Cuánto tarda una pelota en dejar de botar?

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cuánto tarda una pelota en dejar de botar?"

Transcripción

1 Cuánto tarda una plota n djar d botar? Dr. Guillrmo Bcrra Córdoa Unirsidad Autónoma Chapino Dpto. d Prparatoria Arícola Ára d Física Profsor-Instiador xt Km. 8.5 d la Carrtra Fdral México-Vracruz, Chapino, Txcoco, Edo d México. Rsumn Aluna z s ha pruntado: cuánto timpo tarda una plota n djar d botar al sr soltada dsd una cirta altura? La solución a sta intrroant inolucra los tmas d caída libr y colisions lásticas, lo qu incluy los concptos d rapidz, aclración d la radad y coficint d rstitución. Así, la rapidz con la qu botará la plota dpndrá dl alor d la rapidz con la qu llu al sulo y dl coficint d rstitución ntr la suprfici y la plota. En una colisión prfctamnt inlástica l coficint d rstitución srá iual a cro y la plota s qudará adhrida al sulo dspués dl primr rbot. En una colisión prfctamnt lástica, l coficint d rstitución srá iual a uno, por lo qu la plota rbotará con la misma rapidz con la qu lló al sulo, siuindo st moiminto indfinidamnt. Si l coficint d rstitución s ncuntra ntr cro y uno, qu s la mayor part d las colisions, la rapidz d la plota irá disminuyndo n cada bot hasta qu s dtna. D sta forma, l timpo qu tard la plota n djar d botar srá iual a la suma d los timpos qu tarda la plota n cada rbot. Esta suma corrspond a una suma infinita, la cual stá idntificada con una xprsión particular. Est trabajo tin por objtio dducir sta xprsión y comparar los rsultados tóricos con los xprimntals. En la dducción d la xprsión qu calcula l timpo qu tarda una plota n djar d botar al sr soltada dsd una dtrminada altura s ha supusto qu l moiminto dl objto s considra n una sola dircción y sin rotación, al iual qu s dsprcia la fricción proocada por l air y l timpo qu utiliza la plota n botar. Palabras cla: Rapidz, timpo, coficint d rstitución, caída libr.

2 OBJETIVOS: Dducir la xprsión qu calcula l timpo qu tarda n djar d botar una plota al sr soltada dsd una cirta altura, para un coficint d rstitución dado. Mdir xprimntalmnt l timpo qu tarda una plota con cirto coficint d rstitución y compararlo con l rsultado tórico. INTRODUCIÓN: D muchos s conocido qu l timpo qu tarda un objto n car dsd una cirta altura, s un problma qu ha sido rsulto dsd hac mucho timpo. D hcho, st tipo d moimintos sta clasificado dntro d lo qu s conoc como Moiminto Rctilíno Uniformmnt Variado, n dond l curpo s mu n lína rcta y con aclración constant, s dcir, la locidad cambia uniformmnt para iuals intralos d timpo. En l caso d curpos qu s muan bajo la acción d la radad d la tirra, l alor d la aclración s d a = = 9.8 m/s. En conscuncia, l timpo qu tarda n llar al sulo un objto qu s ha soltado dsd una cirta altura, s iual a: t / Dond s la manitud d la locidad dl objto justo ants d llar l sulo; s la manitud d la aclración d la radad y t s l timpo qu tarda l objto n llar al sulo. Si l objto s una plota con un coficint d rstitución ntr lla y l piso, y admás la colisión s unidimnsional, ntoncs la manitud d la locidad con la qu rbotaría sría iual a: Dond s la locidad dl objto ants dl rbot y s la manitud d la locidad dl curpo dspués dl rbot. Por lo tanto, l timpo qu tardaría l curpo n llar d nuo al piso sría d: t / / Para l trcr moiminto, s tndría qu l timpo qu tardaría n llar d nuo al sulo s d: t / / / 4 En conscuncia, l timpo qu tardaría la plota n djar d botar s iual a la suma infinita d los timpos qu tarda n cada rbot, s dcir: t t t... 5 / / / /... 6 Factorizando

