APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO"

Transcripción

1 RETÍCULO RECÍPROCO A pti el etíulo efinio nteiomente, en el que omo nuo oespone un motivo o llmemos etíulo ieto, es posible efini oto etíulo (que llmemos eípoo) en el ul los tes vetoes funmentles son: b ; b ; b b b b po tnto, ulquie veto e este etíulo se expes omo ( ) kb l Si se nlizn sus móulos (po ejemplo en el so el ) b b el numeo epesent un veto pepeniul b y, el moulo el ul es el áe el plelogmo efinio po b y, o que b b sinα mients que el enomino es el volumen e l el funmentl el etíulo ieto efini po, b y (V). Po tnto, el moulo e vle e V y omo el volumen es igul l áe el plelogmo efinio po y b, po l ltu - que es el espio etiul e los plnos efinios po b y, es ei los (00) -, se puee esibi e e igulmente, se puee eui que b 00 y 00

2 De ls nteioes expesiones que efinen los vetoes funmentles, b y se puee eui b b o que si se multipli po los os téminos e l efiniión e, que ( b ) b V V, y igulmente p b y. Tmbién, pti e ls efiniiones e los vetoes, b y se eue que b b b b 0 y que el veto es pepeniul b y, b lo es y, y y b. El etíulo eípoo tiene os popiees funmentles: ) un veto () el etíulo eípoo es pepeniul l plno () el etíulo ieto. b) el moulo el veto () es igul l inveso el espio etiul e los plnos () el etíulo ieto. ) El plno () más póximo l oigen ot los ejes x, y y z, b k, l, espetivmente, po tnto el veto ( b k ) está ontenio en el plno (), y si es sí, el pouto vetoil e mbos ebeá se nulo: b ( kb l ) k b 0 k esollno l expesión:

3 y omo que kb l b kb b b l 0 k k k onsieno que lgunos e los téminos se nuln poque es pepeniul b y, et., que b b 0 b k po tnto () es pepeniul ( ) Igulmente se puee emost que () es pepeniul ulquie e los otos vetoes ontenios en el plno (): ( ) l ( ) l b k, y po tnto es pepeniul (). b) Si n es un veto unitio pepeniul l plno (), l istni ente plnos (el espio etiul (kl)) seá osϕ ( os ϕ ) n osϕ n, l nteio euión se puee esibi omo n el veto unitio n equivlente l veto () iviio po su moulo, n y po tnto o

4 el pouto vle l uni, y po tnto kb l ( ) k b k l Poqué el seguno y tee téminos se nuln y el pimeo vle uno. Es fáil emost, emás, que el etíulo eípoo el etíulo eípoo es el etíulo ieto Es ei: ( ) b b Si se multipli po el seguno temino e l expesión e los vetoes funmentles (), b ( ) b y po tnto, ( ) ; ( b) b ; ( ) De too lo que se euio st o se puee onlui que los vetoes el etíulo eípoo epesentn fmilis e plnos el etíulo ieto, e tl mne que veto () es pepeniul () i su moulo es invesmente popoionl l espio etiul e est fmili e plnos. Conseuentemente, es posible lul el espio etiul e un fmili e plnos () pti e los vetoes el etíulo eípoo: os 0º one se eue que 2

5 RELACIONES ENTRE FILAS Y PLANOS RETICULARES A) L oniión p que un fil etiul [uvw] esté inlui en un plno etiul () es u kv lw 0 De ueo on l figu junt, el veto () el etíulo eípoo es pepeniul l plno () y po tnto, tmbién lo es l veto [uvw] el etíulo ieto que epesent l fil etiul, po tnto, su pouto esl seá eo: uvw kb l ( u vb w) ( ) [ ] ( ) esollno el pouto e los os polinomios, u( ) v( b) w( ) ku( b ) kv( b b) kw( b ) lu( ) lv( b) lw( ) ( u kv lw) one b b 0 ; y b b Y si los os vetoes son pepeniules, el esulto e se eo. B) P lul l fil etiul en l ul se intesen os plnos etiules () y ( k l ), se puee eoe l pouto vetoil e los os vetoes el etíulo eípoo que epesentn estos plnos, tl omo se muest en l figu

