Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea:"

Transcripción

1 Méodo de Guss Ejercicio nº.- Pon un ejemplo, cundo se posible, de un sisem de dos ecuciones con res incógnis que se: ) compible deermindo compible indeermindo c) incompible Jusific en cd cso us respuess. Ejercicio nº.- Ddo el sisem de ecuciones: Si es posible, ñde un ecución de modo que el nuevo sisem resulne se: ) Incompible Compible indeermindo Jusific us respuess. Ejercicio nº.- ) Eplic si el siguiene sisem de ecuciones es compible o incompible: Podrímos conseguir que fuer compible deermindo, suprimiendo un de ls ecuciones? Rónlo. Ejercicio nº.- ) Resuelve el sisem de ecuciones: Ejercicio nº.- ) Ron si los siguienes sisems son equivlenes o no: II: I:

2 Añde un ecución l sisem I, de modo que el nuevo sisem resulne se incompible. Jusific u respues. Ejercicio nº.- Ddos los siguienes sisems de ecuciones: Resuélvelos e inerprélos geoméricmene. Ejercicio nº.- Resuelve el siguiene sisem e inerprélo geoméricmene: Ejercicio nº.- Resuelve e inerpre geoméricmene el sisem: Ejercicio nº.- Resuelve los siguienes sisems h un inerpreción geoméric de los mismos: Ejercicio nº.- Resuelve e inerpre geoméricmene el siguiene sisem de ecuciones: ) )

3 Ejercicio nº.- Uili el méodo de Guss pr resolver los sisems: Ejercicio nº.- Resuelve, por el méodo de Guss, los sisems: Ejercicio nº.- Resuelve, por el méodo de Guss, los siguienes sisems de ecuciones: Ejercicio nº.- Resuelve esos sisems, medine el méodo de Guss: Ejercicio nº.- Resuelve los siguienes sisems, uilindo el méodo de Guss: ) ) ) ) )

4 Ejercicio nº.- Discue, resuelve cundo se posible, el siguiene sisem de ecuciones: Ejercicio nº.- Discue en función del prámero, resuelve cundo se posible: Ejercicio nº.- Discue, resuelve cundo se posible, el sisem: Ejercicio nº.- Ddo el siguiene sisem de ecuciones, discúelo resuélvelo pr los vlores de m que lo hcen compible: Ejercicio nº.- Discue el siguiene sisem en función del prámero, resuélvelo cundo se posible: Ejercicio nº.- En un reunión h persons, enre hombres, mujeres niños. El doble del número de mujeres más el riple del número de niños, es igul l doble del número de hombres. m m

5 ) Con esos dos, se puede sber el número de hombres que h? Si, demás, se sbe que el número de hombres es el doble del de mujeres, cuános hombres, mujeres niños h? Ejercicio nº.- Por un rouldor, un cuderno un crpe se pgn, euros. Se sbe que el precio del cuderno es l mid del precio del rouldor que, el precio de l crpe es igul l precio del cuderno más el % del precio del rouldor. Clcul los precios que mrcb cd un de ls coss, sbiendo que sobre esos precios se h hecho el % de descueno. Ejercicio nº.- Disponemos de res lingoes de disins leciones de res meles A, B C. El primer lingoe coniene g del mel A, g del B del C. El segundo coniene g de A, g de B g de C. El ercero coniene g de A, g de B g de C. Queremos elborr, prir de esos lingoes, uno nuevo que coneng g de A, g de B g de C. Cuános grmos h que coger de cd uno de los res lingoes? Ejercicio nº.- Un compñí fbricó res ipos de muebles: sills, mecedors sofás. Pr l fbricción de cd uno de esos ipos necesió l uilición de ciers uniddes de mder, plásico luminio l como se indic en l bl siguiene. L compñí ení en eisenci uniddes de mder, uniddes de plásico uniddes de luminio. Si l compñí uilió ods sus eisencis, cuáns sills, mecedors sofás fbricó? MADERA PLÁSTICO ALUMINIO SILLA unidd unidd uniddes MECEDORA unidd unidd uniddes SOFÁ unidd uniddes uniddes Ejercicio nº.- En un residenci de esudines se comprn semnlmene heldos de disinos sbores: vinill, chocole n. El presupueso desindo pr es compr es de euros el precio de cd heldo es de euros el de vinill, euros el de chocole euros el de n. Conocidos los gusos de los esudine, se sbe que enre heldos de chocole de n se hn de comprr el % más que de vinill. ) Plne un sisem de ecuciones lineles pr clculr cuános heldos de cd sbor se comprn l semn. Resuelve, medine el méodo de Guss, el sisem plnedo en el prdo nerior.

6 Méodo de Guss Ejercicio nº.- Pon un ejemplo, cundo se posible, de un sisem de dos ecuciones con res incógnis que se: ) compible deermindo compible indeermindo c) incompible Jusific en cd cso us respuess. ) Si el sisem iene menos ecuciones que incógnis, no puede ser compible deermindo; con solo dos dos (ecuciones) no podemos verigur res incógnis. Por ejemplo: ieneinfinissoluciones, queserín delform:,,, con R c) Tendrín que ser dos ecuciones conrdicoris. Por ejemplo: esincompible;nose puedendrlsdosecuciones lve. Ejercicio nº.- Ddo el sisem de ecuciones: Si es posible, ñde un ecución de modo que el nuevo sisem resulne se: ) Incompible Compible indeermindo Jusific us respuess. ) Un ecución que hg el sisem incompible h de ser de l form: b k, con k b Si ommos, por ejemplo,, b, enemos:

7 Añdiendo es ecución, el sisem es incompible. Pr que se compible indeermindo, l ecución que ñdmos será de l form: b b (un combinció n lineldelsdosqueenemos) Si ommos, por ejemplo,, b, quedrá: Añdiendo es ecución, el sisem es compible indeermindo. Ejercicio nº.- ) Eplic si el siguiene sisem de ecuciones es compible o incompible: Podrímos conseguir que fuer compible deermindo, suprimiendo un de ls ecuciones? Rónlo. ) Observmos que l ercer ecución es sum de ls dos primers, slvo en el érmino independiene que, en lugr de un, es un. Por no, l ercer ecución conrdice ls dos primers. El sisem es incompible. No. Si suprimimos un de ls ecuciones, obendremos un sisem con res incógnis solo dos ecuciones. Ese nuevo sisem podrí ser compible indeermindo (en ese cso lo serí), pero no compible deermindo. Ejercicio nº.- ) Resuelve el sisem de ecuciones: ) Sumndo: Susiuendo enl ecución: L solución del sisem es,. Tenemos dos recs que se corn en el puno (, ). I) Si ñdimos un ecución que se combinción linel de ls dos que enemos, el nuevo sisem seguirá siendo compible deermindo. L nuev rec psrí mbién por (, ). L solución del sisem seguirá siendo l mism. Por ejemplo, si summos ls dos ecuciones que enemos, obenemos. Añdiendo es ecución, seguirá siendo compible deermindo ( con l mism solución). II) Es imposible, pues ls dos recs que enemos solo ienen en común el puno (, ). Añdiendo or ecución no podemos conseguir que ess dos recs se coren en más punos.