3 (...) 7 La suma qu s ncuntra ntr paréntsis s una sri infinita conrnt para y stá idntificada con la siuint iualdad:... i i 0 8 Por lo qu la cuación 7 toma la forma siuint: 9 Como nralmnt s difícil conocr la locidad con la qu lla la plota al sulo n l primr rbot, crmos connint xprsar la cuación antrior n función d la altura a la qu s dja car l curpo, s dcir: h / h / 0 Dond: / h Dond h s la altura a la qu s sulta la plota. Para calcular xprimntalmnt l coficint d rstitución, s dja car la plota dsd una altura dtrminada y s mid la altura a la qu lla dspués dl primr bot. Con st par d datos s calcula l coficint con solo sustituir n la siuint cuación: y y / Dond s la locidad con la qu lla la plota al sulo y s la locidad d la plota dspués dl rbot; y s la altura dsd la qu s soltada la plota y y s la altura a la qu lla la plota dspués dl rbot con l sulo. Con las cuacions 0 y s posibl calcular tóricamnt l timpo qu tarda una plota n djar d botar al sr soltada dsd una altura h. En sta dducción stamos suponindo qu l coficint d rstitución s indpndint d la locidad con la qu s lla a cabo la colisión ntr la plota y l sulo. Sin mbaro sta hipótsis no s dl todo rdadra, ya qu s ha notado qu l coficint d rstitución aría n función d la altura dsd la cual s soltada. Est trabajo no tin por objtio dducir sta dpndncia.

4 En la cuación 0 obsramos qu si l coficint d rstitución s iual a cro, la plota no rbotaría, qudando pada al sulo. En st caso l timpo total s simplificaría a: h / Por otra part, si l coficint d rstitución s iual a, al sustituir n la cuación 7 s obsra qu l timpo total tndrá un alor infinito, s dcir:... 4 Qu corrspond al timpo qu tarda una plota qu simpr rbota a la misma altura. MATERIAL: Plotas d difrnts matrials. Cronómtro. Flxómtro. DESARROLLO: S utilizaron plotas d difrnt matrial, midindo su rspctio coficint d rstitución y l timpo qu tarda cada una n djar d botar. La primra plota qu utilizamos fu una d pin pon, dando los siuints rsultados: y y / 0.7 m m / 0.86 Con st dato calculamos l timpo total qu tarda la plota n djar d botar, utilizando para llo la cuación 0: s Con h m. Ralizamos 0 cs l xprimnto para mdir l timpo total d los rbots, dando los siuints rsultados: t 9. 5 s t 9. 7 s t 9. 7 s t 0. s 4 t 9. 5 s t 0 s 5 6 t 9. 6 s t 9. 8 s 7 8 t 9. 6 s t 9. 8 s Tabla

5 El timpo promdio s d 9.7 s. qu comparado con l obtnido tóricamnt, mos qu hay una difrncia d 9.9%. Esta discrpancia s pud xplicar arumntando qu l coficint d rstitución aría dpndindo d la altura a la qu ca la plota. Así, mos qu l disminuy l coficint a mdida qu la altura aumnta y s mayor si la plota bota dsd una altura muy pquña. Para una plota d tnis, s obtuiron los siuints rsultados: y y / 0.7 m m / 0.86 Con st dato calculamos l timpo total qu tarda la plota n djar d botar, utilizando para llo la cuación 0: Efctuando 0 cs l xprimnto, s lló a los siuints rsultados: s t 6. 4 s t 6. 4 s t 6. s t 6. 4 s 4 t 6. 9 s t 6. 5 s 5 6 t 6. 6 s t 6. 6 s 7 8 t 6. 4 s t 6. 5 s Tabla Cuyo promdio s 6.49 s. qu comparado con l tórico, s obsra qu hay difrncia dl 8.6%. En st caso mos qu l coficint d rstitución d la plota d tnis aría mnos qu l d la plota d pin pon. Para l último xprimnto utilizamos una plota d hul cuyo coficint d rstitución s: y y / 0.8 m m / 0.9 Calculando l timpo qu tarda la plota n djar d botar, s obtin: 9. 7 s Con h m. Midindo s timpo xprimntalmnt n 0 nsayos, tnmos los siuints rsultados: t. s t. 6 s t. s t. 5 s 4 t. 5 s t. 6 s 5 6

