Energía eléctrica: conceptos y principios básicos. [ ]. ElenaK78 /Shutterstock

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Energía eléctrica: conceptos y principios básicos. [ ]. ElenaK78 /Shutterstock"

Transcripción

1 Energía eléctrica: conceptos y principios básicos [ ]. ElenaK78 /Shutterstock

2 Práctica de laboratorio remoto 1 Conexiones en serie y paralelo en un circuito eléctrico Objetivos de la práctica Comprobar la aplicación de la Ley de Ohm en los circuitos eléctricos, a partir de mediciones de voltaje y corriente en componentes de un circuito eléctrico básico, para comprender el comportamiento de estos en circuitos en serie y en paralelo. Introducción La interface de trabajo del Laboratorio Remoto te permitirá trabajar con una serie de circuitos eléctricos de CD. La interface se complementa con una fuente de voltaje de CD variable, un amperímetro y un osciloscopio para realizar mediciones de voltaje y corriente. Este circuito eléctrico está formado por una serie de cargas eléctricas, las cuales pueden ser conectadas en serie o paralelo. Para esta práctica se consideraron 2

3 lámparas incandescentes como cargas eléctricas que pueden ser modeladas como simples resistencias. El panel de control al lado derecho (Circuito Eléctrico) te permite cambiar entre un circuito eléctrico simple con una sola lámpara, un circuito con 2 lámparas conectadas en paralelo, o bien, un circuito con 2 lámparas conectadas en serie. El panel de control del lado izquierdo permite establecer el voltaje de la fuente de alimentación del circuito. Para ello puedes desplazar el pequeño selector con el ratón o bien introducir directamente en el control numérico el valor de voltaje deseado. Para la medición de corriente, en el circuito eléctrico hay un amperímetro, el cual arroja en todo momento la medición de corriente que entrega la fuente. Finalmente, el osciloscopio en la parte inferior permite analizar hasta 4 mediciones de voltaje a la vez, y cuenta con un par de cursores que permiten realizar una medición detallada de la amplitud de los voltajes que se están desplegando en el osciloscopio. Para desplegar un voltaje en el osciloscopio, hay que seleccionar un Trazo, los nodos donde se desea medir el voltaje y, por último, activar el trazo haciendo clic en él. Por ejemplo: Selecciono el Trazo 1 e indico una medición de voltaje del Nodo 1 a Gnd (tierra) y lo activo. Para medir el voltaje se cuenta con dos cursores que son habilitados dando clic a los siguientes botones a la izquierda del osciloscopio: Una vez habilitados, los puedes identificar por el color del cursor (una línea segmentada) sobre el osciloscopio. Si no están visibles, pulsa el siguiente botón para traerlos al centro del osciloscopio. 3

4 Una vez habilitados, los cursores se pueden mover con el ratón al punto de medición sobre el osciloscopio. El punto de medición a su vez se puede leer en la parte inferior del osciloscopio, donde la primera medición es el tiempo y la segunda el voltaje. En las prácticas 1 y 2, por ser de CD, la medición del tiempo en el osciloscopio no tiene relevancia y solo aplica la medición del voltaje, la segunda medición. Procedimiento En esta primera parte de los Circuitos de CD, analizarás las conexiones en serie y paralelo de las cargas y, medirás los voltajes y las corrientes en el circuito. La interface te permitirá trabajar con un circuito simple con una sola resistencia, o bien, con la conexión en serie o paralelo de dos resistencias. Sigue las instrucciones de la práctica, realiza y registra las mediciones que se solicitan y contesta las preguntas que se te plantean con base en el comportamiento observado y las mediciones realizadas. Ley de Ohm en un circuito simple Primero analiza un circuito básico con una sola fuente y una sola resistencia desconocida, en este caso una lámpara. Con base en las mediciones de voltaje y de corriente en la lámpara y, aplicando la Ley de Ohm, determinarás el valor de su resistencia. Asegúrate de que, en el panel de control del Circuito Eléctrico a la derecha, este seleccionado el circuito Simple. Recuerda también que el circuito de la práctica con una lámpara, equivale a un circuito con una resistencia. Con base en las mediciones de voltaje y de corriente en la lámpara y aplicando la Ley de Ohm determina el valor de la resistencia de la lámpara. 4

5 1. Utiliza el control deslizable del panel de control a la izquierda, ajusta la fuente de voltaje Vs a un valor de 8 V. Con el osciloscopio mide el voltaje en la fuente (Nodo 1 a Tierra) en el Trazo 1 y, el voltaje en la lámpara (Nodo 2 a Tierra) en el Trazo 2. Observa como ambos voltajes deben ser idénticos. Voltaje de la Fuente, Vs =. Voltaje de la Lámpara, V2 = VR2 =. Recuerda que, cuando los dos elementos de circuito están conectados al mismo par de nodos, decimos que están conectados en paralelo, por lo cual su voltaje debe ser el mismo. 2. Registra el valor de la corriente que está entregando la fuente. Toma en cuenta que debido a que solo hay dos elementos conectados en el circuito, esta será la misma corriente que está pasando por la resistencia. Corriente que entrega la Fuente, Is = IR2 = 3. Empleando la Ley de Ohm, que estable que el voltaje en una resistencia es directamente proporcional al producto de la corriente a través de la resistencia por el valor de la resistencia, calcula la resistencia de la lámpara: De la Ley de Ohm, V = I x R, por lo que R2 = V2 / IR2 = Circuito en serie Selecciona el circuito en Serie con el panel de control del Circuito Eléctrico. A continuación, agregaremos otra lámpara idéntica, por lo tanto, del mismo valor resistivo que la anterior, conectada en serie. En este caso se demostrará cómo en un circuito conectado en serie, la suma de los voltajes de las cargas conectadas en serie tiene que ser igual al valor de la fuente. 5