8 III) Pr que fuer incompible, endrímos que ñdir un ecución que conrdijer ls dos que enemos; es decir, de l form: b k, con k b Por ejemplo, con, b : Añdiendo es ecución, obendrímos un sisem incompible. Ejercicio nº.- ) Ron si los siguienes sisems son equivlenes o no: I: II: Añde un ecución l sisem I, de modo que el nuevo sisem resulne se incompible. Jusific u respues. ) El segundo sisem es compible deermindo. Tiene como únic solución (,, ), que mbién es solución del sisem I. Sin embrgo, el sisem I iene, demás de (,, ), infinis soluciones más, es compible indeermindo. Por no, los dos sisems no son equivlenes. Pr que se incompible, debemos ñdir un ecución de l form: b k, con k Por ejemplo, si ommos, b : Añdiendo es ecución, el nuevo sisem es incompible. Ejercicio nº.- Ddos los siguienes sisems de ecuciones: ) Resuélvelos e inerprélos geoméricmene. ) Resolvemos el sisem por el méodo de Guss:

9 El sisem es compible deermindo. L solución es (, ). Geoméricmene, represen res recs que se corn en el puno (, ): Se r de un sisem de dos ecuciones con res incógnis. Psndo l l º miembro en ls dos ecuciones, enemos que: El sisem es compible indeermindo. Sus soluciones son: Geoméricmene, son dos plnos que se corn lo lrgo de un rec:,,, con R

10 Ejercicio nº.- Resuelve el siguiene sisem e inerprélo geoméricmene: Resolvemos el sisem medine el méodo de Guss: L úlim ecución es imposible. El sisem es incompible. Geoméricmene, represen res plnos que se corn dos dos, pero sin ningún puno común los res. Ejercicio nº.- Resuelve e inerpre geoméricmene el sisem: En primer lugr, lo resolvemos medine el méodo de Guss:

11 L úlim ecución es imposible. El sisem es incompible. Geoméricmene, el sisem represen res plnos que se corn dos dos, pero sin ningún puno común los res. Ejercicio nº.- Resuelve los siguienes sisems h un inerpreción geoméric de los mismos: ) Resolvemos el sisem por el méodo de Guss: ) ;., o.susoluciónes sisem escompibledeermind El :, mene,son res recs que se corn en elpuno Geoméric

12 Se r de un sisem de dos ecuciones con res incógnis. Psndo l l º miembro en ls dos ecuciones, enemos que: Por no, se r de un sisem compible indeermindo, cus soluciones son: Geoméricmene, son dos plnos que se corn lo lrgo de un rec: Ejercicio nº.- Resuelve e inerpre geoméricmene el siguiene sisem de ecuciones: Resolvemos el sisem medine el méodo de Guss:,,, con R

13 El sisem es compible indeermindo. Sus soluciones son: Geoméricmene, represen res plnos que ienen un rec en común: Ejercicio nº.- Uili el méodo de Guss pr resolver los sisems: miembro: l Psmosl o,,, con R ) )

14 L solución es (,, ). L º l ª son ecuciones conrdicoris. Por no, el sisem es incompible. Ejercicio nº.- Resuelve, por el méodo de Guss, los sisems: ) ) ) ( :.,, L soluciónes

15 L úlim ecución es imposible. Por no, el sisem es incompible. Ejercicio nº.- Resuelve, por el méodo de Guss, los siguienes sisems de ecuciones: L solución del sisem es (,, ). Ls soluciones del sisem son: ) )

16 ,,,, con Ejercicio nº.- Resuelve esos sisems, medine el méodo de Guss: ) ) ) ( :.,, Lsoluciónes miembro: l Psmosl o

17 Ls soluciones del sisem son: Ejercicio nº.- Resuelve los siguienes sisems, uilindo el méodo de Guss: L solución es (,, ).,,, con R ) ) : : :

18 Ls soluciones del sisem son:,,, con Ejercicio nº.- Discue, resuelve cundo se posible, el siguiene sisem de ecuciones: Si, quedrí. Por no, el sisem serí incompible. Si, el sisem serí incompible deermindo. Lo resolvemos: Pr cd vlor de, enemos un sisem de ecuciones diferene (h infinios sisems). Cd uno de ellos es compible deermindo, con solución: miembro: l Psmosl o ) ( :,,

19 Ejercicio nº.- Discue en función del prámero, resuelve cundo se posible: Si, es decir, si, l ª ecución quedrá, que es imposible. Por no, serí incompible. Si, el sisem serí compible deermindo. Lo resolvemos: Pr cd vlor de, enemos un sisem diferene (h infinios sisems). Cd uno de ellos iene como solución únic: Ejercicio nº.- Discue, resuelve cundo se posible, el sisem:,, m

20 Si m, el sisem serí compible indeermindo. Lo resolvemos: Ls soluciones serín:,,, con R Si m, el sisem serí compible deermindo. Quedrí: Pr cd vlor de m, enemos un sisem diferene (h infinios sisems). Cd uno de ellos iene como solución únic (,, ). Ejercicio nº.- Ddo el siguiene sisem de ecuciones, discúelo resuélvelo pr los vlores de m que lo hcen compible: Si m, el sisem quedrí: Serí compible indeermindo, con soluciones:,,, siendo R m m m m m m m m m

