
TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL
TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS
FUNCIONES REALES. D(f(x)) = R {Raices del denominador} { Indice impar D(f(x)) = D(g(x)) Indice par D(f(x)) = R {P untos del radicando negativo}
FUNCIONES REALES Una función real se define como una aplicación entre dos conjuntos de números reales. Esta aplicación asigna a cada elemento del primer conjunto un único elemento del segundo conjunto.
CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD
CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto
EJERCICIOS RESUELTOS TEMA 11 Y 12. FUNCIONES. FUNCIÓN LINEAL Y CUADRÁTICA. Apellidos y Nombre:.Curso: 3º E.S.O. Grupo:.
EJERCICIS RESUELTS TEMA 11 1. FUNCINES. FUNCIÓN LINEAL CUADRÁTICA Apellidos y Nombre:.Curso: º E.S.. Grupo:. 1 El coste del recibo del teléfono depende de los minutos hablados y una cuota fija de 1 euros.
FUNCIONES ( ) Racionales: ( ) Irracionales: ( ) Logarítmicas: ( )
FUNCIONES Definición. Función real de variable real es una aplicación del conjunto de los números reales en sí mismo, de tal forma que a cada número real le hace corresponder otro número real. CORRESPONDENCIA
Tema 10: Funciones racionales y potenciales. Asíntotas.
1 Tema 10: Funciones racionales y potenciales. Asíntotas. 1. Funciones racionales. Una función racional es de la forma =p()/q(), donde p() y q() son polinomios, con q()0. El dominio de una función racional
Ejercicios resueltos de cálculo Febrero de 2016
Ejercicios resueltos de cálculo Febrero de 016 Ejercicio 1. Calcula los siguientes ites: x 5x 1. x + x + 1 x 1 x. x x. x + x + 1 x x 4. x 0 x cos x sen x x Solución: 1. Indeterminación del tipo. Tenemos:
UNIDAD 1 : ELEMENTOS ALGEBRAICOS
UNIDAD 1 : ELEMENTOS ALGEBRAICOS 1.D FUNCIONES 1.D.1 Características de una función para graficarla Si necesitamos graficar una función f se pueden prescindir de las tablas de valores y reconocer ciertas
Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x)
TEMA 9: :.- CONCEPTO DE FUNCIÓN: Función es una relación entre dos variables a las que, en general, se les llama e y. Viene representado por: y (, donde es la variable independiente e y es la variable
FUNCIONES CUADRÁTICAS
FUNCIONES CUADRÁTICAS A la función polinómica de segundo grado f(x) = ax 2 + bx + c, siendo a, b, c, números reales y a 0 se la denomina función cuadrática. Dominio de una función cuadrática es el conjunto
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un
FUNCIÓN EXPONENCIAL Y LOGARITMICA
FUNCIÓN EXPONENCIAL Y LOGARITMICA Son funciones transcendentales porque no satisface una ecuación polinómica cuyos coeficientes sean a su vez polinomios; En otras palabras, una función trascendente es
3º ESO PMAR FUNCIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa FUNCIONES
FUNCIONES.- CARACTERÍSTICAS DE LAS FUNCIONES Definición: Una función es una relación entre dos variables de tal forma que a cada valor de la primera (variable independiente, ) le corresponde un valor o
Ficha 1. Formas de expresar una función
Ficha 1. Formas de expresar una función 1. En unas instalaciones deportivas cobran 5 euros por la entrada, que da derecho a la utilización de todas las dependencias salvo las pistas de tenis, por las que
Funciones reales de variable real.
CONOCIMIENTOS PREVIOS. Funciones reales de variable real.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.
DEFINICION DE RELACIÓN
DEFINICION DE RELACIÓN Se Define como relación o correspondencia R entre los conjuntos B C, a un subconjunto del producto cartesiano B C, compuesto por pares de elementos que cumplen cierta regla definida.