6 Recuerda que en un circuito conectado en serie, la corriente a través de cada uno de los elementos debe ser la misma. Esto sucede básicamente porque solo hay una trayectoria posible para la corriente. 4. Sin modificar el valor de la fuente, mide ahora el voltaje de cada una de las lámparas. Para ello, con el osciloscopio mide el voltaje en la lámpara 1 (Nodo 1 a Nodo 2) y el voltaje en la lámpara 2 (Nodo 2 a Tierra). Registra ambas mediciones, Voltaje de la lámpara 1, V1 =. Voltaje de la lámpara 2, V2 = Observa como ambos voltajes son iguales. Por qué los voltajes de las lámparas son iguales? 5. Una posible respuesta a la pregunta anterior es, porque la resistencia de las lámparas es igual. Para verificarlo y empleando la Ley de Ohm, calcula la resistencia de las 2 lámparas: Resistencia de la lámpara 1, R1 = V1 / Is = Resistencia de la lámpara 2, R2 = V2 / Is = 6. Cómo son ambas resistencias? Coincide con los valores de voltaje V1 y V2? 7. A continuación, suma el voltaje de las lámparas y compáralo con el voltaje de la fuente, Voltaje de las lámparas, V1 + V2 =. Voltaje de la Fuente, Vs =. 8. Cómo son ambos voltajes, V1+V2 en comparación con Vs? 6

7 Has demostrado que, en una conexión en serie, la corriente es la misma y el voltaje de la fuente se distribuye entre las cargas conectadas en serie, por lo que la suma de los voltajes de las cargas debe ser igual al voltaje de la fuente. Circuito en paralelo Ahora analizarás un circuito con las mismas 2 resistencias, pero conectadas en paralelo. En el panel de control del Circuito Eléctrico selecciona el circuito en Paralelo. En este caso demostrarás que, en un circuito conectado en paralelo, la suma de las corrientes de las cargas en paralelo tiene que ser igual a la corriente de la fuente. Recuerda que en un circuito conectado en paralelo, el voltaje a través de cada uno de los elementos debe ser el mismo. Esto sucede de esta manera porque todos los elementos están conectados al mismo par de nodos (al mismo par de puntos). 9. De nueva cuenta sin modificar el valor de la fuente, mide ahora el voltaje en cada uno de los elementos del circuito. Para ello, con el osciloscopio mide el voltaje en la fuente (Nodo 1 a Tierra), el voltaje en la lámpara 2 (Nodo 2 a Tierra) y el voltaje en la lámpara 3 (Nodo 3 a Tierra). Registra las mediciones, Voltaje de la fuente, Vs =, Voltaje de la lámpara 2, V2 =, Voltaje de la lámpara 3, V3 =. 10. Cómo son los voltajes de los 3 elementos del circuito? Por qué? 7

8 11. Con base en los voltajes medidos y empleando la Ley de Ohm (I=V/R), calcula la corriente en cada una de las lámparas. Recuerda que todas las resistencias son del mismo valor. Corriente de la lámpara 2, I2 = V2 / R2 =, Corriente de la lámpara 3, I3 = V3 / R3 = 12. Cómo son las corrientes en las 2 lámparas? Por qué? 13. Suma la corriente de ambas lámparas y compárala con la corriente que entrega la fuente: Corriente de las lámparas, I1 + I2 =, Corriente de la fuente, Is =. 14. Cómo son ambas corrientes, I1+I2 en comparación con Is? Ahora has demostrado que en una conexión en paralelo, el voltaje es el mismo y la corriente de la fuente se distribuye entre las cargas conectadas en paralelo, por lo que la suma de las corrientes de las cargas en paralelo debe ser igual a la corriente de la fuente. Conclusiones A través del análisis experimental de la práctica, se puede concluir lo siguiente: En n cargas conectadas en serie, independientemente del valor de las cargas, la corriente es la misma a través de todas las cargas. Mientras que en n cargas conectadas en paralelo, el voltaje en todas las cargas es el mismo. Así también, mientras que en una conexión en serie el voltaje de la fuente se distribuye entre las cargas presentes en el circuito, en una conexión en paralelo la corriente de la fuente que alimenta las cargas es la que se distribuye entre las cargas. 8

9 Trabajo realizado en el marco del Proyecto Laboratorio Binacional para la Gestión Inteligente de la Sustentabilidad Energética y la Formación Tecnológica, con financiamiento del Fondo de Sustentabilidad Energética CONACYT-SENER (Convocatoria: S ). El trabajo intelectual contenido en este material, se comparte por medio de una licencia de Creative Commons (CC BY-NC-ND 2.5 MX) del tipo Atribución-No Comercial Sin Derivadas, para conocer a detalle los usos permitidos consulte el sitio web en Se permite copiar, distribuir, reproducir y comunicar públicamente la obra sin costo económico bajo la condición de no modificar o alterar el material y reconociendo la autoría intelectual del trabajo en los términos específicos por el propio autor. No se puede utilizar esta obra para fines comerciales, y si se desea alterar, transformar o crear una obra derivada de la original, se deberá solicitar autorización por escrito al Instituto Tecnológico y de Estudios Superiores de Monterrey. Colaboran:

Energía eléctrica: conceptos y principios básicos. [ ]. ElenaK78 /Shutterstock

Energía eléctrica: conceptos y principios básicos. [ ]. ElenaK78 /Shutterstock Energía eléctrica: conceptos y principios básicos [501366020]. ElenaK78 /Shutterstock Práctica de laboratorio remoto 3 Impedancia en circuitos eléctricos de CA Objetivos de la práctica Calcular el valor

Más detalles

Energía eléctrica: conceptos y principios básicos. [ ]. ElenaK78 /Shutterstock

Energía eléctrica: conceptos y principios básicos. [ ]. ElenaK78 /Shutterstock Energía eléctrica: conceptos y principios básicos [501366020]. ElenaK78 /Shutterstock Práctica de laboratorio remoto 4. Potencia real y potencia aparen Práctica de laboratorio remoto 4 Potencia real y

Más detalles

Laboratorio Binacional para la Gestión Inteligente de la Sustentabilidad Energética y Formación Tecnológica

Laboratorio Binacional para la Gestión Inteligente de la Sustentabilidad Energética y Formación Tecnológica 266632 Laboratorio Binacional para la Gestión Inteligente de la Sustentabilidad Energética y Formación Tecnológica Etapa 3: Producción e impartición de MOOC de Energía Laura Patricia Aldape, producción

Más detalles

Departamento de Ingeniería Eléctrica y Electrónica. Guía de Prácticas de Laboratorio. Materia: Electricidad y Electrónica Industrial

Departamento de Ingeniería Eléctrica y Electrónica. Guía de Prácticas de Laboratorio. Materia: Electricidad y Electrónica Industrial Instituto Tecnológico de Querétaro Departamento de Ingeniería Eléctrica y Electrónica Guía de Prácticas de Laboratorio Materia: Electricidad y Electrónica Industrial Laboratorio de Ingeniería Eléctrica

Más detalles

Práctica No. 2 Leyes de Kirchhoff Objetivo Hacer una comprobación experimental de las leyes de Kirchhoff.

