(Soluc: 1) 1/x 2) x 6 /36 3)
|
|
- Juan José Saavedra Cano
- hace 4 años
- Vistas:
Transcripción
1 INTEGRALES INDEFINIDAS º BACH.. Calcular las siguints intgrals potncials (y comprobar la sombrada: d d d 6 d t t dt d 7 t dt d 9 d 0 d t d d d + d ( t dt d (Soluc: / 6 /6 0 t 7 /7 t 6 / t / Calcular las siguints intgrals d funcions compustas (y comprobar las sombradas: ( + d (7 + d ( + d ( + d t (t + dt ( + d 7 ( + d 7 ( + d 9 d 0 ( + + ( + + dt d 6 + d d ( + ( + + d t + t d 7 ( + d (6 + (8 + d d 0 + cos sn d cos sn d sn cos d (* ln d 7 arctg d + d ln d 9 ln arctg d + arcsn d d cos d sn d d arcsn (Soluc: (+ / (7+ / ( + / ( + / (t + / ( + / ( + 8 ( + ( t + ( + ( + ( ( ++ 7 / 9( (8 +- / sn / o -cos / sn / cos / cosc ln / 7 /ln ln / 9 arctg arc sn NOTA: En todas las solucions s omit, por razons d spacio, la ct. d intgración C. arc tg 0 arc sn Tto bajo licncia Crativ Commons: s prmit su utilización didáctica así como su rproducción imprsa o digital simpr y cuando s rspt la mnción d su autoría, y sa sin ánimo d lucro. En otros casos s rquir l prmiso dl autor
2 . Calcular las siguints intgrals d tipo logarítmico (y comprobar la sombrada: d d d d + a + b + d d d 9 d 0 sn cos d + sn + cos d ln d (+ arctg d arcsn sc d + tg (* d cos d sn (Soluc: ln ln (- ln ln ( + + ln ln ( ln (arcsn ln ( + tg ln sn ln (a + b a 9 ln + ln ln ln (ln ln (arctg sn + cos. Calcular las siguints intgrals d tipo ponncial (y comprobar la sombrada: d d d d d d - 7 d + d 9 ( + sn + d 0 cos d ln d tg sc d (6 d 7 arctg d + 7 d (Soluc: -/ / + 9 /ln 6 /ln6 7 9 d arcsn + / -+ / d d sn tg arctg arcsn (7 / ln7 ln. Calcular las siguints intgrals trigonométricas sncillas (y comprobar la sombrada: cos( d sn d sn( + d 7 cos( + d sn d 9 cos d sn ( + d cos( + d cos( + d 0 sn( cos( d 7 sn( + d cos d sn d cos (arctg d + cos ln d + 7 d sn (Soluc: cos sn cos (+ sn( + cos (-+ Tto bajo licncia Crativ Commons: s prmit su utilización didáctica así como su rproducción imprsa o digital simpr y cuando s rspt la mnción d su autoría, y sa sin ánimo d lucro. En otros casos s rquir l prmiso dl autor
3 7 sn( + sn cos cos 9 sn( + 0 cos ( sn (ln sn(arctg sn ( 7cos ( Calcular las siguints intgrals por l método d sustitución o cambio d variabl: + d mdiant +=t d hacindo t =- d con t= + ( 0 ( + d hacindo +=t d + ( + 0 d 7 + d + d d (Soluc: ( + ( + ( ( + ( + 0 ( + 9 ( Ln 7 ( 0 9 arc tg + + ( + + Ln ( ( arctg Ln Rcordar algunos consjos:. En las intgrals NO inmdiatas n las qu haya, sul funcionar l cambio RADICANDO=t. aparzcan d distinto índic, pud funcionar l cambio mcm d los índics RADICANDO=t. En las intgrals NO inmdiatas n las qu aparzca a, pud nsayars a =t. Para intgrals trigonométricas NO inmdiatas vr los cambios vistos n l tma. NOTA: Algunas intgrals d st jrcicio también s podrían habr hcho por parts, como por jmplo la 6.7. Inténts. 7. Calcular las siguints intgrals d tipo arco tangnt (y comprobar la sombrada: d + + d d 8 + d sc d + tg a + a d 7 + d + 9 d 9 d ( + 0 (+ ln d ( + 7 d d + d + + d + (Soluc: arctg(+ arctg ( + arctg arctg ln( + a ln a 7 arctg arctg 9 arctg 0 arctg(ln arctg( + 7 arctg ln ln 6 arctg( + arctg 8. Calcular las siguints intgrals d tipo npriano-arco tangnt (y comprobar la sombrada: d d + + d d d + Tto bajo licncia Crativ Commons: s prmit su utilización didáctica así como su rproducción imprsa o digital simpr y cuando s rspt la mnción d su autoría, y sa sin ánimo d lucro. En otros casos s rquir l prmiso dl autor