6 t. 4 s t. s 7 8 t. 6 s t. 4 s Tabla Cuyo timpo promdio s d.45 s. qu comparado con l rsultado tórico, s obsra qu hay una difrncia dl 8.5%. VERIFICACIÓN: Cuáls son las caractrísticas dl moiminto rctilíno uniformmnt ariado? Dados la locidad con la qu choca un objto y la aclración d la radad, cómo s calcula l timpo qu tarda n car un objto? Qué s l coficint d rstitución? Qué unidads tin l coficint d rstitución? Entr qué alors s pud ncontrar l coficint d rstitución? Cómo s pud ncontrar xprimntalmnt l coficint d rstitución? Si l coficint d rstitución d una plota s, cuánto tardaría n djar d botar? Es constant l coficint d rstitución? D qué dpnd? Pudn xistir coficints d rstitución mayors a? A qué s db qu los rsultados tóricos con los xprimntals no san similars? Qué plota aría mnos su coficint d rstitución? En cuál aría más? CONCLUSIONES: Los rsultados nos indican qu n nral l coficint d rstitución para muchos matrials no s constant, dpnd d la locidad con la qu s lla a cabo la colisión, qu a su z n st caso dpnd d la altura a la qu s sulta. Dbido a qu l coficint d rstitución no s constant, los rsultados tóricos y los xprimntals no son similars. Est método s pud mplar para rificar si una plota tin un coficint d rstitución constant.

CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillermo Becerra Córdova. Área de Física, Dpto. Preparatoria Agrícola, Universidad Autónoma Chapingo,

CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillermo Becerra Córdova. Área de Física, Dpto. Preparatoria Agrícola, Universidad Autónoma Chapingo, CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillrmo Bcrra Córdova Ára d Física, Dpto. Prparatoria Agrícola, Univrsidad Autónoma Chapingo, Chapingo, Txcoco, Estado d México, México, E-mail: gllrmbcrra@yahoo.com

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

I, al tener una ecuación. diferencial de segundo orden de la forma (1)

I, al tener una ecuación. diferencial de segundo orden de la forma (1) .6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn

Más detalles

Prof: Zulay Franco Puerto Ordaz, noviembre

Prof: Zulay Franco Puerto Ordaz, noviembre 56 Monostabls y Astabls 3.1 Introducción 3.2 Monostabl Es un circuito lctrónico qu dispon d una sñal d ntrada, gnralmnt dnominada disparo, al activars sta ntrada n la salida dl circuito (Q s obtin un pulso

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

KIRSTEN BIEDERMANN ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMA BAJO PRESIÓN

KIRSTEN BIEDERMANN ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMA BAJO PRESIÓN 40 KIRSTEN BIEDERMANN ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMA balón, masa, balanza, bomba, prsión, as idal, colisión lástica, coficint d rstitución f ísica, matmáticas, TIC

Más detalles

Guías de Prácticas de Laboratorio

Guías de Prácticas de Laboratorio Guías d Prácticas d Laboratorio Laboratorio d: (5) FÍSICA OPTICA Y ACUSTICA Titulo d la Práctica d Laboratorio: (6) OSCILADOR ARMONICO SIMPLE. LEY DE HOOKE Idntificación: (1) Númro d Páginas: (2) 8 Rvisión

Más detalles

Prof: Zulay Franco Puerto Ordaz, noviembre

Prof: Zulay Franco Puerto Ordaz, noviembre 56 Monostabls y Astabls 3.1 Introducción 3.2 Monostabl Es un circuito lctrónico capaz d gnrar un pulso lógico n alto o n bajo a través d su salida (Q. El timpo d duración dl pulso w, stá dtrminado por

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

TEMA 7 APLICACIONES DE LA DERIVADA

TEMA 7 APLICACIONES DE LA DERIVADA Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f

Más detalles

2º BACHILLERATO CINETICA QUÍMICA

2º BACHILLERATO CINETICA QUÍMICA VELOCIDAD DE REACCIÓN 1.- Escrib la xprsión d la vlocidad d racción n función d la concntración d cada una d las spcis qu intrvinn n l procso d obtnción d amoniaco. N + 3 H NH 3 d 1 v = [N] = 3 d 1 [H]

Más detalles

168 Termoquímica y Cinética. Aspectos Teóricos

168 Termoquímica y Cinética. Aspectos Teóricos 168 Trmoquímica y Cinética 3..- Cinética química Aspctos Tóricos Como ya s ha indicado antriormnt, la trmodinámica tin como objtivo conocr n qu condicions una racción s pud producir d forma spontána. Sin

Más detalles

Cálculo de fuerzas y pares de fuerza mediante el principio de los desplazamientos virtuales.