Práctica No. 2 Leyes de Kirchhoff Objetivo Hacer una comprobación experimental de las leyes de Kirchhoff. Práctica No. Leyes de Kirchhoff Objetivo Hacer una comprobación experimental de las leyes de Kirchhoff. Material y Equipo 6 Resistencias de 00Ω ¼ o ½ Watt Resistencias de 0Ω ¼ o ½ Watt Resistencias de

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE CIRCUITOS ELÉCTRICOS

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE CIRCUITOS ELÉCTRICOS TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE CIRCUITOS ELÉCTRICOS 1. Competencias Formular proyectos de energías renovables mediante

Más detalles

PRACTICA 02 LEY DE OHM

PRACTICA 02 LEY DE OHM PRACTICA 02 LEY DE OHM OBJETIVOS 1. Comprobar la Ley de Ohm en un Reóstato, en DC. 2. Estudiar el comportamiento de una lámpara incandescente. 3. Realizar mediciones empleando métodos técnicos e industriales.

Más detalles

Modificar fondo a diapositiva Recurso de apoyo a proceso de migración a software libre

Modificar fondo a diapositiva Recurso de apoyo a proceso de migración a software libre Modificar fondo a diapositiva Recurso de apoyo a proceso de migración a software libre Tabla de Contenido Objetivo... 3 Alcance... 3 Introducción... 4 Patrones... 4 Cambiar el fondo directamente en la

Más detalles

Práctica 8 Leyes de Kirchhoff

Práctica 8 Leyes de Kirchhoff Página 63/70 Práctica 8 Leyes de Kirchhoff 63 Página 64/70 1. Seguridad en la ejecución Peligro o fuente de energía Riesgo asociado 1 Diferencia de potencial alterna. Descarga eléctrica y daño a 2 Diferencia

Más detalles

LABORATORIO DE ELECTROMAGNETISMO LEY DE OHM

LABORATORIO DE ELECTROMAGNETISMO LEY DE OHM No 5 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Investigar y analizar las tres variables involucradas en la relación

Más detalles

Práctica 8 Leyes de Kirchhoff

Práctica 8 Leyes de Kirchhoff Página 63/105 Práctica 8 Leyes de Kirchhoff 63 Página 64/105 1. Seguridad en la ejecución Peligro o fuente de energía Riesgo asociado 1 Diferencia de potencial alterna. Descarga eléctrica y daño a 2 Diferencia

Más detalles

ELECTRICIDAD Y ELECTRÓNICA: MONTAJES PRÁCTICOS

ELECTRICIDAD Y ELECTRÓNICA: MONTAJES PRÁCTICOS ELECTRICIDAD Y ELECTRÓNICA: MONTAJES PRÁCTICOS Monta los siguientes circuitos, calcula y mide las magnitudes que se piden: 1) Con el Voltímetro, mide la tensión de una pila y la de la fuente de tensión

Más detalles

Circuitos Electrónicos Digitales Práctica 1 Introducción al laboratorio de circuitos

Circuitos Electrónicos Digitales Práctica 1 Introducción al laboratorio de circuitos Circuitos Electrónicos Digitales Práctica 1 Introducción al laboratorio de circuitos Grado en Ingeniería Informática: Ingeniería del Software 2010/2011 Objetivos Repasar los conceptos de circuitos eléctricos

Más detalles

La Ley de Ohm. Pre-Laboratorio

La Ley de Ohm. Pre-Laboratorio La Ley de Ohm Pre-Laboratorio Nombre Sección Conteste las siguientes preguntas y entregue este pre-laboratorio a su instructor antes de comenzar la experiencia de laboratorio. 1. El sensor V-I integra

Más detalles

MEDIDAS ELÉCTRICAS: POLÍMETROS

MEDIDAS ELÉCTRICAS: POLÍMETROS MEDIDAS ELÉCTRICAS: POLÍMETROS Objetivos: Medir V, I y R en un circuito elemental, utilizando el polímetro analógico y el polímetro digital. Deducir el valor de la resistencia a partir del código de colores.

Más detalles

PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA

PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA Laboratorio de Circuitos/ Electrotecnia PRÁCTICA 2 LABORATORIO DE CIRCUITOS/ELECTROTECNIA PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA OBJETIVOS Analizar el funcionamiento de circuitos resistivos conectados

Más detalles

CONFIGURACIONES BÁSICAS DE CIRCUITOS

CONFIGURACIONES BÁSICAS DE CIRCUITOS INSTITUCIÓN EDUCATIVA JOSÉ EUSEBIO CARO ÁREA DE TECNOLOGÍA E INFORMÁTICA 2016 DOCENTE JESÚS EDUARDO MADROÑERO RUALES CORREO jesus.madronero@hotmail.com GRADO ONCE FECHA 02 DE MAYO DE 2016 CONFIGURACIONES

Más detalles

Insertar elementos en una diapositiva Recurso de apoyo a proceso de migración a software libre

Insertar elementos en una diapositiva Recurso de apoyo a proceso de migración a software libre Insertar elementos en una diapositiva Recurso de apoyo a proceso de migración a software libre Tabla de Contenido Objetivo... 3 Alcance... 3 Introducción... 4 Agregar objetos... 4 Figuras o dibujos...

Más detalles

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA 17. CURVA CARACTERÍSTICA DE UNA LÁMPARA OBJETIVO Medir las resistencias de los filamentos metálicos y de carbón de dos tipos de lámpara al variar la intensidad de corriente que pasa por los mismos. Representar

Más detalles

PRÁCTICA 3 LEYES DE KIRCHHOFF E DC. DIVISORES DE VOLTAJE Y CORRIE TE E DC

PRÁCTICA 3 LEYES DE KIRCHHOFF E DC. DIVISORES DE VOLTAJE Y CORRIE TE E DC PRÁCTICA 3 LEYES DE KIRCHHOFF E DC. DIVISORES DE VOLTAJE Y CORRIE TE E DC OBJETIVOS: 1. Conocer el uso y manejo del Vatímetro. 2. Deducir las expresiones matemáticas para el divisor de voltaje y el divisor

Más detalles

LABORATORIO DE ELECTROMAGNETISMO RESISTIVIDAD

LABORATORIO DE ELECTROMAGNETISMO RESISTIVIDAD No 4 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Comprender que la resistencia eléctrica de un elemento conductor