6 ( ) ( ''') k l [ uvw] esollno el pouto ( kb l ) ( ' k' b l' ), esult '( ) k'( b) l'( ) k'( b ) kk'( b b) kl'( b ) l'( ) lk'( b) ll'( ) one los poutos vetoiles e un veto po si mismo, se nuln: b b 0 y p el esto e téminos, y que onsie ls efiniiones que los vetoes, b y se pueen expes en funión e los vetoes funmentles el etíulo eípoo b b ; b ; V V V pti e ls ules, los poutos vetoiles ente vetoes funmentles, b y, se pueen expes en funión e los el etíulo ieto, y el nteio pouto que ( ) ( ''' ) ( ' ' ) ( ' ' ) ( ' ' ) k l k V k V l V l V b kl V lk V V y iviieno po el fto omún quen los oefiientes e un veto el etíulo ieto u ( kl' lk'); v ( l' l'); w ( k' k') Este veto equivle l soluión el siguiente eteminnte

7 b k l ' k' l' efinio po os fils C) De mne simil l so nteio, se puee lul ul es el plno etiul Hieno el pouto vetoil e [uvw] po [u v w ] se obtiene un veto pepeniul ls os fils, y po tnto l plno que fomn, que expeso en funión e los vetoes funmentles el etíulo eípoo, sus oefiientes seán los ínies e Mille e este plno. [ ] [ ] uvw u'' v w' ( ) que equivle l soluión el eteminnte b u v w u' v' w' (Se sugiee que el estuinte lo euz po su uent) D) De mne nálog, se puee plnte si tes fils etiules son oplnis. En este so su pouto mixto equivle l volumen el plelepípeo que fomn, y si son oplnis, este es eo, po tnto [ u v w ] [ u v w ] [ u v w ] u v w u2 v2 w2 0 u v w 3 3 3

8

x y z 3 x y z x y z x y z 5 0 3

x y z 3 x y z x y z x y z 5 0 3 leto Enteo onde Mite González Jueo MTEMÁTIS II Deteminntes. Soluiones z. Siendo que, lul n desoll el vlo de los guientes deteminntes: z z z z z z z z z z z z en en z z z z z z + Segundo método evit ls

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras) Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede

Más detalles

BLOQUE III: GEOMETRÍA

BLOQUE III: GEOMETRÍA LOQUE III: GEOMETRÍ Depmeno e Memái º hilleo Tem 6: Veoe plno e en el epio..- SES DE UN ESPIO VETORIL { u u u n }... e un e e V i umple o oniione: lo númeo {... } e u epeo e l e..- Son L.I..- u V u u u...

Más detalles

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (

Más detalles

INTRODUCCIÓN AL CÁLCULO VECTORIAL

INTRODUCCIÓN AL CÁLCULO VECTORIAL INTRODUCCIÓN L CÁLCULO VECTORIL 1.- MGNITUDES ESCLRES Y VECTORILES. Mgnitudes esles: son ls que quedn pefetmente definids po el vlo de l medid. Mgnitudes vetoiles: son ls que p definils pefetmente es peiso

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

Ciclos Termodinámicos

Ciclos Termodinámicos Cpítulo 5 Cilos Termoinámios 5.1. Cilo e Crnot Consieremos un gs iel sometio l siguiente proeso ílio: b isoterm f ibt ibt o isoterm V V V Figur 5.1: Cilo e Crnot. Proeso b : Aibt reversible El gs se omprime

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

3A,,. Prueba que M es un subespacio

3A,,. Prueba que M es un subespacio .- Dtin os tis us X Y on tls qu: Y X Y X.- Estui l inpnni linl ls tis C.- Pu qu ls siguints tis son un s l spio vtoil ls tis us on.- S onsi l onjunto } R. Pu qu s un suspio vtoil.- Hll os tis us on os