21 Si m, el sisem serí compible deermindo. Lo resolvemos: Pr cd vlor de m, endrímos un sisem de ecuciones diferene (h infinios sisems). Cd uno de ellos iene como solución únic (,, ). Ejercicio nº.- Discue el siguiene sisem en función del prámero, resuélvelo cundo se posible: Serí compible indeermindo, con soluciones: Ejercicio nº.- En un reunión h persons, enre hombres, mujeres niños. El doble del número de mujeres más el riple del número de niños, es igul l doble del número de hombres. ) Con esos dos, se puede sber el número de hombres que h? m sisem qued: el, esdecir,si, Si miembro: l Psmosl o,,, con R.,, o.suúnicsoluciónserí serí compibledeermind, Si

22 Si, demás, se sbe que el número de hombres es el doble del de mujeres, cuános hombres, mujeres niños h? ) Llmemos l número de hombres, l de mujeres l de niños. Como h persons, enemos que: Con el oro do, plnemos or ecución: Solo con esos dos no podemos sber el número de hombres (ni el de mujeres, ni el de niños) que h. Es un sisem compible indeermindo; como enemos res incógnis, pr que pued ser compible deermindo, necesimos or ecución. Añdiendo un ercer ecución con el do que nos dn, plnemos el sisem: Por no, h hombres, mujeres niños. Ejercicio nº.- Por un rouldor, un cuderno un crpe se pgn, euros. Se sbe que el precio del cuderno es l mid del precio del rouldor que, el precio de l crpe es igul l precio del cuderno más el % del precio del rouldor. Clcul los precios que mrcb cd un de ls coss, sbiendo que sobre esos precios se h hecho el % de descueno. Tenemos que: ROTULADOR CUADERNO CARPETA PRECIO SIN DESCUENTO PRECIO CON DESCUENTO,,, Plnemos el sisem con los dos que nos dn:,,,,,,,,,,,,,,,,,,,,

23 ,,,,, Por no, el rouldor mrcb, euros, el cuderno,, euros, l crpe,, euros. Ejercicio nº.- Disponemos de res lingoes de disins leciones de res meles A, B C. El primer lingoe coniene g del mel A, g del B del C. El segundo coniene g de A, g de B g de C. El ercero coniene g de A, g de B g de C. Queremos elborr, prir de esos lingoes, uno nuevo que coneng g de A, g de B g de C. Cuános grmos h que coger de cd uno de los res lingoes? Resumimos en un bl los dos que nos dn: A B C PESO TOTAL er LINGOTE g g g g º LINGOTE g g g g er LINGOTE g g g g Llmmos los grmos que enemos que coger del primer lingoe, los del segundo lingoe los del ercero. Como queremos conseguir g de A, g de B g de C, endremos que:,,,,,,,,, Resolvemos el sisem medine el méodo de Guss:

24 Por no, hbrá que coger g del primer lingoe, g del segundo g del ercero. Ejercicio nº.- Un compñí fbricó res ipos de muebles: sills, mecedors sofás. Pr l fbricción de cd uno de esos ipos necesió l uilición de ciers uniddes de mder, plásico luminio l como se indic en l bl siguiene. L compñí ení en eisenci uniddes de mder, uniddes de plásico uniddes de luminio. Si l compñí uilió ods sus eisencis, cuáns sills, mecedors sofás fbricó? MADERA PLÁSTICO ALUMINIO SILLA unidd unidd uniddes MECEDORA unidd unidd uniddes SOFÁ unidd uniddes uniddes Llmmos l número de sills fbricds, l de mecedors l de sofás. Así, eniendo en cuen los dos que nos dn, enemos que: Mder Plásico Aluminio Resolvemos el sisem medine el méodo de Guss: Por no, se fbricron sills, mecedors sofás. Ejercicio nº.- En un residenci de esudines se comprn semnlmene heldos de disinos sbores: vinill, chocole n. El presupueso desindo pr es compr es de euros el precio de cd heldo es de euros el de vinill, euros el de chocole euros el de n. Conocidos los gusos de los esudine, se sbe que enre heldos de chocole de n se hn de comprr el % más que de vinill.

25 ) Plne un sisem de ecuciones lineles pr clculr cuános heldos de cd sbor se comprn l semn. Resuelve, medine el méodo de Guss, el sisem plnedo en el prdo nerior. ) Llmmos l número de heldos de vinill que se comprn semnlmene, l de heldos de chocole, l de heldos de n. Por no, se comprn heldos de vinill, de chocole de n., %másquevinill Chocole n Preciooleuros Comprnheldosenol ) ( :

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS Ejercicio nº.- Pon un ejemplo, cundo se posible, de un sisem de dos ecuciones con res incógnis que se: ) Compible deermindo Compible indeermindo c) Incompible

Más detalles

SOLUCIONES EJERCICIOS SISTEMAS DE ECUACIONES

SOLUCIONES EJERCICIOS SISTEMAS DE ECUACIONES SOLUCIONES EJERCICIOS SISTEMAS DE ECUACIONES Ejercicio nº.- Pon un ejemplo cundo se posible de un sisem de dos ecuciones con res incógnis que se: ) compible deermindo compible indeermindo c) incompible

Más detalles

Unidad Nº 1 Sistemas de ecuaciones. Método de Gauss 1

Unidad Nº 1 Sistemas de ecuaciones. Método de Gauss 1 Unidd Nº Sisems de ecuciones. Méodo de Guss Memáics plicds ls Ciencis Sociles II. ANAYA JRCICIOS PROPUSTOS (págin Sin resolverlos, son equivlenes esos sisems? b, d c ---oooo--- Se r de prir de uno de los

Más detalles

Cuántos gramos hay que coger de cada uno de los tres lingotes?

Cuántos gramos hay que coger de cada uno de los tres lingotes? Consejerí de Educción, Cultur Deportes CENTRO DE EDUCACIÓN DE PERSONAS ADULTAS. Simien C/ Frncisco Grcí Pvón, 6 Tomelloso 7 (C. Rel) Teléfono F: 96 9 9. Por un rotuldor, un cuderno un crpet se pgn,6 euros.

Más detalles

SISTEMAS DE ECUACIONES LINEALES amn

SISTEMAS DE ECUACIONES LINEALES amn Apunes de A. Cbñó Memáics plicds cc.ss. SISTEMAS DE ECUACIONES LINEALES. CONTENIDOS: Plnemienos de problems lineles. Soluciones de un sisem de ecuciones lineles. Sisems lineles equivlenes. Méodo de reducción

Más detalles

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS.