TEMA 6: LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS
CONTINUIDAD TEMA 6: LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS 1- Representa gráficamente las siguientes funciones y di, de cada una de ellas, si es continua o discontinua: d) 2- Explica por qué
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES I ) DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN: Es el conjunto de puntos donde tiene sentido realizar las operaciones indicadas en el criterio de definición de la
3º ESO FUNCIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa FUNCIONES
º ESO FUNCIONES DEPARTAMENTO DE MATEMÁTICAS. FUNCIONES.- CARACTERÍSTICAS DE LAS FUNCIONES Definición: Una función es una relación entre dos variables de tal forma que a cada valor de la primera (variable
Autoevaluación. Bloque IV. Análisis. BACHILLERATO Matemáticas I. Página Observa la gráfica de la función y = f (x) y a partir de ella responde:
Autoevaluación Página Observa la gráfica de la función y = f () y a partir de ella responde: a) Cuál es su dominio de definición? su recorrido? b) Representa gráficamente: y = f ( + ); y = f () + ; y =
CONCEPTOS QUE DEBES DOMINAR
INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende
f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).
TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:
Estudio de las funciones RACIONALES
Estudio de las funciones RACIONALES 2 o BACH_MAT_CCSS_II Cuaderno de ejercicios MATEMÁTICAS JRM Nombre y apellidos..... Funciones racionales. Página 1 RESUMEN DE OBJETIVOS 1. Cálculo de las raíces, los
( ) ( ) -3. Función Cuadrática La función cuadrática es una función real de variable real f : R R, es decir,
Función Cuadrática La función cuadrática es una función real de variable real f : R R, es decir, f : x y Definida así: f ( x) = ax + bx + c donde a, b c R.(Por un Polinomio de º grado). Su gráfica es una
TEMA 4 FUNCIONES ELEMENTALES
TEMA 4 FUNCIONES ELEMENTALES 4.1. Funciones lineales, cuadráticas y polinómicas 4.1.1. Funciones lineales. Las unciones lineales o aines tienen por epresión analítica ( m n. Si m > 0, la unción aín tiene
SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será:
Ejercicio nº.- Halla la ecuación de la recta tangente a la curva que sea paralela a la recta y. SOLUCIONES ' Fecha: La pendiente de la recta es m Cuando, y La recta será: Ejercicio nº.- y ( ) Averigua
Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO
EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)
el blog de mate de aida CS II: Representación de funciones y optimización.
Pág.1 CRECIMIENTO Y DECRECIMIENTO. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que su pendiente será positiva
Funciones en explícitas
Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos
TEMA FUNCIONES 4º ESO
TEMA FUNCIONES 4º ESO 1) Definiciones: Concepto de función. Dominio y recorrido de una función. Función inyectiva. Gráfica de una función. (pág. 158) 2) Cálculo del dominio de una función 3) Cálculo de
x = 1 Asíntota vertical
EJERCICIO Sea la función f ( ). a) Indique el dominio de definición de f, sus puntos de corte con los ejes, sus máimos mínimos, eisten, sus intervalos de crecimiento decrecimiento. b) Obtenga las ecuaciones
FUNCIONES y = f(x) ESO3
Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.
Estudio local de una función.
Estudio local de una función. A partir de una cartulina cuadrada de 60 cm de lado, se va a construir una caja de base cuadrada, sin tapa, recortando cuatro cuadrados iguales en las esquinas de la cartulina
FUNCIONES DE 4º ESO (OPCIÓN A)
FUNCIONES DE 4º ESO (OPCIÓN A) DEPENDENCIA ENTRE MAGNITUDES.- RELACIONES DADAS POR TABLAS: En una clase de laboratorio un alumno ha medido la temperatura de un líquido según se calentaba. Los resultados
Conocer las posibles asíntotas de una función nos ayudará en su representación gráfica. Vamos a distinguir tres tipos distintos de asíntotas:
1. Dominio, periodicidad y paridad de una función A la hora de representar una función lo primero que se ha de determinar es dónde está definida, es decir, para qué valores tiene sentido hablar de f(x).
a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.