Más detalles

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto

Más detalles

Sobre la matemática del Problema de

Sobre la matemática del Problema de Soe l teáti el Pole e Kele Clos S Chine Soe l teáti el Pole e Kele Clos Sánhe Chine Intouión Johnnes Kele Weil e St, Aleni, 7 e iiee e 57 - Rtison, Aleni, 5 e noviee e 63, ulió ls tes leyes que esien el

Más detalles

Integrales dobles. divide al rectángulo I ab, cd. , j 1, 2,, m. n m ij i i 1 j j 1

Integrales dobles. divide al rectángulo I ab, cd. , j 1, 2,, m. n m ij i i 1 j j 1 ntegrles oles NTEGRALES OBLES e l mism mner que el onepto e integrl efini pr funiones e un vrile sirve pr resolver e un moo generl, el prolem e l eterminión e áres e figurs plns, el onepto e integrl ole

Más detalles

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión DETERMINANTES. lulr el vlor el eterminnte ² ² ² Soluión: Sno ftor omún e en lª fil Sno ftor omún e en l ª fil ² ² ² ² ² ² Determinnte tipo Vn er Monem. ² ² ² ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) sustituyeno

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

Matemáticas I - Anaya

Matemáticas I - Anaya ! 50 "# Si α, qué elción tienen con los númeos α80º y 60º-α?! α80º [ cos( α 80º) i sen ( α 80º) ] (-cosα isenα ) -[(cosα isenα)] -( α ) -, luego son opuestos.! 60º-α [ cos( 60º- α) i sen (60º- α ) ] (cosα

Más detalles

Tema 5B. Geometría analítica del plano

Tema 5B. Geometría analítica del plano Tem 5B. Geometí nlític del plno L geometí nlític estudi ls elciones ente puntos, ects, ángulos, distncis, de un modo lgebico, medinte fómuls lgebics y ecuciones. P ello es impescindible utiliz un sistem

Más detalles

Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v

Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v Escles cmpos escles nálisis Vectoil Teoí Electomgnétic 1 Dipl.-Ing. noldo Rojs oto Escl: ntidd cuo lo puede se epesentdo po un simple númeo el positio o negtio mpos escles: Función mtemátic del ecto que

Más detalles

BLOQUE 2: MOVIMIENTO RELATIVO

BLOQUE 2: MOVIMIENTO RELATIVO LOQUE 2: MOVIMIENTO RELTIVO Sistems e efeenci en tslción Sistems e efeenci en otción LOQUE 2: Moimiento eltio El moimiento e un ptícul epene el S.R. elegio. sí, os obseoes (S.R. ifeentes) no tienen po

Más detalles

DETERMINANTES. Resuelve la ecuación propuesta en a) y calcula el valor del determinante propuesto en b):

DETERMINANTES. Resuelve la ecuación propuesta en a) y calcula el valor del determinante propuesto en b): DETERINNTES Ejeiio nº.- Clul el vlo e los siguienes eeminnes: Ejeiio nº.- Resuelve l euión oues en ) lul el vlo el eeminne oueso en ): Ejeiio nº.- ) Resuelve l euión: ) Clul el vlo el eeminne: Ejeiio nº.-

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

RAZONAMIENTO CUANTITATIVO

RAZONAMIENTO CUANTITATIVO Guí Emen psiométio e ingeso ls univesies RZONMIENTO UNTITTIVO En est áe se nlizn ls pies e utilizión e númeos téminos mtemátios p esolve polems untittivos, l pi e nliz tos pesentos jo ivess foms tles omo

Más detalles

TEMA 5: CÁLCULO VECTORIAL

TEMA 5: CÁLCULO VECTORIAL IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones

Más detalles

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR UNIVERSIDD NIONL DE FRONTER EPREUNF ILO REGULR 0708 URSO: MTEMÁTI SEMN 0 TEM: TRIÀNGULOS R.T. NGULOS GUDOS R.T. ULQUIER MGNITUD TEM: PRODUTOS NOTLES DIVISIÓN LGERI OIENTES NOTLES TRINGULOS DEFINIIÓN: Tiángulo

Más detalles

GEOMETRÍA. punto, la recta y el plano.