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. TEMA : SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. RELACIÓN DE PROBLEMAS. Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: a) Compaible deerminado b)

Más detalles

Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea:

Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea: Méodo de Gauss Ejercicio nº.- Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: compaible deerminado compaible indeerminado c) incompaible Jusifica en cada caso

Más detalles

TEMA 1 SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

TEMA 1 SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Te Sises de ecuciones. Méodo de Guss TEMA SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS RESOLVER E INTERPRETAR GEOMÉTRICAMENTE SISTEMAS LINEALES EJERCICIO : Resuelve los siguienes sises h un inerpreción geoéric

Más detalles

Clasificación y resolución de sistemas por métodos elementales. 1. Resuelve utilizando el método de de reducción de Gauss Jordan, los sistemas:

Clasificación y resolución de sistemas por métodos elementales. 1. Resuelve utilizando el método de de reducción de Gauss Jordan, los sistemas: Álgebr: Sisems José Mrí Mríne Medino MATEMÁTICAS II TEMA Sisems de ecuciones lineles: Problems propuesos Clsificción resolución de sisems por méodos elemenles Resuelve uilindo el méodo de de reducción

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) I.E.S. CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEBRE (RESUELTOS por Anonio enguino) ATEÁTICAS II Tiempo máimo: hors Se elegirá el Ejercicio A o el B, del que sólo se hrán

Más detalles

1-ª 2-ª 3 1-ª 3-ª ª. x + y + z = 2. 5y + 4z = 2 2z = 24 2-ª ª 3-ª 1-ª 5 2-ª 3-ª 1-ª 2-ª 2 3-ª + 2-ª

1-ª 2-ª 3 1-ª 3-ª ª. x + y + z = 2. 5y + 4z = 2 2z = 24 2-ª ª 3-ª 1-ª 5 2-ª 3-ª 1-ª 2-ª 2 3-ª + 2-ª DOSIER SISTEMAS DE ECUACIONES LINEALES - GAUSS MACS. Resuelve estos sistems de ecuciones medinte el método de Guss: b c -ª -ª -ª -ª -ª -ª -ª -ª -ª,, Resuelve estos sistems de ecuciones lineles: b -ª -ª

Más detalles

MATEMÁTICAS II TEMA 3 Sistemas de ecuaciones lineales: Problemas propuestos

MATEMÁTICAS II TEMA 3 Sistemas de ecuaciones lineales: Problemas propuestos Álgebr: Sisems wwwmemicsjmmmcom José Mrí Mríne Medino MATEMÁTICAS II TEMA Sisems de ecuciones lineles: Problems propuesos Clsificción resolución de sisems por méodos elemenles Resuelve uilindo el méodo

Más detalles

elblogdematedeaida pág Discute según los valores del parámetro y resuelve cuando sea posible los sistemas de ecuaciones siguientes:

elblogdematedeaida pág Discute según los valores del parámetro y resuelve cuando sea posible los sistemas de ecuaciones siguientes: elblogdeedeid pág curso - HOJA : EJERCCO REPAO DE TEMA - Discue según los vlores del práero resuelve cundo se posible los sises de ecuciones siguienes: ) 9 b) ) λ λ λ ; /;/;) b) - ); ) - Resuelve por Crer

Más detalles

EJERCICIOS MATRICES. 2 euros/kg. Ejercicio nº 1.-

EJERCICIOS MATRICES. 2 euros/kg. Ejercicio nº 1.- EJERIIOS MTRIES Ejercicio nº.- Un hipermercdo quiere oferr res clses de bndejs,. L bndej coniene g de queso mnchego, g de roquefor 8 g de cmember l bndej coniene g de cd uno de los res ipos de queso neriores

Más detalles

α el sistema es compatible indeterminado y la solución es α el sistema es incompatible; Si 1 α y 1

α el sistema es compatible indeterminado y la solución es α el sistema es incompatible; Si 1 α y 1 ÁLGEBRA Preguns de Selecividd de l Comunidd Vlencin Resuelos en vídeo hp://www.prendermemics.org/bmeccnnlgebr_pu.hml Pág.. (PAU junio A Clculr los vlores que sisfcen ls siguienes ecuciones: C AY AX B AX

Más detalles

Hacia la universidad Aritmética y álgebra

Hacia la universidad Aritmética y álgebra Solucionrio Solucionrio Hci l universidd riméic álger OPIÓN. Dds ls mrices ) lcul ls mrices. ) lcul l mri invers de. c) Resuelve l ecución mricil. ) 8 7 8 9 ) ( ), dj( ) c), [ ] 9 9 8 9. Resuelve el sisem

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS Deerminnes y. Ejercicios resuelos. EJERCICIOS PROPUESTOS. Clcul el vlor de los siguienes deerminnes. 4 6 e) 4 5 7 4 d) 0 4 f) + 4 ( ) 4 6 4 8 6 = = = 5 0 4 6 7 4 = + = = = = 5 0 4 = + 4 + 0 0 4 = 4+ 0+

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem

Más detalles

APLICACIONES DE LAS MATRICES

APLICACIONES DE LAS MATRICES PLIIONES DE LS MTRIES Ejercicio nº.- ) Encuenr los vlores de pr los que l ri: no es inversible. Ejercicio nº.- lcul, si es posible, l invers de l ri: Pr los csos en los que. Ejercicio nº.- Hll un ri,,

Más detalles

SOLUCIONES EJERCICIOS MATRICES

SOLUCIONES EJERCICIOS MATRICES SOLUIONES EJERIIOS MTRIES Ejercicio nº.- Un hipermercdo quiere oferr res clses de bndejs,. L bndej coniene g de queso mnchego, g de roquefor 8 g de cmember l bndej coniene g de cd uno de los res ipos de

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. IES Pdre Poved (Gudi) Memáics plicds ls SS II Deprmeno de Memáics loque I: Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJERIIOS UNIDDES : MTRIES Y DETERMINNTES (Jun-96) Encuenre

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

Sistemes d equacions (Gauss)

Sistemes d equacions (Gauss) Sistemes d equcions (Guss) Ejercicio nº.- Dos kilos de nrnjs, más un kilo de plátnos, más dos kilos de mngos, vlen, euros. Dos kilos de nrnjs, más dos kilos de plátnos, más de mngos, vlen euros. Tres kilos

Más detalles

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO MTEMÁTCS RUEBS DE CCESO L UNVERSDD DE OVEDO.- MTRCES Y DETERMNNTES.- MODELO DE RUEB roduco de mrices: concepo. Condiciones pr su relición. Es posible que pr dos mrices B no cudrds puedn eisir B B?. b Si