Más detalles

PRACTICA LEY DE OHM CIRCUITOS EN SERIE, PARALELO Y MIXTO

PRACTICA LEY DE OHM CIRCUITOS EN SERIE, PARALELO Y MIXTO Ing. Gerardo Sarmiento Díaz de León CETis 63 PRACTICA LEY DE OHM CIRCUITOS EN SERIE, PARALELO Y MIXTO TRABAJO DE LABORATORIO Ley de Ohm Asociación de Resistencias OBJETO DE LA EXPERIENCIA: Comprobar la

Más detalles

FEM y Circuitos de corriente directa, CD tomado de Ohanian/Markert, 2009

FEM y Circuitos de corriente directa, CD tomado de Ohanian/Markert, 2009 FEM y Circuitos de corriente directa, CD tomado de Ohanian/Markert, 2009 Los circuitos eléctricos instalados en automóviles, casas, fábricas conducen uno de los dos tipos de corriente: Corriente directa

Más detalles

CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA

CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA Joaquín Agulló Roca 3º ESO CIRCUITOS ELECTRICOS MAGNITUDES ELECTRICAS La carga eléctrica (q) de un cuerpo expresa el exceso o defecto

Más detalles

Tutorial : Introducción a Multisim.

Tutorial : Introducción a Multisim. Tutorial : Introducción a Multisim. Introducción Éste tutorial presenta una introducción básica al uso del sistema de diseño y simulación Multisim; como referencia adicional puedes consultar los manuales

Más detalles

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA 17. CURVA CARACTERÍSTICA DE UNA LÁMPARA OBJETIVO Medir las resistencias de los filamentos metálicos y de carbón de dos tipos de lámpara al variar la intensidad de corriente que pasa por los mismos. Representar

Más detalles

FISICA II Escuela Politécnica de Ingeniería de Minas y Energía PRÁCTICA Nº 7

FISICA II Escuela Politécnica de Ingeniería de Minas y Energía PRÁCTICA Nº 7 PRÁCTICA Nº 7 Ley de Ohm, resistencias en serie y en derivación A.- Ley de Ohm A.1.- Objetivo.- Comprobar la ley de Ohm en un circuito sencillo de corriente continua. A.2.- Descripción.- Cuando en un circuito

Más detalles

VALIJA DE EXPERIMENTACION EN ELECTRICIDAD BASICA

VALIJA DE EXPERIMENTACION EN ELECTRICIDAD BASICA VALIJA DE EXPERIMENTACION EN ELECTRICIDAD BASICA MODELO ELEC 11 2 TRABAJOS PRACTICOS 3 A continuación se muestran algunos ejemplos sobre la metodología para el desarrollo de los trabajos prácticos: TP

Más detalles

Guía de Estilos de tablas dinámicas Recurso de apoyo a proceso de migración a software libre

Guía de Estilos de tablas dinámicas Recurso de apoyo a proceso de migración a software libre Guía de Estilos de tablas dinámicas Recurso de apoyo a proceso de migración a software libre Tabla de Contenido Objetivo... 3 Instruir a la persona usuaria acerca de la utilización de estilos en las tablas

Más detalles

TEMA 6 ELECTROACÚSTICA. Sonorización industrial y de espectáculos

TEMA 6 ELECTROACÚSTICA. Sonorización industrial y de espectáculos TEMA 6 ELECTROACÚSTICA Sonorización industrial y de espectáculos Ley de Ohm La intensidad de corriente que circula en un circuito es directamente proporcional al voltaje aplicado e inversamente proporcional

Más detalles

Oscar Ignacio Botero H. Diana Marcela Domínguez P. SIMULADOR PROTEUS MÓDULO. VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales)

Oscar Ignacio Botero H. Diana Marcela Domínguez P. SIMULADOR PROTEUS MÓDULO. VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales) SIMULADOR PROTEUS MÓDULO VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales) En éste modo se encuentran las siguientes opciones 1. VOLTÍMETROS Y AMPERÍMETROS (AC Y DC) Instrumentos que operan en tiempo

Más detalles

LABORATORIO DE ELECTROMAGNETISMO LEYES DE KIRCHHOFF

LABORATORIO DE ELECTROMAGNETISMO LEYES DE KIRCHHOFF No LABOATOO DE ELECTOMAGNETSMO LEYES DE KCHHOFF DEPATAMENTO DE FSCA Y GEOLOGA UNESDAD DE PAMPLONA FACULTAD DE CENCAS BÁSCAS Objetivos. Entender las leyes de conservación de energía eléctrica y de la conservación

Más detalles

Práctica de medidas eléctricas. Uso del poĺımetro.

Práctica de medidas eléctricas. Uso del poĺımetro. Departamento de Física Aplicada I, E.U.P, Universidad de Sevilla http://euler.us.es/ niurka/ Plan 1 Objetivos. Asociación de resistencias 2 Realización de medidas Asociación de resistencias Objetivos 1

Más detalles

CURSO TALLER ACTIVIDAD 4 MULTÍMETRO BANCO DE LÁMPARAS MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE ALTERNA

CURSO TALLER ACTIVIDAD 4 MULTÍMETRO BANCO DE LÁMPARAS MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE ALTERNA CURSO TALLER ACTIVIDAD 4 MULTÍMETRO BANCO DE LÁMPARAS MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE ALTERNA FUENTE DE VOLTAJE DE CORRIENTE ALTERNA En nuestro medio la principal fuente de voltaje de corriente

Más detalles

CIRCUITOS DE CORRIENTE CONTINUA

CIRCUITOS DE CORRIENTE CONTINUA CIRCUITOS DE CORRIENTE CONTINUA Concha Rodríguez de Ávila Fuencisla Prados Santaengracia 1. NECESIDAD DE UN GENERADOR PARA QUE LA CORRIENTE CIRCULE DE FORMA CONTINUA. El funcionamiento de un circuito de

Más detalles

FÍSICA III - CARACTERÍSTICAS TÉCNICAS USO DEL TESTER EN EL LABORATORIO Nº 1. TESTER DIGITAL UNI,modeloUT 50 A y modelo

FÍSICA III - CARACTERÍSTICAS TÉCNICAS USO DEL TESTER EN EL LABORATORIO Nº 1. TESTER DIGITAL UNI,modeloUT 50 A y modelo FÍSICA III - CARACTERÍSTICAS TÉCNICAS USO DEL TESTER EN EL LABORATORIO Nº 1 TESTER DIGITAL UNI,modeloUT 50 A y modelo UT 50 C (Medición de temperatura) FIGURA 1 1) Display, visor digital donde se presenta

Más detalles

Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO.

Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO. Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO. Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 2 1.1. Fuente de alimentación CPS250

Más detalles

Unidad. Circuitos eléctricos 5 de corriente continua

Unidad. Circuitos eléctricos 5 de corriente continua Unidad 5 Circuitos eléctricos d i t ti 5 de corriente continua 15.1. 1 El circuito eléctrico A Concepto de energía eléctrica Composición de un átomo. Cationes y aniones. 1 Diferentes métodos para producir

Más detalles

UNIVERSIDAD INDUSTRIAL DE SANTANDER LABORATORIO MEDIDAS ELÉCTRICAS Introducción a la Ingeniería Profesora: Mónica Andrea Botero Londoño

UNIVERSIDAD INDUSTRIAL DE SANTANDER LABORATORIO MEDIDAS ELÉCTRICAS Introducción a la Ingeniería Profesora: Mónica Andrea Botero Londoño UNIVERSIDAD INDUSTRIAL DE SANTANDER LABORATORIO MEDIDAS ELÉCTRICAS Introducción a la Ingeniería Profesora: Mónica Andrea Botero Londoño 1. OBJETIVOS 1.1 Utilizar adecuadamente el multímetro para medir

Más detalles

Informe 2 - Tecnología 1

Informe 2 - Tecnología 1 Informe 2 - Tecnología 1 Ing. Gabriel Loría Marín 2017 Fecha de entrega: 09/Abril/2017 1. Descripción Se realizará la primera implementación de circuitos de resistencias en serie, paralelo y mixtos. Esto

Más detalles

MANUAL DE OPERACIÓN CONECTOR A IAC DE 2, 3, 4 Y 6 PINES CONECTOR B1 INYECTORES CONECTOR B2 INYECTORES LED INDICADORES MODO TRABAJO

MANUAL DE OPERACIÓN CONECTOR A IAC DE 2, 3, 4 Y 6 PINES CONECTOR B1 INYECTORES CONECTOR B2 INYECTORES LED INDICADORES MODO TRABAJO MANUAL DE OPERACIÓN CONECTOR A IAC DE 2, 3, 4 Y 6 PINES CONECTOR B1 INYECTORES CONECTOR B2 INYECTORES LED INDICADORES MODO TRABAJO SELECTOR MODO DE TRABAJO LED INDICADORES DE TIEMPO SELECTOR DE TIEMPO

Más detalles

TRABAJO PRÁCTICO Nº 2 ANÁLISIS DE CIRCUITOS DE CORRIENTE CONTINUA

TRABAJO PRÁCTICO Nº 2 ANÁLISIS DE CIRCUITOS DE CORRIENTE CONTINUA E.T. Nº 17 - D.E. X Reg. PRÁCTCAS UNFCADAS 1 ntroducción Teórica TRABAJO PRÁCTCO Nº 2 ANÁLSS DE CRCUTOS DE CORRENTE CONTNUA a Multímetro digital: El multímetro digital es un instrumento electrónico de

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO LABORATORIO 2: USO DE INSTRUMENTOS DE MEDICIÓN ELÉCTRICA (PARTE II) I. OBJETIVOS OBJETIVO

Más detalles

LEYES BASICAS DE LOS CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores

LEYES BASICAS DE LOS CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores LEYES BASICAS DE LOS CIRCUITOS ELECTRICOS Mg. Amancio R. Rojas Flores LEY DE OHM Ohm determino experimentalmente que la corriente en un circuito resistivo es directamente proporcional al voltaje aplicado

Más detalles

Electricidad. Electricidad. Tecnología

Electricidad. Electricidad. Tecnología Electricidad Tecnología LA CARGA ELÉCTRICA Oxford University Press España, S. A. Tecnología 2 Oxford University Press España, S. A. Tecnología 3 Oxford University Press España, S. A. Tecnología 4 Oxford

Más detalles

1 Puente de Wheatstone. Uso del polímetro como voltímetro y como amperímetro.

1 Puente de Wheatstone. Uso del polímetro como voltímetro y como amperímetro. PRÁCTICA 2 NOMBRE: NOMBRE: NOMBRE: GRUPO: FECHA: 1 Puente de Wheatstone. Uso del polímetro como voltímetro y como amperímetro. 1.1 Objetivos Se pretende comprobar la ley de equilibrio de un puente de Wheatstone.

Más detalles

Guía de conceptualización sobre circuitos eléctricos

Guía de conceptualización sobre circuitos eléctricos Guía de conceptualización sobre circuitos eléctricos Circuitos La corriente fluye en bucles cerrados denominados circuitos. Estos circuitos deben estar compuestos por materiales conductore s y deben tener

Más detalles

16. CIRCUITOS DE CORRIENTE CONTINUA: MEDIDA DE LA INTENSIDAD DE UNA CORRIENTE ELÉCTRICA.

16. CIRCUITOS DE CORRIENTE CONTINUA: MEDIDA DE LA INTENSIDAD DE UNA CORRIENTE ELÉCTRICA. 16. CCUTOS DE COENTE CONTNU: MEDD DE L NTENSDD DE UN COENTE ELÉCTC. OBJETVO El objetivo de esta práctica es familiarizarse con la medida de la intensidad de corriente eléctrica en circuitos simples de

Más detalles

Institución Educativa Barrio Santander Medellín - Antioquia EXAMEN PARCIAL NOMBRE DEL ALUMNO GRADO FECHA

Institución Educativa Barrio Santander Medellín - Antioquia EXAMEN PARCIAL NOMBRE DEL ALUMNO GRADO FECHA Fecha: 29/03/202 Página : de 8 NOMBRE DEL ALUMNO GRADO FECHA. Calcula el siguiente circuito y completa la tabla de resultados V R T I I I 2 I 3 V AB V BC P P R P R2 P R3 2. Resuelve el siguiente circuito

Más detalles

Módulo 1. Sesión 1: Circuitos Eléctricos

Módulo 1. Sesión 1: Circuitos Eléctricos Módulo 1 Sesión 1: Circuitos Eléctricos Electricidad Qué es electricidad? Para qué sirve la electricidad? Términos relacionados: Voltaje Corriente Resistencia Capacitor, etc. Tipos de materiales Conductores

Más detalles

Ley de Ohm. I. Objetivos

Ley de Ohm. I. Objetivos Ley de Ohm I. Objetivos 1. Familiarizarse con el Power Supply y sus diferentes parámetros 2. Medir corriente y voltaje en un circuito dc 3. Determinar la relación entre corriente y voltaje 4. Graficar