GEOMETRÍA. punto, la recta y el plano. MISIÓN 011-II GEMETRÍ STUS GEMETRÍ a geometía es la ama de las Matemáticas que tiene po objeto el estudio de las figuas geométicas. Se denomina figua geomética a cualquie conjunto no vacío de puntos del

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

Determinantes D - 1 DETERMINANTES

Determinantes D - 1 DETERMINANTES Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos

Más detalles

DETERMINANTES SELECTIVIDAD ZARAGOZA

DETERMINANTES SELECTIVIDAD ZARAGOZA DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0

Más detalles

PROBLEMAS RESUELTOS DE ELECTROSTÁTICA EN EL VACÍO. , r a

PROBLEMAS RESUELTOS DE ELECTROSTÁTICA EN EL VACÍO. , r a UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS PROFESOR: Ing. JORGE MONTAÑO PISFIL

Más detalles

que verifican A 2 = A.

que verifican A 2 = A. . Hll ls mtries A que verifin A A.. Do el sistem: m ( m ) m ) Disútelo en funión el vlor e m. ) Resuélvelo en el so m represent gráfimente l situión. 3. Consieremos ls mtries B C Hll un mtri A tl que A

Más detalles

Hacia la universidad Álgebra lineal

Hacia la universidad Álgebra lineal Hi l universi Álger linel OPCIÓN A Soluionrio. Un mtriz ur A se llm ntisimétri uno su trspuest es igul su opuest. Otén l form generl e un mtriz A e oren que se ntisimétri. Clul A, A y A. Consieremos l

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Uni Mtries PÁGINA 7 SOLUCIONES. L resoluión e los sistems puee expresrse e l form siguiente: L segun mtriz proporion l soluión x 5,y 6. L últim mtriz proporion l soluión x, y, z 4. . Vemos que P P. Pr

Más detalles

(3x, 6y) = ( 1, 5): (2, y) = (6x, 6x 6y):

(3x, 6y) = ( 1, 5): (2, y) = (6x, 6x 6y): . Reliz ls siguietes opeioes o pes uéios ) ( ) ( ) ) [ ( ) ( )] ½ ( ) 6 ( ) ) ( ) ( ) (6 ) ( ) ) (x y) (x y) ( ) ( ) Soluió. 6. ( ) ( ) ( 6 ( ) ) ( 9 7). [ ( ) ( )] ½ ( ) 6 ( ) ( ) ( ) (6 ) ( 6) ( ). (

Más detalles

Multiplicando miembro a miembro las siguientes desigualdades

Multiplicando miembro a miembro las siguientes desigualdades Miguel mengul ov L deiguldd de Eule pti de ot deiguldde ente elemento de un tiángulo. Ete tíulo e ontinuión del pulido en el númeo 5 (eneo-feeo 003). En et egund pte e etleen ei deiguldde geométi do tigonométi,

Más detalles

SELECCIÓN ADVERSA Y RACIONAMIENTO DE CREDITO

SELECCIÓN ADVERSA Y RACIONAMIENTO DE CREDITO SCCIÓN ADVRSA Y RACIONAMINTO D CRDITO Biliofí Básic: Wlsh (003 º d.) Monety Theoy nd Policy. MIT ess. Citulo 7. SCCIÓN ADVRSA Cundo hy ieso de insolvenci l fijción del tio de inteés dee conteml tl osiilidd

Más detalles

: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS PROBLEMAS RESUELTOS DE INDUCTANCIA MUTUA Y AUTOINDUCTANCIA

: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS PROBLEMAS RESUELTOS DE INDUCTANCIA MUTUA Y AUTOINDUCTANCIA UNVERSDAD NACONAL DEL CALLAO FACULTAD DE NGENERÍA ELÉCTRCA Y ELECTRÓNCA ESCUELA PROFESONAL DE NGENERÍA ELÉCTRCA CURSO : TEORÍA DE CAMPOS ELECTROMAGNÉTCOS PROFESOR : ng. JORGE MONTAÑO PSFL PROLEMAS RESUELTOS