Cálculo de fuerzas y pares de fuerza mediante el principio de los desplazamientos virtuales. c Rafal R. Boix y Francisco Mdina 1 Cálculo d furzas y pars d furza mdiant l principio d los dsplazamintos virtuals. Considrmos un conjunto d N conductors cargados con cargas Q i (i = 1,...,N). San V i

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular.

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular. Un si-disco unifor d radio asa, ruda sin dslizar sor una suprfici orizontal. Una partícula d asa s ncuntra conctada al disco n su iso plano, por dos varillas rígidas, d asa dprcial, coo s ustra n la figura.

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE

Más detalles

TEMA 11. La integral definida Problemas Resueltos

TEMA 11. La integral definida Problemas Resueltos Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

RADIACTIVIDAD. Hoy, sabemos que los tipos de desintegración de los núcleos son :

RADIACTIVIDAD. Hoy, sabemos que los tipos de desintegración de los núcleos son : RDICTIVIDD El Carbono 4, 4 C, s un misor β - con un priodo d smidsintgración d 576 años. S pid: a) Dscribir todas las formas d dsintgración radiactiva d los núclos xplicando los cambios n los mismos y

Más detalles

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay

Más detalles

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda .- Qué funcions son primitivas d la función cos: Tachar lo qu no procda.- Hallar + sn() si < cos si si > continua d: f() g() f()+g() f() g() -cos si

Más detalles

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA DISPERSIÓN - ESPECTRÓMETRO DE PRISMA OBJETIVOS Invstigación d la rgión visibl dl spctro dl átomo d Hidrógno y dtrminación d la constant d Ridbrg. Calibración d la scala dl spctrómtro d prisma. Dtrminación

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d contnido Página Ecuacions d ordn suprior Ecuacions homogénas d sgundo ordn con coficints constants Caso. Raícs rals distintas 6 Caso. Raícs compljas conjugadas 6 Caso. Raícs rals iguals 7 Rsumn

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

1. LÍMITE DE UNA FUNCIÓN REAL

1. LÍMITE DE UNA FUNCIÓN REAL ACTIVIDAD ACADEMICA: CÁLCULO DIFERENCIAL DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD Nº : LÍMITES Y CONTINUIDAD DE FUNCIONES REALES Comptncias Utilizar técnicas d aproimación n procsos numéricos infinitos

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO

MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO Antonio J. Barbro Mariano Hrnándz Alfonso Calra Pablo Muñiz José A. d Toro Mª Mar Artigao Dpto. Física Aplicada. UCLM. 1 Mdidas dl cuadrado d la vlocidad angular

Más detalles

Relaciones importantes para la entropía.

Relaciones importantes para la entropía. rmodinámica II 2I Rlacions importants para la ntropía. Entropía Formalmnt la ntropía s d n a partir d la dsigualdad d Clausius I 0 () n dond:! H indica qu la intgral s va a ralizar n todas las parts d

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Elctricidad y calor Wbpag: http://paginas.fisica.uson.mx/qb 2007 Dpartamnto d Física Univrsidad d Sonora 1 Tmas 8. Potncial léctrico. i. Enrgía Potncial léctrica. ii. Enrgía Potncial léctrica n un campo

Más detalles

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función:

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función: º BACHILLERATO D MATEMÁTICAS CC SS TEMA 4.- FUNCIONES. DERIVACIÓN.- CONCEPTO DE DERIVADA Tasa d variación mdia S llama tasa d variación mdia d una función f n l intrvalo [a, b] al cocint. La tasa d variación

Más detalles

Tema 3 La elasticidad y sus aplicaciones

Tema 3 La elasticidad y sus aplicaciones Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

2º de Bachillerato. 3. Calcular la variación de entalpía de la reacción de combustión del etanol a partir de la tabla de entalpías de formación