Más detalles

EXPRESIÓN MATRICIAL DE UN SISTEMA DE ECUACIONES DE PIMER GRADO SISTEMA DE CRAMER

EXPRESIÓN MATRICIAL DE UN SISTEMA DE ECUACIONES DE PIMER GRADO SISTEMA DE CRAMER EXPRESIÓN MTRICIL DE UN SISTEM DE ECUCIONES DE PIMER GRDO Un sise de ecuciones lineles con n incógnis, x, x,, xn iene l for: x x n xn b x x n xn b x x n xn b Recordndo el produco ricil, podeos decir: x

Más detalles

funciones primitivas se le llama integral indefinida y se representa por dx = F(x) + C F'(x) = f(x) ( ) '( ) '( ) '( ) f x f x dx C f'( x)

funciones primitivas se le llama integral indefinida y se representa por dx = F(x) + C F'(x) = f(x) ( ) '( ) '( ) '( ) f x f x dx C f'( x) INTEGRALES INDEFINIDAS Un función F() se dice que es primiiv de or función f() cundo F'() = f() Por ejemplo F() = es primiiv de f() = Or primiiv de f() = podrí ser F() = + 5, o en generl, F() = + C, donde

Más detalles

I.E.S. Ciudad de Arjona Departamento de Matemáticas. 1º BAC

I.E.S. Ciudad de Arjona Departamento de Matemáticas. 1º BAC I.E.S. Ciudd de Arjon Deprmeno de Memáics. º BAC UNIDAD Nº : ECUACIONES, SISTEMAS E INECUACIONES. A. ECUACIONES. ECUACIONES DE PRIMER GRADO. Ls ecuciones de primer grdo son quells en l que inerviene polinomios

Más detalles

1.MATRICES. Definición : Se llama matriz de dimensiones m x n ( m filas y n columnas) a una. colección de datos expresados de la siguiente forma A=.

1.MATRICES. Definición : Se llama matriz de dimensiones m x n ( m filas y n columnas) a una. colección de datos expresados de la siguiente forma A=. .MATRICES. DEINICION, TERMINOLOGIA, TIPOS DE MATRICES Y OPERACIONES LINEALES: Definición : Se llm mri de dimensiones m n ( m fils n columns) un colección de dos epresdos de l siguiene form A=. m. m..........

Más detalles

TEMA 4 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

TEMA 4 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Te Resolución de sises edine deerinnes Meáics II º chillero TEM RESOLUIÓN DE SISTEMS MEDINTE DETERMINNTES Resolución de sises Regl de rer Teore de Rouché-Froenius EJERIIO Resuelve plicndo l regl de rer

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Solucionrio Deerminnes CTIVIDDES INICILES.I. usc ls relciones de dependenci linel enre ls fils columns de ls siguienes mrices e indic el vlor de su rngo. rg() F F Como C C C rg().ii. Comprue que ls siguienes

Más detalles

es incompatible: a) Si m = 1 b) Si m = 2 c) Ninguna de las anteriores. Solución:, siendo r(a) = 2 y r(m) = 3 Sistema incompatible.

es incompatible: a) Si m = 1 b) Si m = 2 c) Ninguna de las anteriores. Solución:, siendo r(a) = 2 y r(m) = 3 Sistema incompatible. nálisis eáico José rí ríne edino PROBLES DE SITES rouesos en eáenes) Preguns de io es. El sise es incoible: ) Si = b) Si = c) Ningun de ls neriores. 8 si r) =, SCD. Si =,, siendo r) = r) = Sise incoible.

Más detalles

Determinantes y matrices

Determinantes y matrices Deerminnes mrices. Dds ls mrices:, Hll l invers de, l mriz l que. ; ; djun de De. lcul l mriz invers de l mriz L mriz invers viene dd por, siendo l mriz de los djunos de. El deerminne de vle L mriz de

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

Tema 10: Espacio Afin Tridimensional

Tema 10: Espacio Afin Tridimensional www.selecividd-cgrnd.co Te Espcio Afin Tridiensionl Se ll sise de referenci del espcio fín E l conjuno (O, u, u, u ). Siendo O un puno de E u, u, u res vecores libres que forn un bse de V. Ls recs OX,

Más detalles

SISTEMAS DE ECUACIONES DE PRIMER GRADO

SISTEMAS DE ECUACIONES DE PRIMER GRADO el log e me e i: Memáis I. Sisems e euiones. pág. SISTEMAS DE ECUACIONES DE PRIMER GRADO Un sisem e os euiones e primer gro on os inógnis puee esriirse sí: += `+`=` one los oefiienes e ls inógnis los érminos

Más detalles

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son:

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son: Memáics II Deerminnes PVJ7. Se l mriz 8 9 7 Se B l mriz que resul l relizr en ls siguienes rnsformciones: primero se muliplic por sí mism, después se cmbin de lugr l fil segund y l ercer y finlmene se

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

Determinantes y matrices

Determinantes y matrices emáics SS Deerminnes José rí rínez edino Deerminnes mrices. Dds ls mrices:, Hll l invers de, l mriz l que. ; ; djun de De. lcul l mriz invers de l mriz L mriz invers viene dd por, siendo l mriz de los

Más detalles

EXAMEN DE MATEMÁTICAS II (Recuperación)

EXAMEN DE MATEMÁTICAS II (Recuperación) º Bchillero Ciencis XN D TÁTICS II Recuperción) ÁLGBR. ), punos) Clsific en función del práero R, el sise de ecuciones: b) puno) Resuélvelo pr, si es posible.. Se un ri cudrd de orden. Si el deerinne de

Más detalles

TEMA 3. Sistemas de ecuaciones lineales Problemas Resueltos

TEMA 3. Sistemas de ecuaciones lineales Problemas Resueltos eáics plicds ls Ciencis Sociles II Soluciones de los probles propuesos Te wwweicsjco José rí ríne edino T Sises de ecuciones lineles Probles Resuelos Clsificción resolución de sises por éodos eleenles

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

Las siguientes matrices son, respectivamente, de orden 3 x 3, 3 x 2, 3 x 4 y 2 x )

Las siguientes matrices son, respectivamente, de orden 3 x 3, 3 x 2, 3 x 4 y 2 x ) Álgebr y Geomerí nlíic Mrices- Deerminnes- Sisems de Ecuciones Fculd Regionl L Pl Ing. Vivin CPPELLO Mrices Un mriz es un conjuno de números colocdos en un deermind disposición ordendos en fils y columns.