Más detalles

Cómo se transportan segmentos y ángulos (1/2)

Cómo se transportan segmentos y ángulos (1/2) ómo se tnspotn segmentos y ángulos (1/2) Tnspote de segmentos. Los segmentos se tnspotn llevndo su longitud on el ompás. Vemos un ejemplo. Dtos Pso 1 Pso 2 (soluión) Polem: tnspot el segmento '' l et de

Más detalles

Tema 13: INTEGRALES DEFINIDAS

Tema 13: INTEGRALES DEFINIDAS Tem : INTEGRALES DEFINIDAS REFLEXIONA Ls gnnis de l ompñí RAMSES S.L. dunte los meses de un ño, en deens de miles de euos, se dn en l siguiente gái: 5 ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DIC Si

Más detalles

51 EJERCICIOS DE VECTORES

51 EJERCICIOS DE VECTORES 51 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coorens e los vectores fijos e l

Más detalles

Sumador Elemento que sirve para combinar dos señales de entrada generando una salida que es su suma (o resta)

Sumador Elemento que sirve para combinar dos señales de entrada generando una salida que es su suma (o resta) Digms en Bloques Un sistem de ontol puede onst de iet ntidd de omponentes. P most ls funiones que eliz d omponente se ostum us epesentiones esquemátis denominds Digm en Bloques. Este tipo de digms emple

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

EL CRISTAL PERIODICIDAD

EL CRISTAL PERIODICIDAD EL CRISTAL PERIODICIDAD El cristal desde un punto de vista microscópico Un medio cristalino está formado por un conjunto de átomos dispuestos en un orden bien definido generado por la repetición periódica

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest

Más detalles

TRIGONOMETRÍA. rad equivalen a 180º Observación: Generalmente no se utiliza «rad», cuando se da la medida de un ángulo en sistema absoluto.

TRIGONOMETRÍA. rad equivalen a 180º Observación: Generalmente no se utiliza «rad», cuando se da la medida de un ángulo en sistema absoluto. TRIGONOMETRÍA INTRODUCCIÓN En un sentido ásio, se puede fim que l Tigonometí es el estudio de ls eliones numéis ente los ángulos ldos del tiángulo. Peo su desollo l h llevdo tene un ojetivo más mplio,

Más detalles

TEMA 2: NÚMEROS RACIONALES: FRACCIONES.

TEMA 2: NÚMEROS RACIONALES: FRACCIONES. TEMA NÚMEROS RACIONALES FRACCIONES.. Cojuto e los Núeros Rioles, Q. El ojuto e los úeros rioles es u pliió e los úeros eteros, los que se le ñe uevos úeros que se ostruye o úeros eteros y se ll FRACCIONES.

Más detalles

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical.

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical. TNNI. onceptos, popieddes y noms. Po un punto psn infinits cicunfeencis tngentes. L ect tngente ells po dicho punto es su eje dicl. Po dos puntos psn infinits cicunfeencis secntes fomndo un hz. L ect que

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

Física. g u a y F R. Entonces : tg

Física. g u a y F R. Entonces : tg Físic g u y. Clcul l istnci el equiliio ente ls os esfes e l figu, e ms m, cgos con q coulomios, si se supone que el ángulo con l veticl es muy pequeño, y los hilos que los sujetn no tienen ms. SOLUCIÓN:

Más detalles

Fuerza de una masa de fluido en movimiento

Fuerza de una masa de fluido en movimiento Fuez de un ms de fluido en movimiento e un ms m de fluido en movimiento que choc cont un supeficie, pependicul l diección del movimiento del fluido. P obtene l fuez que est ms de fluido ejece sobe l supeficie,

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

ESQUEMA. Las unidades de la velocidad de reacción son M/s o mol / l s. podemos definir las siguientes velocidades de reacción:

ESQUEMA. Las unidades de la velocidad de reacción son M/s o mol / l s. podemos definir las siguientes velocidades de reacción: TEMA 6. CINÉTICA QUÍMICA. I. VELOCIDAD DE UNA REACCIÓN. Después e estui l temoinámic e un ección, los intecmbios e enegí que conlle, pece que tiene sentio estui con qué eloci se pouce un ección. L eloci

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

3. SISTEMAS DE ECUACIONES LINEALES

3. SISTEMAS DE ECUACIONES LINEALES Sistems de Ecuciones Hemients infomátics p el ingenieo en el estudio del lgeb linel SISEMAS DE ECUACIONES LINEALES 1 DEFINICIONES PREVIAS 2 EOREMA DE ROUCHÉ-FROBENIUS MÉODO DE RESOLUCIÓN DE GAUSS 4 MÉODO

Más detalles

a la componente imaginaria de z. Dos números complejos son iguales cuando tienen la misma parte real y la misma parte imaginaria.

a la componente imaginaria de z. Dos números complejos son iguales cuando tienen la misma parte real y la misma parte imaginaria. Númeos Complejos Un Defnón Llmemos númeo omplejo un númeo z que se ese e l fom, one y son númeos eles, e vef:. Al númeo se lo enomn pte el e z y l númeo, pte mgn e z. pte } pte } mgn Se esgn on Re ( z)

Más detalles

Métodos de Integración

Métodos de Integración CAPÍTULO Métodos de Integción 7 Integles imois Hst quí, l efeinos l integl definid en un intevlo cedo Œ; b, el cul tiene un longitud finit b f / considemos que f es un función continu Es deci, l integl

Más detalles

Método de las Imágenes.

Método de las Imágenes. Electici Mgnetismo Cuso 5/6 Métoo e ls Imágenes. Es un métoo potente ue pemite esolve lgunos polems complicos. Consiste en moific el polem, mplino el ecinto, e fom ue:» Resulte más sencillo.» Se sign cumplieno

Más detalles

Ángulos tetraedrales

Ángulos tetraedrales poblems Poblem 1. Ángulos tetedles. Los ángulos ente ls uniones tetedles de l estutu dimnte son igules los que existen ente ls digonles de un ubo. He un nálisis vetoil p hll el vlo del ángulo. z u u 1

Más detalles

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A IE Mediteáneo de Málg olución Julio Jun Clos lonso Ginontti Opción Poblem.. Obtene ondmente escibiendo todos los psos del onmiento utilido que: El lo del deteminnte de l mti ( puntos l mti - que es l mti

Más detalles

Transformaciones Lineales. Definiciones básicas de Transformaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.

Transformaciones Lineales. Definiciones básicas de Transformaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com. Transformaciones Lineales Definiciones básicas de Transformaciones Lineales wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 007-009 Contenido 1 Transformaciones Lineales 11 Núcleo e imagen

Más detalles

Vectores en el espacio

Vectores en el espacio Vectores en el espacio Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son: 1º. A A

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son: 1º. A A Memáis II Deerminnes PVJ7 Se l mriz 9 8 7 Se l mriz que resul l relizr en ls siguienes rnsformiones: primero se mulipli por sí mism, espués se min e lugr l fil segun l erer finlmene se muliplin oos los

Más detalles

Universidad de Tarapacá Facultad de Ciencias Departamento de Física

Universidad de Tarapacá Facultad de Ciencias Departamento de Física Univesidad de Taapacá Facultad de Ciencias Depatamento de Física Aplica el álgea de vectoes: Poducto escala Poducto vectoial Magnitudes físicas po su natualeza Escalaes Vectoiales Es un escala que se

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

ÁLGEBRA. DETERMINANTES

ÁLGEBRA. DETERMINANTES ÁLGER. DETERMINNTES MT II. DEFINICIÓN Dd un mtiz udd de oden n,... n n......... n n nn e llm deteminnte de l mtiz y e epeent po, l un númeo el que e igul : det( i( ( ( (... n ( n S n E dei, el deteminnte