Más detalles

CIRCUITOS EN SERIE Y PARALELO

CIRCUITOS EN SERIE Y PARALELO CIRCUITOS EN SERIE Y PARALELO Objetivos: - Evaluar experimentalmente las reglas de Kirchhoff. - Formular el algoritmo mediante el cual se obtiene la resistencia equivalente de dos o más resistores en serie

Más detalles

PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO 2: CIRCUITOS SERIE

PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO 2: CIRCUITOS SERIE PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO 2: CIRCUITOS SERIE UNIDAD 1: CIRCUITO SERIE TEORÍA El circuito serie es el circuito que más se encuentra en el análisis de circuitos eléctricos y electrónicos,

Más detalles

FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY

FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY 1. Objetivos Departamento de Física Laboratorio de Electricidad y Magnetismo FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY Observar el efecto producido al introducir un imán en una bobina.

Más detalles

CORRIENTE CONTINUA II : CURVA CARACTERÍSTICA DE UNA LÁMPARA

CORRIENTE CONTINUA II : CURVA CARACTERÍSTICA DE UNA LÁMPARA eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

ELECTROTECNIA Circuitos de Corriente Continua

ELECTROTECNIA Circuitos de Corriente Continua ELECTROTECNIA Circuitos de Corriente Continua Juan Guillermo Valenzuela Hernández (jgvalenzuela@utp.edu.co) Universidad Tecnológica de Pereira Primer Semestre de 2014 Juan Valenzuela 1 Circuito de Corriente

Más detalles

PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM.

PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM. PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM. Objetivos: Aprender a utilizar un polímetro para realizar medidas de diversas magnitudes eléctricas. Comprobar la ley de Ohm y la ley de la asociación de resistencias

Más detalles

Práctica 2 - Circuitos, instrumentos de medición, elementos de protección y detección de equipos en falla

Práctica 2 - Circuitos, instrumentos de medición, elementos de protección y detección de equipos en falla VIII curso de EEIBS -Práctica 2- Núcleo de Ingeniería Biomédica Facultades de Medicina e Ingeniería UdelaR. Práctica 2 - Circuitos, instrumentos de medición, elementos de protección y detección de equipos

Más detalles

Fecha: Alumno: PRACTICA 1: INTRODUCCIÓN AL PROGRAMA COCODRILE. Curso:

Fecha: Alumno: PRACTICA 1: INTRODUCCIÓN AL PROGRAMA COCODRILE. Curso: PRACTICA 1: INTRODUCCIÓN AL PROGRAMA COCODRILE Alumno: Monta los siguientes circuitos utilizando el programa Cocodrile y anota al lado de cada uno de ellos la que sucede al pulsar el elemento de maniobra.

Más detalles

CIRCUITOS DE CORRIENTE DIRECTA Y LEYES DE KIRCHHOFF

CIRCUITOS DE CORRIENTE DIRECTA Y LEYES DE KIRCHHOFF CIRCUITOS DE CORRIENTE DIRECTA Y LEYES DE KIRCHHOFF M. Orozco, M. Orozco, S. Rodríguez, M. Bedoya, D. Vergara, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia. RESUMEN Este

Más detalles

CURSO TALLER ACTIVIDAD 3 PROTOBOARD MULTÍMETRO MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE DIRECTA

CURSO TALLER ACTIVIDAD 3 PROTOBOARD MULTÍMETRO MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE DIRECTA CUSO TALLE ACTIIDAD 3 POTOBOAD MULTÍMETO MEDICIÓN DE OLTAJES Y COIENTES DE COIENTE DIECTA FUENTE DE OLTAJE DE COIENTE DIECTA Como su nombre lo dice, una fuente de voltaje de corriente directa (C.D) es

Más detalles

FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física.

FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física. Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Leyes de Kirchoff Objetivos 1. Establecer la relación matemática que existe entre diferencia de potencial, resistencia y

Más detalles

Intensidad de corriente - Carga eléctrica 1C = e - ; I = N/t ; 1A = 1C/1sg.

Intensidad de corriente - Carga eléctrica 1C = e - ; I = N/t ; 1A = 1C/1sg. Intensidad de corriente - Carga eléctrica 1C = 6 25 10 18 e - ; I = N/t ; 1A = 1C/1sg. 1). Calcula qué intensidad de corriente ha circulado por una lámpara que ha estado encendida durante 10 segundos,

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla Práctica 5. Construcción de un voltímetro y un óhmetro 5.1. Objeto de la práctica El objeto

Más detalles

Reconocer la caída de tensión en un circuito. Identificar la proporción de intensidad de corriente que pasa sobre un nodo.

Reconocer la caída de tensión en un circuito. Identificar la proporción de intensidad de corriente que pasa sobre un nodo. MALLAS Y NODOS I. OBJETIVOS: Reconocer la caída de tensión en un circuito. Identificar la proporción de intensidad de corriente que pasa sobre un nodo. II. FUNDAMENTO TEORICO: MALLAS: Malla completa.-término

Más detalles

1. Cómo es el interfaz del laboratorio?

1. Cómo es el interfaz del laboratorio? 1. Cómo es el interfaz del laboratorio? Una vez que has accedido al laboratorio de electrónica analógica VISIR, deberás reservar una sesión. Para ello, solamente tendrás que pulsar el botón Reservar Figura

Más detalles

I. RESULTADOS DE APRENDIZAJE

I. RESULTADOS DE APRENDIZAJE CICLO I-15 MEDICIONES ELECTRICAS UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA GUIA DE LABORATORIO # 1 :Mediciones de potencia electrica I. RESULTADOS DE

Más detalles

Práctico de Laboratorio 3

Práctico de Laboratorio 3 Práctico de Laboratorio 3 Objetivos: Aprender a conectar un amperímetro para medir corriente continua en un circuito resistivo serie. Medir el efecto de la resistencia y la tensión sobre la corriente.