Más detalles

L[u] = ( pu ) + qu. u(t) =

L[u] = ( pu ) + qu. u(t) = Función de Green Asumiremos que el operdor diferencil esá en form de divergenci: L[u] = ( pu ) + qu con p C [, b], p > y q C[, b], q. El problem es, dd un ϕ C[, b] enconr u l que: { L[u]() = ϕ() (, b)

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO Cuso - Sepiembe MTERI: MTEMTICS II INSTRUCCIONES GENERLES Y VLORCION El lumno conesá los cuo ejecicios

Más detalles

= 27. 1 1, con b un parámetro real. Se pide: a) Para qué valores del parámetro b el sistema de ecuaciones lineales A

= 27. 1 1, con b un parámetro real. Se pide: a) Para qué valores del parámetro b el sistema de ecuaciones lineales A ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CCSSII: º) (Andlucí, Junio ) Un cliene de un supermercdo h pgdo un ol de 56 euros por 4 liros de leche, 6 kg de jmón serrno liros de ceie de oliv Plnee resuelv un

Más detalles

165. Clasificar la cónica: y hallar su ecuación reducida. Demostración. Formaremos el discriminante: = = Hallaremos los invariantes de la cónica:

165. Clasificar la cónica: y hallar su ecuación reducida. Demostración. Formaremos el discriminante: = = Hallaremos los invariantes de la cónica: Hoj de Problems Geomerí V 6. lsificr l cónic: f hllr su ecución reducid. Demosrción. Formremos el discriminne: / ; / como se r de un prábol rel. Hllremos los invrines de l cónic: l ecución reducid será

Más detalles

Resolución de sistemas dependientes de parámetros RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES DEPENDIEN- TES DE PARÁMETROS ESTUDIANDO RANGOS

Resolución de sistemas dependientes de parámetros RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES DEPENDIEN- TES DE PARÁMETROS ESTUDIANDO RANGOS Meáics Resolución de sises dependienes de práeros RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES DEPENDIEN- TES DE PARÁMETROS ESTUDIANDO RANGOS ) Discu resuelv el siguiene sise en función del práero : 7

Más detalles

OPCIÓN A. 1.A.- Dadas las matrices: a) Determinar la matriz inversa de B. b) Determinar una matriz X tal que A = BX

OPCIÓN A. 1.A.- Dadas las matrices: a) Determinar la matriz inversa de B. b) Determinar una matriz X tal que A = BX IES Medierráneo de Málg Solución Seiembre Jun Crlos lonso Ginoni OPCIÓN..- Dds ls mrices: Deerminr l mri invers de b Deerminr un mri X l que X X X X X dj dj IES Medierráneo de Málg Solución Seiembre Jun

Más detalles

Tema 3. Sistemas de ecuaciones lineales

Tema 3. Sistemas de ecuaciones lineales Memáics Aplicds ls Ciencis Sociles II Álger: Sisems de ecuciones lineles Tem Sisems de ecuciones lineles Sisems de dos ecuciones lineles con dos incógnis (Repso) c Su form más simple es (,, c,, c son números

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (4-M;Jun-B-) (5 punos) Consider ls mrices A = y B = Deermin, si exise, l mriz X que verific AX + B = A + m (4-M-B-)

Más detalles

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las CAPÍTULO 9. INTEGRALES IMPROPIAS 9.. Límies de inegrción infinios 9.. Inegrles con inegrndo que iende infinio 9.. Oservciones ls inegrles impropis Cpíulo 9 Inegrles impropis f ( ) f ( ) f f ( ) () f()

Más detalles

, que, como está triangularizado, se observa que es

, que, como está triangularizado, se observa que es MTEMÁTICS PLICDS LS CIENCIS SOCILES II PRUEB ESCRIT. BLOQUE: ÁLGEBR ECH: DE ENERO DE Prte I. Sistems de ecuciones lineles. Mtrices. Ejercicio. Resuelv el siguiente sistem de ecuciones, utilindo, si es

Más detalles

ESTE MODELO SUSTITUYE AL ANTERIOR. FECHA: MODELO DE RESPUESTAS Objetivos 01 al 08.

ESTE MODELO SUSTITUYE AL ANTERIOR. FECHA: MODELO DE RESPUESTAS Objetivos 01 al 08. ESTE MODELO SUSTITUYE AL ANTERIOR FECHA: 5-- Seund Prue Prcil Lso - 7 /7 Universidd Ncionl Aier Memáics III Cód 7 Vicerrecordo Acdémico Cód Crrer: 6-8 Áre de Memáic Fech: -- OBJ PTA Clcul MODELO DE RESPUESTAS

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales José Mrí Mríne Medino de ecuciones lineles Observción: L morí de esos problems provienen de ls pruebs de selecividd. Resuelve el siguiene sisem de ecuciones: 9 Aplicndo el méodo de Guss: 9 6 6 L solución

Más detalles

Examen 1: Vectores, Cinemática y Dinámica. 26 de Noviembre de º Bachillerato B

Examen 1: Vectores, Cinemática y Dinámica. 26 de Noviembre de º Bachillerato B 6 de Noviembre de 010 Nombre: º Bchillero B Elegir res problems y dos cuesiones, el problem P1 es obligorio. Cd problem se vlorrá con hs,5 punos, mienrs que ls cuesiones vldrán hs 1,5 punos cd un. C1.-

Más detalles

a. (0.5 puntos) Determine la dimensión que debe de tener la matriz A para que se verifique la igualdad:.

a. (0.5 puntos) Determine la dimensión que debe de tener la matriz A para que se verifique la igualdad:. Seleividd ndluí. emáis plids ls ienis Soiles. loque ries. www.useleividd.om Págin EJEROS E EÁENES E SELETV NLUÍ.LOQUE TRES.. JUNO. OPÓN. Sen ls mries siendo un número rel ulquier.. ( puno) Oeng l mriz..