2º de Bachillerato. 3. Calcular la variación de entalpía de la reacción de combustión del etanol a partir de la tabla de entalpías de formación Química TEM 3 º d achillrato Trmoquímica. La ntalpía d combustión dl butano s d º 875,8 /mol. Si qurmos calntar l air d una habitación d xx3 m con una stua d butano, dsd º hasta 5º, qué masa d butano dbrmos

Más detalles

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a: EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +

Más detalles

Solución a la práctica 6 con Eviews

Solución a la práctica 6 con Eviews Solución a la práctica 6 con Eviws El siguint modlo d rgrsión rlaciona la nota mdia qu obtinn los alumnos n matmáticas (nota) n un cntro, con l númro d profsors disponibls n l cntro (profsors), l porcntaj

Más detalles

CASO DE ESTUDIO N 3. Aplicaciones de los conceptos de interferencia y termoelasticidad para encajar un eje a un núcleo

CASO DE ESTUDIO N 3. Aplicaciones de los conceptos de interferencia y termoelasticidad para encajar un eje a un núcleo CAPITULO 3 TENSIONES Y DEFORMACIONES. REVISIÓN DE PRINCIPIOS FÍSICOS CASO DE ESTUDIO N 3 Aplicacions d los concptos d intrfrncia y trmolasticidad para ncajar un j a un núclo 1. Introducción En la Figura

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

Método novedoso para resolver ecuaciones diferenciales lineales de segundo y tercer orden no homogéneas con coe cientes constantes

Método novedoso para resolver ecuaciones diferenciales lineales de segundo y tercer orden no homogéneas con coe cientes constantes Método novdoso para rsolvr cuacions difrncials linals d sgundo y trcr ordn no homogénas con co cints constants amírz Arc Grivin, gramirz@itcr.ac.cr Stimbr, 007 sumn: Est artículo part d un nuvo método

Más detalles

Cálculo de Dosis en Braquiterapía Br. Priscila Vargas Chavarría

Cálculo de Dosis en Braquiterapía Br. Priscila Vargas Chavarría Cálculo d Dosis n Braquitrapía Br. Priscila Vargas Chavarría Rsumn S prsnta un compndio matmático d las principals cuacions a partir d las s obtinn los principals cálculos d dosis n Braquitrapía. Braqui

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 10

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 10 IES Al-Ándalus. Dpto d Física y Química. Curso 9/ - - UNIVESIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO OPCIÓN A. a) Expliqu qué s ntind por vlocidad d scap y dduzca razonadamnt su xprsión. b) azon

Más detalles

Escuela de Ingeniería Técnica Civil. Arquitectura Técnica. Materiales II

Escuela de Ingeniería Técnica Civil. Arquitectura Técnica. Materiales II 3.- METALES 06 Durabilidad 1 Introducción La corrosión s la dstrucción d un matrial sólido a causa d fnómnos químicos o lctroquímicos qu sul prsntars n la suprfici dl mtal. En gnral los matrials mtálicos

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

PROCESOS ALEATORIOS DE POISSON

PROCESOS ALEATORIOS DE POISSON PP Dinición d Procso Puntual PROCESOS ALEAORIOS DE POISSON PP I a. óms un instant cualquira como orign d la variabl timpo. Lláms t 0 a dicho instant. Supóngas qu los instants t, t,, postriors a t 0, caractricn

Más detalles

EJERCICIOS RESUELTOS TEMA 1: PARTE 3

EJERCICIOS RESUELTOS TEMA 1: PARTE 3 Ejrcicios rsultos Tma part III): Límits d uncions º BCN EJERCICIOS RESUELTOS TEMA : PARTE 3 LÍMITES DE FUNCIONES. CONTINUIDAD Ejrcicios rsultos Tma part III): Límits d uncions º BCN ) Dada la guint unción:

Más detalles

PRIMERA PRÁCTICA SONIDO

PRIMERA PRÁCTICA SONIDO PRIMERA PRÁCTICA SONIDO 1. Objtivo gnral: El objtivo d sta práctica s qu l alumno s familiaric con los concptos d amplitud y frcuncia y los llgu a dominar, así como l fcto qu tin la variación d stos parámtros

Más detalles

AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD. A gn inf. A gn sup PPR = P e PPR

AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD. A gn inf. A gn sup PPR = P e PPR AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD FÓRMULA AT07 NOMBREdlINDICADOR Porcntaj d población n la scula con un avanc rgular por dad. FÓRMULAdCÁLCULO PPR = PPR A + inf A

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

FIZIKA SPANYOL NYELVEN

FIZIKA SPANYOL NYELVEN Fizika spanyol nylvn középszint 08 ÉRETTSÉGI VIZSGA 010. május 18. FIZIKA SPANYOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Los xámns

Más detalles

Tema 5 El Mercado y el Bienestar. Las externalidades

Tema 5 El Mercado y el Bienestar. Las externalidades Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 5 El Mrcado

Más detalles

CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1

CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1 En los problmas complt la tabla siguint para cada función. d d DIVISION DE INGENIERIA ELECTRONICA.. Rumbo al amn d rcupración a Part: CALCULO INTEGRAL Ejrcicios Difrncials Dfinición. Faus6 Supóngas qu

Más detalles

LECCIÓN N 06 POLITICA MONETARIA Y FISCAL EN EL MODELO IS-LM

LECCIÓN N 06 POLITICA MONETARIA Y FISCAL EN EL MODELO IS-LM LECCIÓN N 06 POLITICA MONETARIA Y FISCAL EN EL MODELO IS-LM Est capitulo xamina l fcto qu tin sobr l ingrso d quilibrio un cambio n la ofrta d dinro, n l gasto gubrnamntal y/o n los ingrsos ntos por impustos.

Más detalles

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo.

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo. Valldupar como vamos: Dmografía, Pobrza y Pobrza Extrma y mplo. Tradicionalmnt l programa Valldupar Cómo Vamos, lugo d prsntar la Encusta d Prcpción Ciudadana (EPC), raliza la ntrga d Indici d Calidad

Más detalles

DETERMINACION DE LAS RELACIONES VOLUMÉTRICAS DE LOS SUELOS

DETERMINACION DE LAS RELACIONES VOLUMÉTRICAS DE LOS SUELOS DETERMINACION DE LAS RELACIONES VOLUMÉTRICAS DE LOS SUELOS I. GENERALIDADES: La dtrminación d las rlacions volumétricas d los sulos son importantísimas, para l manjo comprsibl d las propidads mcánicas

Más detalles

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control TERMODINAMICA 1 1 Ly d la Trmodinámica aplicada a Volumns d Control Prof. Carlos G. Villamar Linars Ingniro Mcánico MSc. Matmáticas Aplicada a la Ingniría CONTENIDO PRIMERA LEY DE LA TERMODINAMICA PARA

Más detalles

Medicion de resistencias por el metodo voltímetro-amperímetro. IV.1.1 Error sistemático debido al consumo de los instrumentos

Medicion de resistencias por el metodo voltímetro-amperímetro. IV.1.1 Error sistemático debido al consumo de los instrumentos ESSTENCA ELECTCA: oltítro -Aprítro Mdicion d rsistncias por l todo oltítro-aprítro CONTENDOS oltítro Aprítro. Conxión Corta y Larga. Error sistático d consuo y dbido a la clas. y o. Errors casuals. Opratoria

Más detalles

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima

Más detalles

TÉCNICAS EXPERIMENTALES EN ESPECTROSCOPÍA

TÉCNICAS EXPERIMENTALES EN ESPECTROSCOPÍA TÉCICAS EXPERIMETALES E ESPECTROSCOPÍA Inocncio R. Martín Bnnzula Dpto. Física Fundamntal y Exprimntal, Elctrónica y Sistmas Univrsidad d La Launa Email: imartin@ull.s. ÍDICE UIDAD I. ITRODUCCIÓ Tma. Introducción

Más detalles

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala d Granada Junio d 03 (Modlo Espcífico ) Grmán-Jsús Rubio Luna Opción A Ejrcicio opción A, modlo Junio 03, spcífico [ 5 puntos] Halla las dimnsions dl rctángulo d ára máima inscrito n un triangulo

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

Aplicaciones de la distribución weibull en ingeniería

Aplicaciones de la distribución weibull en ingeniería COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS.