Más detalles

16. CIRCUITOS DE CORRIENTE CONTINUA: MEDIDA DE LA INTENSIDAD DE UNA CORRIENTE ELÉCTRICA.

16. CIRCUITOS DE CORRIENTE CONTINUA: MEDIDA DE LA INTENSIDAD DE UNA CORRIENTE ELÉCTRICA. 16. CIRCUITOS DE CORRIENTE CONTINU: MEDID DE L INTENSIDD DE UN CORRIENTE ELÉCTRIC. OBJETIVO El objetivo de esta práctica es familiarizarse con la medida de la intensidad de corriente eléctrica en circuitos

Más detalles

PRÁCTICA Nro. 9 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS BALANCEADOS CON CARGAS RESISTIVAS, CAPACITIVAS E INDUCTIVAS

PRÁCTICA Nro. 9 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS BALANCEADOS CON CARGAS RESISTIVAS, CAPACITIVAS E INDUCTIVAS PRÁCTICA Nro. 9 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS BALANCEADOS CON CARGAS RESISTIVAS, CAPACITIVAS E INDUCTIVAS A. OBJETIVOS: 1. Determinar en forma teórica y experimentalmente;

Más detalles

Figura 1. (a) Diagrama de conexiones del LM741. (b) Diagrama de conexiones del TL084

Figura 1. (a) Diagrama de conexiones del LM741. (b) Diagrama de conexiones del TL084 Práctica No. Usos del Amplificador Operacional (OPAM) Objetivos. Comprobar las configuraciones típicas del amplificador operacional. Comprender en forma experimental el funcionamiento del amplificador

Más detalles

FISICA II Escuela Politécnica de Ingeniería de Minas y Energía PRÁCTICA Nº 7

FISICA II Escuela Politécnica de Ingeniería de Minas y Energía PRÁCTICA Nº 7 PRÁCTIC Nº 7 Ley de Ohm: resistencias en serie y en paralelo.- Ley de Ohm..- Objetivo.- Comprobar la ley de Ohm en un circuito sencillo de corriente continua...- Descripción.- Cuando en un circuito alimentado

Más detalles

MEDIDA DE RESISTENCIAS Puente de Wheatstone

MEDIDA DE RESISTENCIAS Puente de Wheatstone MEDIDA DE ESISTENCIAS Puente de Wheatstone. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. 2. DESAOLLO TEÓICO Leyes de Kirchhoff La primera ley de Kirchhoff, también conocida como ley de

Más detalles

Guía para previsualización de saltos de página Recurso de apoyo a proceso de migración a software libre

Guía para previsualización de saltos de página Recurso de apoyo a proceso de migración a software libre Guía para previsualización de saltos de página Recurso de apoyo a proceso de migración a software libre Tabla de Contenido Objetivo... 3 Alcance... 3 Previsualización saltos de página... 4 Introducción...

Más detalles

INSTITUTO TECNOLÓGICO DE ESTUDIOS SUPERIORES DE LOS CABOS

INSTITUTO TECNOLÓGICO DE ESTUDIOS SUPERIORES DE LOS CABOS SUPERIORES DE LOS CABOS RESPONSABLE: Dirección académica y de investigación HOJA: 1 de 5 Desarrollo de la Práctica Unidad de aprendizaje: Practica número: 5 y 6 Nombre de la practica: 5. Confirmación de

Más detalles

COMPORTAMIENTO DE LOS CIRCUITOS EN CORRIENTE CONTINUA Como Corriente Continua se define una corriente que no varía en el tiempo ni de magnitud ni de sentido. Siempre que la carga insertada en el circuito

Más detalles

3003D 3005D 6003D CONTENIDOS

3003D 3005D 6003D CONTENIDOS 3003D 3005D 6003D CONTENIDOS 1. INTRODUCCION 2. MODELOS 3. ESPECIFICACIONES 4. CONTROLES E INDICADORES a. Panel frontal del modelo MPS-3003/3005/6003 b. Panel posterior del modelo MPS-3003/3005/6003 4.1

Más detalles

índice DEFINICIÓN DE ELECTRICIDAD ORIGEN DE LOS FENÓMENOS ELÉCTRICOS CONCEPTO DE CARGA ELÉCTRICA

índice DEFINICIÓN DE ELECTRICIDAD ORIGEN DE LOS FENÓMENOS ELÉCTRICOS CONCEPTO DE CARGA ELÉCTRICA índice Efectos de la energía eléctrica. Conversión y aplicaciones. Magnitudes eléctricas básicas. Ley de Ohm. Elementos de un circuito eléctrico. Simbología. Tipos de circuitos eléctricos. Potencia y energía

Más detalles

LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM

LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM OBJETIVO Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que genera. EQUIPAMIENTO 1. Circuito

Más detalles

No 5. LABORATORIO DE ELECTROMAGNETISMO Circuito Serie Circuito Paralelo Ley de Ohm. Objetivos. Esquema del laboratorio y materiales

No 5. LABORATORIO DE ELECTROMAGNETISMO Circuito Serie Circuito Paralelo Ley de Ohm. Objetivos. Esquema del laboratorio y materiales No 5 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Investigar y analizar las tres variables involucradas en la relación

Más detalles

FICHAS DE RECUPERACIÓN DE 3º ESO Nombre:... Curso:... 1) ELECTRICIDAD: EL CIRCUITO ELÉCTRICO

FICHAS DE RECUPERACIÓN DE 3º ESO Nombre:... Curso:... 1) ELECTRICIDAD: EL CIRCUITO ELÉCTRICO FICHAS DE RECUPERACIÓN DE 3º ESO Nombre:... Curso:... CALIFICACIÓN: 1) ELECTRICIDAD: EL CIRCUITO ELÉCTRICO El circuito eléctrico es la unión de varios aparatos por los que se mueven los electrones, este

Más detalles

Práctica No. 3 Equivalente de Thévenin y superposición

Práctica No. 3 Equivalente de Thévenin y superposición Práctica No. Equivalente de Thévenin y superposición Objetivo Hacer una comprobación experimental del equivalente de Thévenin y el principio de superposición. Material y Equipo Resistencias de 0Ω, 50Ω,

Más detalles

CIRCUITOS Y MEDICIONES ELECTRICAS

CIRCUITOS Y MEDICIONES ELECTRICAS Laboratorio electrónico Nº 2 CIRCUITOS Y MEDICIONES ELECTRICAS Objetivo Aplicar los conocimientos de circuitos eléctricos Familiarizarse con la instalaciones eléctricas Realizar mediciones de los parámetros

Más detalles

Proteger la edición de documentos Recurso de apoyo a proceso de migración a software libre

Proteger la edición de documentos Recurso de apoyo a proceso de migración a software libre Proteger la edición de documentos Recurso de apoyo a proceso de migración a software libre Tabla de Contenido Objetivo... 3 Alcance... 3 Protección de Documentos... 4 Protección en el Procesador de Texto

Más detalles

Trabajar con Tablas. capítulo 07

Trabajar con Tablas. capítulo 07 Trabajar con Tablas capítulo 07 Trabajar con Tablas trabajar con tablas La organización en tablas en Microsoft Word facilita el tratamiento de información dentro del documento, pudiendo dividir dicha

Más detalles

Práctico de Laboratorio 3

Práctico de Laboratorio 3 Práctico de Laboratorio 3 Objetivos: Aprender a conectar un amperímetro para medir corriente continua en un circuito. Medir el efecto de la resistencia y la tensión sobre la corriente. Resistencia, Tensión

Más detalles

Esas cargas se encuentran puenteadas entre si, pudiendo conectarse en serie con el amperímetro oprimiendo solo el botón de prueba (BURDEN).