6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se
Unidad 6: Funciones reales de variable real.
Funciones reales de variable real 1 Unidad 6: Funciones reales de variable real. 1.- Concepto de función. Expresión analítica de una función. Variables x e y Existe relación entre x e y No hay relación
Cálculo Diferencial en una variable
Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia
FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa
Funciones de ecuación: ( ) FUNCIONES = m + n ; m y n son números reales Dom = R. Es continua en su dominio. Gráica: una recta m es la pendiente de la recta La pendiente de una recta es el cociente entre
Práctica 4 Límites, continuidad y derivación
Práctica 4 Límites, continuidad y derivación En esta práctica utilizaremos el programa Mathematica para estudiar límites, continuidad y derivabilidad de funciones reales de variable real, así como algunas
APLICACIONES DE LAS DERIVADAS
TEMA 7 7.1 DERIVADA DE UNA FUNCIÓN EN UN PUNTO 7.2 FUNCIÓN DERIVADA 7.3 REGLAS DE DERIVACIÓN 7.4 ESTUDIO DE LA DERIVABILIDAD DE UNA FUNCIÓN DEFINIDA D A TROZOS APLICACIONES DE LAS DERIVADAS 7.5 RECTA TANGENTE
Límites. Continuidad.
Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Límite finito cuando x tiende a infinito (1) Límite finito cuando x tiende a infinito (2) Se dice que el límite de la función f(x) cuando
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
Funciones reales de variable real
Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.
6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría
6 Funciones 1. Estudio gráfico de una función Piensa y calcula Indica cuál de las siguientes funciones es polinómica y cuál racional: 2 + 5 f() = f() = 3 5 2 + 6 4 2 4 Racional. Polinómica. Aplica la teoría
FUNCIONES REALES DE VARIABLE REAL
MatemáticasNM Curso 0- FUNCIONES REALES DE VARIABLE REAL. Determina gráficamente el dominio y recorrido de cada una de las siguientes funciones: a) f() = b) f() = c) f() = d) f() = + d) f() = + e) f()
Tema 7.0. Repaso de números reales y de funciones
Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números
Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y)
Estudio de funciones y su representación gráfica. TIPO I. Funciones Polinómicas. Ejemplo: y 4 1º. Dominio. El dominio de una función es el conjunto de valores para los que está definida la función. En
TEMA 0 FUNCIONES ***************
TEMA 0. Definición y terminología.. Funciones conocidas. 3. Operaciones con funciones. 4. Funciones inversas. FUNCIONES ***************. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable
Dos curvas interesantes: Unidad 10: REPRESENTACIÓN DE FUNCIONES TRACTRIZ INTRODUCCIÓN
Unidad 10: REPRESENTACIÓN DE FUNCIONES INTRODUCCIÓN Concepto de función Una de las ideas más fecundas y brillantes del siglo XVII fue la de la coneión entre el concepto de función y la representación gráfica
TEMA 7. FUNCIONES ELEMENTALES
TEMA 7. FUNCIONES ELEMENTALES 8.1. Funciones cuya gráfica es una recta. - Función constante. - Función de proporcionalidad. - Función lineal. - Pendiente. 8.2. Función cuadrática. - Representación gráfica
MATEMÁTICAS 2º DE ESO
MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad
Representaciones gráficas
1 MAJ99 Representaciones gráficas 1. Se considera la función 3 f ( ) 1 60 3 (a) Hállense sus máimos y mínimos. (b) Determínense sus intervalos de crecimiento y decrecimiento. (c) Represéntese gráficamente.
Recuerda lo fundamental
7 Funciones y gráficas Recuerda lo fundamental Curso:... Fecha:... LAS FUNCIONES SUS GRÁFICAS DEFINICIÓN DE FUNCIÓN Una función asocia a cada valor de x...... x es la variable... y es la variable... El