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. 1.- En ausncia d autoabsorción, la intnsidad d fluorscncia d una mustra s proporcional a la concntración, solo a concntracions bajas. Calcular

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional. Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.

Más detalles

IMPACTO DE LAS AVERÍAS E INTERRUPCIONES EN LOS PROCESOS. UN ANÁLISIS DE LA VARIABILIDAD EN LOS PROCESOS DE PRODUCCIÓN

IMPACTO DE LAS AVERÍAS E INTERRUPCIONES EN LOS PROCESOS. UN ANÁLISIS DE LA VARIABILIDAD EN LOS PROCESOS DE PRODUCCIÓN IMPACTO DE LAS AVERÍAS E INTERRUPCIONES EN LOS PROCESOS. UN ANÁLISIS DE LA VARIABILIDAD EN LOS PROCESOS DE PRODUCCIÓN IMPACT OF THE FAILURES AND INTERRUPTION IN PROCESS. AN ANALYSIS OF VARIABILITY IN PRODUCTION

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

Límite Idea intuitiva del significado Representación gráfica

Límite Idea intuitiva del significado Representación gráfica LÍÍMIITES DE FUNCIIONES ((rrsumn)) LÍMITE DE UNA FUNCIÓN f() k s : ímit d a función f() cuando tind a k Límit Ida intuitiva d significado Rprsntación gráfica Cuando f() A aumntar, os vaors d f() s van

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

QUÍMICA FÍSICA III. Tema 3 CINETICA MOLECULAR. Departamento de Química Física Universidad de Valencia. QF III Tema 3 1

QUÍMICA FÍSICA III. Tema 3 CINETICA MOLECULAR. Departamento de Química Física Universidad de Valencia. QF III Tema 3 1 QUÍMICA FÍSICA III Tma 3 CIETICA MOLECULAR Dpartamnto d Química Física Unirsidad d Valncia QF III Tma 3 Tma 3. Cinética Molcular 3.. Introducción 3.. Toría d Colisions 3... Vlocidads Molculars 3... Funcions

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

Determinación del Coeficiente de Restitución (e) de una pelota de ping-pong

Determinación del Coeficiente de Restitución (e) de una pelota de ping-pong Dtrmnacón dl Cocnt d Rsttucón () d una plota d pn-pon Rsumn Víctor Garrdo Castro Unrsdad d Vña dl Mar arrdo@um.cl ; arrdostr@mal.com 3() 4668 El prsnt artículo prsnta una orma xprmntal para l cálculo dl

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

ESPACIOS VECTORIALES EUCLÍDEOS: Proceso de ortonormalización (Gram-Schmidt)

ESPACIOS VECTORIALES EUCLÍDEOS: Proceso de ortonormalización (Gram-Schmidt) Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 04/5 PRÁCTICA Nº ESPACIOS VECTORIALES EUCLÍDEOS: Procso d ortonormalización (Gram-Schmidt) En sta práctica vamos a vr como podmos calcular

Más detalles

PROBLEMAS CÁLCULO INTEGRAL Y ECUACIONES DIFERENCIALES

PROBLEMAS CÁLCULO INTEGRAL Y ECUACIONES DIFERENCIALES Licnciatura n Administración y Dircción d Emprsas (LADE) Facultad d Cincias Jurídicas y ocials (FCJ) Univrsidad Ry Juan Carlos (URJC) PROBLEMA CÁLCULO INTEGRAL Y ECUACIONE DIFERENCIALE Matmáticas Primr

Más detalles

Modelos Box-Jenkins. El paseo aleatorio X t = c + X t 1 + a t no es estacionario. Sin embargo, el proceso diferenciado regularmente

Modelos Box-Jenkins. El paseo aleatorio X t = c + X t 1 + a t no es estacionario. Sin embargo, el proceso diferenciado regularmente Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl El paso alatorio X t = c + X t 1 + a t no s stacionario. Sin mbargo, l procso difrnciado rgularmnt s stacionario. X t X t 1 = c +

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES

LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES 96 LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES JUSTIFICACIÓN: En sta Lcción s cntrará la atnción n l studio d aqullas cuacions difrncials ordinarias d primr ordn

Más detalles

Practica1.- Determinación experimental de la característica I-V del diodo de unión.