Más detalles

PRODUCTO ESCALAR DE DOS VECTORES

PRODUCTO ESCALAR DE DOS VECTORES PRODUCTO ESCALAR DE DOS VECTORES El producto escalar de dos vectores es un número real que resulta al multiplicar el producto de sus módulos por el coseno del ángulo que forman si los vectores son no nulos

Más detalles

Apéndice D. Estimación de los efectos capacitivos e inductivos entre el inyector y el detector

Apéndice D. Estimación de los efectos capacitivos e inductivos entre el inyector y el detector Apénice D D-1 Apénice D. Estimación e os efectos capacitivos e inuctivos ente e inyecto y e etecto E acopamiento capacitivo e inuctivo ente e sistema inyecto y e etecto puee povoca eoes en a tensión etectaa.

Más detalles

Resolución de Problemas: Trapajo Práctico nº 4

Resolución de Problemas: Trapajo Práctico nº 4 Resolución e Poblems: Tpjo Páctico nº 4 Poblem 2: En el cento e un cubo e 1cm e lo se coloc un cg puntul Q5mC. Cuánto vle el flujo eléctico tvés e un c? Y si l cg se ubic en un vétice el cubo? P clcul

Más detalles

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO 5.- Geometí Afín Eulíde en el Epio tidimenionl.- (MODELO DE PRUEBA) Detemin p que lo punto A( ) B( ) C(5 - ) D( ) en oplnio. P el vlo de otenido

Más detalles

3.- DETERMINANTES. a 11 a 22 a 12 a 21

3.- DETERMINANTES. a 11 a 22 a 12 a 21 3.- DETERMINANTES. 3.1. -DEFINICIÓN Dada una matriz cuadrada de orden n, se llama determinante de esta matriz (y se representa por A o deta al polinomio cuyos términos son todos los productos posibles

Más detalles

4. El ClNa cristaliza en el sistema cúbico con parámetro [a]=5.631å. Calcular su densidad sabiendo que su masa molecular es 58.45 uma.

4. El ClNa cristaliza en el sistema cúbico con parámetro [a]=5.631å. Calcular su densidad sabiendo que su masa molecular es 58.45 uma. Síntesis y Caracterización Estructural de los Materiales: Bases Cristalográficas. 1. Dibuje en las celdas fundamentales cúbicas adjuntas (a = 3 Å): a. Las filas reticulares de índices de Weiss [02-1],

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTAS D CUACIONS. Resolver los siguientes sistems de dos euiones lineles on dos inógnits. Se puede resolver por ulquier método, pero deido que es fáil despejr l de l primer euión, lo resuelvo por sustituión.

Más detalles

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS

Más detalles

OPERACIONES MATEMÁTICAS

OPERACIONES MATEMÁTICAS Cpítulo OPERACIONES MATEMÁTICAS OPERACIÓN MATEMÁTICA E un poo qu onit n l tnfoión un o á nti n ot ll ulto, jo it gl o oniion n l ul fin l opión. To opión táti pnt un gl finiión y un íolo qu l intifi llo

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

Taller 3: material previo

Taller 3: material previo Tller 3: mteril previo El tller 3 está dedido los diferentes modelos de empquetmiento ompto de esfers y prender ontr átomos dentro de l eld unidd. Por ello, ntes de l orrespondiente sesión (dís 20, 21

Más detalles

Solución a los ejercicios de vectores:

Solución a los ejercicios de vectores: Tema 0: Solución ejecicios de intoducción vectoes Solución a los ejecicios de vectoes: Nota : Estas soluciones pueden tene eoes eatas (es un ollo escibios las soluciones bonitas con el odenado), así que

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

2.- ECUACION DIFERENCIAL DE PLACAS CIRCULARES.

2.- ECUACION DIFERENCIAL DE PLACAS CIRCULARES. PLAAS IRULARES. INTROUION. Sí l Plc es cicul es conveniente epes ls ecuciones ásics eucis nteiomente en un sistem cooeno pol. L ecución e euiliio e un Plc cicul puee otenese ien elizno un tnsfomción e

Más detalles

ANTECEDENTES DE ELECTRICIDAD Y. dfghjklzxcvbnmqwertyuiopasdfghjklzx MAGNETISMO VECTORES.