Esas cargas se encuentran puenteadas entre si, pudiendo conectarse en serie con el amperímetro oprimiendo solo el botón de prueba (BURDEN). Actividad 15. Instrumentos para prueba de equipos de medición en campo. Explicación del tema Instrumentos para prueba de equipos de medición en campo. Los instrumentos que se verán es este apartado son

Más detalles

4º E.S.O. PRÁCTICAS DE ELECTRICIDAD Y ELECTRÓNICA

4º E.S.O. PRÁCTICAS DE ELECTRICIDAD Y ELECTRÓNICA Cuaderno de prácticas I 4º E.S.O. PRÁCTICAS DE ELECTRICIDAD Y ELECTRÓNICA Departamento de Tecnología I.E.S. Pedro Simón Abril (Alcaraz) REPASO DE CIRCUITOS BÁSICOS 1. Control de un punto de luz desde dos

Más detalles

Práctica 1: Medidas Básicas e Instrumentación

Práctica 1: Medidas Básicas e Instrumentación Práctica 1: Medidas Básicas e Instrumentación Objetivo: Familiarizarse con el uso del multímetro digital, breadboard, power supply, osciloscopio y generador de señales que se encuentran en la mesa de su

Más detalles

CURSO: CIRCUITOS ELÉCTRICOS UNIDAD 3: CIRCUITO PARALELO - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. INTRODUCCIÓN

CURSO: CIRCUITOS ELÉCTRICOS UNIDAD 3: CIRCUITO PARALELO - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. INTRODUCCIÓN CURSO: CIRCUITOS ELÉCTRICOS UNIDAD 3: CIRCUITO PARALELO - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. INTRODUCCIÓN En esta unidad, usted aprenderá a analizar un circuito paralelo, a aplicar la Ley de Kirchhoff

Más detalles

Negro Marrón. Rojo. Plata

Negro Marrón. Rojo. Plata Fundamentos Físicos y Tecnológicos de la nformática. Examen de prácticas de laboratorio. Octubre 05. En ué figura o figuras de las siguientes se presenta un montaje válido para medir la corriente ue circula

Más detalles

PRÁCTICA 6. CIRCUITOS ARITMÉTICOS

PRÁCTICA 6. CIRCUITOS ARITMÉTICOS PRÁCTICA 6. CIRCUITOS ARITMÉTICOS 1. Objetivo El objetivo de esta práctica es estudiar un circuito aritmético y aprender cómo construir un componente básico en electrónica digital: el generador de reloj.

Más detalles

Formato de celdas Recurso de apoyo a proceso de migración a software libre

Formato de celdas Recurso de apoyo a proceso de migración a software libre Formato de celdas Recurso de apoyo a proceso de migración a software libre Tabla de Contenido Objetivo... 3 Alcance... 3 Formato de Celdas... 4 Introducción... 4 Números... 4 Fuente... 4 Efectos tipográficos...

Más detalles

Medida del campo magnético terrestre

Medida del campo magnético terrestre Práctica 8 Medida del campo magnético terrestre 8.1 Objetivo El objetivo de esta práctica es medir el valor del campo magnético terrestre. Para ello se emplea un campo magnético de magnitud y dirección

Más detalles

CIRCUITOS INTEGRADOS DE PUERTAS LÓGICAS

CIRCUITOS INTEGRADOS DE PUERTAS LÓGICAS CIRCUITOS INTEGRADOS DE PUERTAS LÓGICAS CIRCUITOS COMBINACIONALES INTEGRADOS CIRCUITOS INTEGRADOS SECUENCIALES: FLIP-FLOPS, REGISTROS Y CONTADORES CONSEJOS PARA LA ELABORACIÓN DE DIAGRAMAS LÓGICOS DE CIRCUITOS

Más detalles

Práctica 4 Detector de ventana

Práctica 4 Detector de ventana Práctica 4 Detector de ventana Objetivo de la práctica Analizar el comportamiento de un detector de ventana Al terminar esta práctica, el discente será capaz de: Comprender el funcionamiento de un circuito

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Ing. Aeroespacial 2009-3 11352 Mediciones eléctricas y electrónicas PRÁCTICA No. 4 LABORATORIO DE NOMBRE DE LA

Más detalles

Modelado eléctrico de la membrana celular. Taller de Ingeniería Biológica II 2015

Modelado eléctrico de la membrana celular. Taller de Ingeniería Biológica II 2015 Modelado eléctrico de la membrana celular Taller de Ingeniería Biológica II 2015 Índice Modelado y Simulación Motivación Biológica Propagación del impulso nervioso Potencial de membrana Análogo eléctrico

Más detalles

LABORATORIO DE ELECTROTECNIA PRÁCTICA 4: CIRCUITOS DE CORRIENTE CONTINUA

LABORATORIO DE ELECTROTECNIA PRÁCTICA 4: CIRCUITOS DE CORRIENTE CONTINUA LABORATORIO DE ELECTROTECNIA PRÁCTICA 4: CIRCUITOS DE CORRIENTE CONTINUA APELLIDOS NOMBRE GRUPO Nº MATRICULA ENSAYOS DE LABORATORIO Los ensayos o medidas a efectuar en el Laboratorio son los siguientes:

Más detalles

Consulte y explique los conceptos de energía potencial gravitacional; energía potencial eléctrica, y explicar su analogía.

Consulte y explique los conceptos de energía potencial gravitacional; energía potencial eléctrica, y explicar su analogía. :: OBJETIVOS [2.1] Comprobar experimentalmente la ley de Ohm. Analizar las diferencias existentes entre elementos lineales (óhmicos) y no lineales (no óhmicos). Aplicar técnicas de análisis gráfico y ajuste

Más detalles