Más detalles

IES Gerardo Diego Departamento de Matemáticas Matemáticas Aplicadas a las Ciencias Sociales II, curso

IES Gerardo Diego Departamento de Matemáticas Matemáticas Aplicadas a las Ciencias Sociales II, curso Memáics plicds ls Ciencis Sociles II, curso - JUN 4 Un produco se compone de l mezcl de oros dos y B Se ienen 5 Kg de y 5 Kg de B En l mezcl, el peso de B debe ser menor o igul que,5 veces el de Pr sisfcer

Más detalles

PRÁCTICA 3 LEYES DE NEWTON

PRÁCTICA 3 LEYES DE NEWTON Fundmenos Físicos de l Inenierí Inenierí Indusril Prácics de Lbororio PRÁCTIC 3 LEYES DE NEWTON 3 OJETIVO- Deerminr ls leyes que rien l relciones espcio-iempo y velocidd-iempo en movimienos uniformemene

Más detalles

MATEMÁTICAS II. 2º Bachillerato Ciencias e Ingeniería. Cuadernillo de Ejercicios y problemas COLEGIO BUEN PASTOR

MATEMÁTICAS II. 2º Bachillerato Ciencias e Ingeniería. Cuadernillo de Ejercicios y problemas COLEGIO BUEN PASTOR MTEMÁTICS II. º Bchillero Ciencis e Ingenierí Cudernillo de Ejercicios prolems INDICE. Límies Coninuidd de unciones. Derivilidd de unciones. Represención de unciones. Inegrles indeinids. 7. Inegrles deinids..

Más detalles

- sen(x) cos(x) cos(x) sen(x)

- sen(x) cos(x) cos(x) sen(x) EXAMEN DE MATEMATICAS II ª ENSAYO (ÁLGEBRA) Apellidos: Nombre: Curso: º Grupo: Dí: CURSO 5-6 Opción A.- ) [ punto] Si A y B son dos mtrices cudrds y del mismo orden, es ciert en generl l relción (A+B)

Más detalles

SELECTIVIDAD: SISTEMAS DE ECUACIONES

SELECTIVIDAD: SISTEMAS DE ECUACIONES SELECTIVIDAD: SISTEMAS DE ECUACIONES EJERCICIO. El siste es coptible deterindo. ) Si se suprie un de ls ecuciones Cóo es el siste resultnte? Depende l respuest de l ecución supriid? b) Qué ecución h que

Más detalles

Resuelve. Unidad 3. Sistemas de ecuaciones. BACHILLERATO Matemáticas II. Los fardos de cereal. Página 89

Resuelve. Unidad 3. Sistemas de ecuaciones. BACHILLERATO Matemáticas II. Los fardos de cereal. Página 89 Unidd. Sises de ecuciones BCHILLERTO Meáics II Resuelve Págin 9 Los rdos de cerel Resuelve el role chino de los rdos de cerel rocediendo de or siilr coo lo resolvieron ellos. Recuerd el éodo de Guss que

Más detalles

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

Clasificación y resolución de sistemas por métodos elementales. 1. Resuelve utilizando el método de de reducción de Gauss Jordan, los sistemas:

Clasificación y resolución de sistemas por métodos elementales. 1. Resuelve utilizando el método de de reducción de Gauss Jordan, los sistemas: Álgebr: Sistems José Mrí Mrtíne Medino MATEMÁTICAS II TEMA Sistems de ecuciones lineles: Problems propuestos Clsificción resolución de sistems por métodos elementles Resuelve utilindo el método de de reducción

Más detalles

Matemáticas 2º Bachillerato MATRICES. columnas es muy antiguo, pero fue en el siglo XIX cuando J.J. Sylverster ( )

Matemáticas 2º Bachillerato MATRICES. columnas es muy antiguo, pero fue en el siglo XIX cuando J.J. Sylverster ( ) TRICES emáics º chillero. Inroducción. Definición de mriz El concepo de mriz como un bl ordend de números escrios en fils y columns es muy niguo, pero fue en el siglo XIX cundo J.J. Sylverser (8-897) cuñó

Más detalles

MATEMÁTICAS I. TEMA 1: ECUACIONES Y SISTEMAS DE ECUACIONES

MATEMÁTICAS I. TEMA 1: ECUACIONES Y SISTEMAS DE ECUACIONES Cód. 87 Avda. de San Diego, 8 Madrid Tel: 978997 98 Fa: 9789 Email: rldireccion@planalfa.es de No se auoria el uso comercial de ese Documeno. MATEMÁTICAS I. TEMA : ECUACIONES Y SISTEMAS DE ECUACIONES..

Más detalles

funciones de DERIVE permiten calcular algunos invariantes y expresiones asociados a la ecuación de dicha cónica necesarios para su estudio:

funciones de DERIVE permiten calcular algunos invariantes y expresiones asociados a la ecuación de dicha cónica necesarios para su estudio: CÓNICS - - Indiiones Llmndo l mriz soid un óni en un deermindo sisem de refereni l mriz de su form udrái, iers funiones de DERIVE permien lulr lgunos invrines epresiones soidos l euión de dih óni neesrios

Más detalles

Vectores. Bases. Solución: a) Los vectores son linealmente independientes pues: λ(1, 2) + µ( 3, 1) = (0, 0) λ 3µ = 0; 2λ + µ = 0 λ = 0 y µ = 0

Vectores. Bases. Solución: a) Los vectores son linealmente independientes pues: λ(1, 2) + µ( 3, 1) = (0, 0) λ 3µ = 0; 2λ + µ = 0 λ = 0 y µ = 0 Geomeí CTSL Vecoes. Bses. Ddos los vecoes u (, ) v (, ): ) Compueb que u v fomn un bse del espcio vecoil de los vecoes del plno. b) Encuen ls componenes del veco w (, 5) en l bse {u, v }. ) Los vecoes

Más detalles

XA + A B = A, siendo 0 0 1

XA + A B = A, siendo 0 0 1 MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA Ejercicio. (Examen Junio 202 Específico Opción A) 2 0 [2'5 punos] Considera las marices AA = 0 2, BB = 0 2 0 y CC = 0 2. 2 Deermina, si exise, la mariz

Más detalles

SELECTIVIDAD: MATRICES. B y

SELECTIVIDAD: MATRICES. B y SELETIVIDD: MTRIES EJERIIO. ) Sen dos ries udrds del iso orden que ienen invers. Ron si su produo iene invers. ) Dds ls ries - D, Deerin si D iene invers, en ese so, hálll. EJERIIO. onsider ls ries,. )

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II. ANAYA

Matemáticas aplicadas a las Ciencias Sociales II. ANAYA Uni Nº Resoluión e sisems meine eerminnes! PR EPEZR, RELEXION Y RESUELVE Deerminnes e oren! Resuelve uno e los siguienes sisems e euiones lul el eerminne e l mri e los oefiienes: E sumno E E sumno λ,s.c.i.,

Más detalles

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES puntes de. Cbñó Mtemátics II SISTEMS DE ECUCIONES LINELES 8. Epresión mtricil de un sistem.clsificción de un sistem en términos del número de soluciones. 8. Teorem de RouchéFrobenius. 8. El método de eliminción

Más detalles

Ejercicios de Matemáticas

Ejercicios de Matemáticas Ejercicios resuelos de lger Ejercicios de Meáics. Se N M. ) Clcul e pr que MN = NM. ) Clcul M M ) MN ; NM = = = ) M = I M = M M = I M = M... Se ve que si el eponene es pr es igul l ri unidd si es ipr es

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

Tema 4. Modelos multivariantes recursivos. Variables exógenas. Modelos uniecuacionales. Causalidad en sentido de Granger.