Practica1.- Determinación experimental de la característica I-V del diodo de unión. Laboratorio d Elctrónica d Dispositivos Practica1.- Dtrminación xprimntal d la caractrística I-V dl diodo d unión. A.- Objtivos 1.- Mdir los fctos d la polarización dircta invrsa n la corrint por l diodo.

Más detalles

Espectro de vibración de las moléculas diatómicas

Espectro de vibración de las moléculas diatómicas Espctro d vibración d las moléculas diatómicas Ilana Nivs Martínz QUIM 404 1 Pozo d nrgía potncial y moléculas diatómicas 1 Caractrísticas r la longitud dl nlac n quilibrio. r, V 0 (no hay intracción.

Más detalles

TAMAÑO DE LA MUESTRA

TAMAÑO DE LA MUESTRA Rv. Epidm. Md. Prv. (003), : 8-4 TAMAÑO DE LA MUESTRA Enric Matu, Jordi Casal CRSA. Cntr d Rcrca n Sanitat Animal / Dp. Sanitat i Anatomia Animals, Univrsitat Autònoma d Barclona, 0893-Bllatrra, Barclona

Más detalles

Espacios vectoriales euclídeos.

Espacios vectoriales euclídeos. Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 4/5 PRÁCTICA Nº 6 Espacios vctorials uclídos. En sta práctica vamos a vr cómo introducir un producto scalar y trabajar con él n Mathmatica

Más detalles

4 ANALISIS DIMENSIONAL Y SIMILITUD FISICA

4 ANALISIS DIMENSIONAL Y SIMILITUD FISICA 4 ANALISIS IENSIONAL Y SIILITU ISICA www.rivra-001.com Contnido 4.1. Introducción 4.. Qué s un parámtro adimnsional? 4.3. Naturalza adimnsional dl flujo fluido 4.4. El torma d Pi d Buckingham 4.5. Cómo

Más detalles

11 Funciones derivables ACTIVIDADES INICIALES

11 Funciones derivables ACTIVIDADES INICIALES Solucionario Funcions drivabls ACTIVIDADES INICIALES I Cunta la tradición qu sobr la tumba d Arquímds había sculpido un cilindro con una sfra inscrita Arquímds halló la rlación ntr sus volúmns y l volumn

Más detalles

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004 MÁQUNAS LÉCTRCAS, º ngniros ndustrials xamn Ordinario 14 d Fbrro d 004 Problma 1. Un motor drivación consum una corrint d 0 A cuando gira a 1000 r.p.m., sindo la tnsión d alimntación d 00 V. La rsistncia

Más detalles

UTILIZACIÓN DE LA CALCULADORA GRÁFICA EN EL AULA COMO APOYO PARA LA COMPRENSIÓN DE LA PRIMITIVA, LAS INTEGRALES DEFINIDAS E INDEFINIDAS DE UNA FUNCIÓN

UTILIZACIÓN DE LA CALCULADORA GRÁFICA EN EL AULA COMO APOYO PARA LA COMPRENSIÓN DE LA PRIMITIVA, LAS INTEGRALES DEFINIDAS E INDEFINIDAS DE UNA FUNCIÓN UTILIZACIÓN DE LA CALCULADORA GRÁFICA EN EL AULA COMO APOYO PARA LA COMPRENSIÓN DE LA PRIMITIVA, LAS INTEGRALES DEFINIDAS E INDEFINIDAS DE UNA FUNCIÓN. Abl Martín. Dpto. Matmáticas IES La Ería d Ovido.

Más detalles

Prueba de asociación de dos variables cualitativas

Prueba de asociación de dos variables cualitativas Pruba d asociación d dos variabls cualitativas Dscripción Esta pruba s aplica n disños d invstigación n los qu s studia a un único grupo d individuos dond a cada uno d llos s han mdido simultánamnt dos

Más detalles

EL FILTRO DE KALMAN. Introducción. Qué es el Filtro de Kalman

EL FILTRO DE KALMAN. Introducción. Qué es el Filtro de Kalman L FILRO D LMN Introducción n l siguint documnto s xplicará un método para stimar los stados d un sistma stocástico. l método fu dscrito por Rudolf. alman n 1958. n un sistma dtrminístico trabajaríamos

Más detalles