ANTECEDENTES DE ELECTRICIDAD Y. dfghjklzxcvbnmqwertyuiopasdfghjklzx MAGNETISMO VECTORES. qwetuiopsdfghjklcvbnmqwetui opsdfghjklcvbnmqwetuiopsdfgh jklcvbnmqwetuiopsdfghjklcvb nmqwetuiopsdfghjklcvbnmqwe tuiopsdfghjklcvbnmqwetuiops NTEEDENTES DE ELETIIDD Y dfghjklcvbnmqwetuiopsdfghjkl MGNETISMO

Más detalles

ELEMENTOS DE CÁLCULO VECTORIAL

ELEMENTOS DE CÁLCULO VECTORIAL ELEMENTOS DE CÁLCULO VECTORIAL SUMARIO: 1.1.- Mgnitudes vectoiles 1.2.- Vectoes: definiciones 1.3.- Clses de vectoes 1.4.- Adición de vectoes 1.5.- Multiplicción po un númeo el 1.6.- Popieddes 1.7.- Consecuencis

Más detalles

Taller: Sistemas de ecuaciones lineales

Taller: Sistemas de ecuaciones lineales Deprtmento de ienis ásis Asigntur: Mtemátis I Doente: Vitor Hugo Gil Avendño Apellidos-Nomres: 0 de mrzo de 08 Tller: Sistems de euiones lineles Un sistem de euiones es un onjunto de dos o más euiones

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

APUNTE: TRIGONOMETRIA

APUNTE: TRIGONOMETRIA APUNTE: TRIGONOMETRIA UNIVERSIDAD NACIONAL DE RIO NEGRO Asigntur: Mtemáti Crrers: Li. en Eonomí Profesor: Prof. Mel S. Chresti Cutrimestre: ero Año: 06 o Coneptos Previos o Definiión de ángulo Un ángulo

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

Podemos calcular la suma de las áreas de los rectángulos superiores que es una aproximación por exceso del área R(f; a, b):

Podemos calcular la suma de las áreas de los rectángulos superiores que es una aproximación por exceso del área R(f; a, b): TEMA 6: INTEGRAL DEFINIDA. 6.1 Integrl efini omo límite e sums superiores o inferiores. 6. Propiees e l integrl efini. 6. Regl e Brrow. 6.4 Apliiones e l integrl efini (Áre). 6.1 Integrl efini. Se f un

Más detalles

APUNTE: Matrices. Una matriz de tamaño n x m es un arreglo de números reales colocados en n filas (o renglones) y m columnas, de la siguiente forma:

APUNTE: Matrices. Una matriz de tamaño n x m es un arreglo de números reales colocados en n filas (o renglones) y m columnas, de la siguiente forma: PUNE: Mtries UNIVERSIDD NCIONL DE RIO NEGRO signtur: Mtemáti Crrers: Li. en ministrión Profesor: Prof. Mel Chresti Semestre: o ño: 6 Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en

Más detalles

Método de las Imágenes.

Método de las Imágenes. Electici Mgnetismo 9/ Electostátic efinición Los conuctoes en electostátic. Cmpo e un cg puntul. plicciones e l Le e Guss Integles e supeposición. Potencil electostático efinición e Intepetción. Integles

Más detalles

Unidad 2 Determinantes

Unidad 2 Determinantes Unidd Determinntes PÁGIN SOLUCIONES. Ls mtries usds son ls siguientes: 5 Est mtriz no tiene invers.. Hiendo eros eslonmos ls mtries, oteniendo:, luego el rngo es. 4 4 4 El rngo es. PÁGIN 45 SOLUCIONES.

Más detalles

Método de las Imágenes.

Método de las Imágenes. Electomgnetismo /3 Electostátic efinición Los conuctoes en electostátic. Cmpo e un cg puntul. plicciones e l Le e Guss Integles e supeposición. Potencil electostático efinición e Intepetción. Integles

Más detalles