Tema 4. Modelos multivariantes recursivos. Variables exógenas. Modelos uniecuacionales. Causalidad en sentido de Granger. Tem 4. Modelos mulivrines recursivos. Vribles exógens. Modelos uniecucionles.. El Modelo VARp escionrio. Cuslidd en senido de Grnger.. Esimción de modelos VAR 3. Modelos VAR con vribles exógens. Modelo

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A Examen Parcial Álgebra Maemáicas II Curso 9- I E S TENE SN SESTIÁN DE LOS REYES EMEN PRCIL SEGUND EVLUCIÓN ÁLGER Curso 9- -III- MTERI: MTEMÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El examen consa de

Más detalles

4. Modelos AR(1) y ARI(1,1).

4. Modelos AR(1) y ARI(1,1). 4. Modelos AR( ARI(,. Los modelos uorregresivos son quellos modelos ARMA(p,q en los que q0. En generl, vmos denorlos por AR(p. En un modelo AR(p en vlor en el momeno de l serie se expres como un combinción

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales eáics II Sises lineles Sises de ecuciones lineles Observción: L orí de esos sises se hn propueso en ls pruebs de Selecividd, en los disinos disrios universirios espñoles.. L ri plid de un sise de ecuciones

Más detalles

Tema 7: ÁLGEBRA DE MATRICES

Tema 7: ÁLGEBRA DE MATRICES ÁLGER DE MTRICES Tem : ÁLGER DE MTRICES Índice. Concepo de mriz... Definición de mriz... Clsificción de ls mrices... Tls, grfos y mrices.. Operciones con mrices... Sum de mrices... Muliplicción de un número

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales eáics II Sises lineles Sises de ecuciones lineles CTJ. L ri plid de un sise de ecuciones lineles, en for reducid por el éodo de Guss, es: ) El sise es copible o incopible? Ron l respues. b) Resolverlo

Más detalles

Universidad Nacional de La Plata Facultad de Ciencias Naturales y Museo

Universidad Nacional de La Plata Facultad de Ciencias Naturales y Museo Universidd Ncionl de L Pl Fculd de Ciencis Nurles y Museo Cáedr de Memáic y Elemenos de Memáic signur: Elemenos de Memáic Conenidos de l Unidd Temáic Mrices: Sum y produco por un esclr. Propieddes. Produco

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

TEMA 1: ACTIVIDADES Y AUTOEVALUACIONES RESUELTAS

TEMA 1: ACTIVIDADES Y AUTOEVALUACIONES RESUELTAS MÓDULO - Ámbito Científico-Tecnológico TEMA : ACTIVIDADES Y AUTOEVALUACIONES RESUELTAS Actividd p.: Clcul el vlor numérico de ls siguientes epresiones lgebrics pr los vlores de ls letrs que se indicn:

Más detalles

1. Definición. Formas de definir una sucesión.

1. Definición. Formas de definir una sucesión. . Definición. Forms de definir un sucesión. Un sucesión es un plicción que nos relcion los números nturles con un conjunto, de form que orden los elementos de tl conjunto. Ejemplos:. : selección espñol

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

SOSTENIBILIDAD DE UNA POLÍTICA FISCAL

SOSTENIBILIDAD DE UNA POLÍTICA FISCAL 1 SOSTENIBILIDAD DE UNA POLÍTICA FISCAL Definición de un políic fiscl sosenible El concepo de políic fiscl sosenible no cep un definición precis. Sin embrgo, un definición generl (unque lgo rivil) es que

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti IES Mdirráno d Málg Solución Junio Jun Crlos lonso Ginoni BLOQUE CUESTIÓN..- Dmusr sin uilir l rgl d Srrus sin dsrrollr dircmn por un il /o column qu.indiqu n cd pso qu propidd (o propidds) d los drminns

Más detalles

CINEMÁTICA DE LA PARTÍCULA

CINEMÁTICA DE LA PARTÍCULA CINEMÁTICA DE LA PARTÍCULA ÍNDICE 1. Inroducción. Reposo moimieno. Sisems de referenci 3. Vecores posición, elocidd celerción 4. Componenes inrínsecs de l celerción 5. Inegrción de ls ecuciones del moimieno

Más detalles

Tema9. Sucesiones. Tema 9. Sucesiones.

Tema9. Sucesiones. Tema 9. Sucesiones. Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum

Más detalles

Relación 3. Sistemas de ecuaciones

Relación 3. Sistemas de ecuaciones Relción. Sistes de ecuciones Ejercicio. Consider el siste de ecuciones ) Eiste un solución del iso en l que? ) Resuelve el siste hoogéneo socido l siste ddo. c) H un interpretción geoétric tnto del siste

Más detalles

según los valores del parámetro a.

según los valores del parámetro a. Selectividd hst el ño 9- incluido EJERCICIOS DE SELECTIVIDD, ÁLGER. Ejercicio. Clificción ái: puntos. (Junio 99 ) Se considern ls trices donde es culquier núero rel. ) ( punto) Encontrr los vlores de pr

Más detalles

MatemáticasI. b) La expresión es una identidad que se verifica para cualquier valor de x.

MatemáticasI. b) La expresión es una identidad que se verifica para cualquier valor de x. MemáicsI UNIDAD : Álge I: Polinomios, ecuciones sisems ACTIVIDADES-PÁG.. Los esuldos son: Cociene: + + eso: - Cociene: + eso:. Opendo oenemos: : :. Los esuldos son: L epesión es un ecución con solución

Más detalles