4 + + + d + d d d d (Soluc: + ln arctg ln + + arctg( + + ln arctg + ln arctg ln + + arctg ln + + arctg ln( arctg ln + + arctg ln arctg 0 ln( + + arctg ln( + + arctg d 9. Calcular por parts las siguints intgrals (y comprobar la sombrada: ln d ln d ln d ln d d ln( + d 7 arc cos d sn d 9 + d 0 ( d - + sn d ( + d cos d d ( + sn d Ln d (Soluc: ln ln ln ln -ln+ 9 9 ( -+ ln(+-+ln(+ 7 arccos cos - cos+sn 9 ( + 0 ( + sn + cos + + (sn cos sn cos Ln 0. Calcular las siguints intgrals racionals (y comprobar la sombrada: + d d d d + d d d d + + d d d 7 + d + 8 d + + d + 6 d + 0 d + + d d (Soluc: ln ( ( 7 ln ( ln( ln Esta s la prgunta B spt 0. Tto bajo licncia Crativ Commons: s prmit su utilización didáctica así como su rproducción imprsa o digital simpr y cuando s rspt la mnción d su autoría, y sa sin ánimo d lucro. En otros casos s rquir l prmiso dl autor
5 ln ln[( ( ] 7 ln ( + + arctg( + ( + ln ( 9 ln ( + + arctg 0 9 ln( ( 7 ln ( + + arctg ln( ln( 7 + ( ln 0 9 ( ln( 7 + ln( ln( + ln( +. Calcular las siguints intgrals trigonométricas no inmdiatas, hacindo cambios o transformando los intgrandos (y comprobar la sombrada: cos d sn cos d (Hacr cos=t sn + tg d (Dscomponr l intgrando cos sc d Sustituir ctg = cos ctg d sn (Hacr sn=t sn d 7 cos d cos d + sn cos (hacr tg=t 9 0 sn d (Multiplicar por l conjugado d + cos sn cos d (hacr tg=t cos cos d sn cos sn sn d (sn=t o cos=t cos cos sn cos d (Soluc: sn sn sn + cos cos + cos sc + ln sc sn 8 sn + π L n, o bin Ln ( sc + tg, o bin Ln tg + cos c sn 7 sn 6 sn + Ln ( + tg 9 tg 0 sn Ln ( tg tg tg + cos Ln cos sn sn cos d. Calcular por l método más adcuado (ntr paréntsis figura una ayuda las siguints intgrals: d(inmdiata d (tipo ln ( d (por parts ( 6 + ( ln d (por parts d (raícs R simpls + d (raícsr simpl d (ln-arctg + d (raícs R simpls 9 sc d (cambio sn=t sn d (cambio sn=t cos d sn cos cos (transformar l intgrando cos sn d (inmdiata sn d (por parts arctg d (por parts d (por parts 9 d (ln-arctg 7 d (raícsr simpls ln( + d (por parts + 9 ln d - (inmdiata 0 sn(ln d (por itración ln( + d Tto bajo licncia Crativ Commons: s prmit su utilización didáctica así como su rproducción imprsa o digital simpr y cuando s rspt la mnción d su autoría, y sa sin ánimo d lucro. En otros casos s rquir l prmiso dl autor
6 + d + + d (hacr la división + + d (hacr la división + + d (hacr la división d (tipo arcsn 9 + d + d d ln ln ln ( + sn d sncos 7+ tg d cos (hacr ln =t 0 sn d (cambio var.+por parts (Sol: ln + 6 ln 6 + ( ln + ln ln( arctg ( + + ln ( 6 9 ln sn ln sn + (sn (sn + 0 sn ln --cosc-ctg cos sn 9 cos sn cos arctg arctg + + ln + 9 arctg ln ln ( ln ( ln ln 0 (snln cosln ln ln + + arctg+ln( + --ln(- ln( + + ln( + + ln (7 + tg arcsn 9 (ln (ln + ln 6 0 ( sn cos ( + Ln + arctg ln( sn (ln Tórico-prácticos:. Calcular la primitiva d f(=ln qu s anula n =. Dtrminar f( sabindo qu f (=, f(0=0, f (0= y f (0= (Soluc: f(= + +. Hallar un polinomio cuya drivada sa +-6 y tal qu l valor d su máimo sa trs vcs mayor qu l d su mínimo. (Soluc: p(= /+ /-6+7/ 6. a Calcular todas las funcions qu vrifican b Estudiar su drivabilidad. si 0 f '( = + si > 0 + C si 0 Soluc : f( = ; f( drivabl R + + C si > 0 7. Hallar una función F( tal qu F(0= y qu sa una primitiva d f( = + ( Soluc : F( = Ln ( + + Ln Tto bajo licncia Crativ Commons: s prmit su utilización didáctica así como su rproducción imprsa o digital simpr y cuando s rspt la mnción d su autoría, y sa sin ánimo d lucro. En otros casos s rquir l prmiso dl autor
(Soluc: a) 1/x b) x 6 /36 c)
. Calcular las siguints intgrals potncials (s rcominda hacr la comprobación: a d b d c d d d t t dt f d g t dt h d i d j d t m d n d o d p + d ( t dt l d (Soluc: a / b / c j d t / l m t / f 8 8 n o g t
98 EJERCICIOS de DERIVABILIDAD 2º BACH.
98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)
IES Padr Povda (Guadi) UNIDAD : INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu:
INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN
INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN El almán Gottfrid Libniz (66-76), quin, junto con su antagonista l inglés Isaac Nwton (6-77), fu l crador dl cálculo infinitsimal. MATEMÁTICAS II
Integrales indefinidas. 2Bach.
Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva
91 EJERCICIOS de DERIVABILIDAD 2º BACH.
9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.
Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción
Integral indefinida. 1. Primitiva de una función. 1.1 Propiedades de la integral indefinida
ntgral indfinida achillrato ntgral indfinida. Primitiva d una función Dfinición: Sa f() una función dfinida n l intrvalo (a,b), llamarmos primitiva d la función f() a toda función ral d variabl ral, F(),
DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.
DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada
f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,
CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo
Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto.
REPASO LÍMITES º BACH. RECORDAR: Para qu ista límit d una f() n un punto han d coincidir los límits latrals n dicho punto. A fctos dl f() no tnmos n cunta lo qu ocurr actamnt n a, sino n las a proimidads.
TEMA 11. La integral definida Problemas Resueltos
Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una
OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis
MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa
2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:
Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada
Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos
Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay
Ejercicios de integrales 2008: 1.2A Ejercicio 2.- [2'5 puntos] Dadas las funciones f : [0;+ ) R y g : [0;+ ) R definidas por
INTEGRALES MATEMATICAS II 0-0 Ejrcicios d intgrals 00:.A Ejrcicio.- ['5 pntos] Dadas las fncions f : [0;+ ) R g : [0;+ ) R dfinidas por f ( ) g() Calcla l ára dl rcinto limitado por las gráficas d f g..b
2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13
º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES
INTEGRAL INDEFINIDA. Derivación. Integración
TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA F() s ua primitiva d f() si F ()= f(). Esto s prsa así: La itgració s la opració ivrsa a la drivació, d modo qu: f() F'() F() FUNCIONES PRIMITIVAS
Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos
Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,
Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b
Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr
Contenido: Integral definida: (3º) Aplicación: Longitud del arco de una curva. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contnido: Intgral dfinida: (º) Aplicación:
16 EJERCICIOS DE FRACCIONES HOJA 2
Texto bajo licencia Crative Commons se permite su utilización didáctica así como su reproducción impresa o digital EJERCICIOS DE FRACCIONES HOJA Resolver las siguientes operaciones con fracciones en línea,
34 EJERCICIOS de LOGARITMOS
EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.
(Soluc: a) ; b)- ; c)± ; d)± ; e)± ; f) 0; g)± ; h) ; i)± ; x 1. 3 f) x e. lim x 2 x 1. lim x. lim. lim log x. lim. lim. x 1 (x 1)(x 4) lim x 1.
+ ln 4 + f + 5 EJERCICIOS de LÍMITES DE FUNCIONES y CONTINUIDAD. Calcular los siguientes límites no indeterminados : 4 + + 4 f) e log 0, + 4 i) 0+ + 4 4. Dada la gráfica de la figura, indicar si eiste
Definición de derivada
Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()
31 EJERCICIOS de LOGARITMOS
EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.
REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES
Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (
Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:
Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:
LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES
96 LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES JUSTIFICACIÓN: En sta Lcción s cntrará la atnción n l studio d aqullas cuacions difrncials ordinarias d primr ordn
TEMA 4. APLICACIONES DE LA DERIVADA.
7 Unidad 4. Funcions. Aplicacions d la drivada TEMA 4. APICACIONES DE A DERIVADA.. Monotonía. Crciminto y dcrciminto d una función. Etrmos rlativos 3. Optimización 4. Curvatura 5. Punto d Inflión 6. Propidads
1. CÁLCULO DE PRIMITIVAS
. CÁLCULO DE PRIMITIVAS. Calcular las siguientes integrales indefinidas:. ( + Es inmediata. ( = (ln ln + + C +. + + + Descomponemos el integrando en fracciones parciales y obtenemos. + + = + arc tg + =
EJERCICIOS UNIDAD 2: DERIVACIÓN (II)
IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l
Hoja 1. Trigonometría.doc Hoja 2. Resolución de triángulos.doc Hoja 3. Geometría analítica.doc Hoja 4. Cónicas.doc Hoja 5. Funciones, límites y
Hoja Trigonomtríadoc Hoja Rsolución d triángulosdoc Hoja Gomtría analíticadoc Hoja Cónicasdoc Hoja Funcions, límits continuidaddoc Hoja 6 Drivadasdoc Hoja 7 Aplicacions d la drivadadoc Hoja 8 Optimizacióndoc
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta
UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Maritza de Franco
UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Marita d Franco A Francisco José, Shrl, Marión, Paola, Constanc, Luis Migul Migul. AGRADECIMIENTOS Al Ing. Pdro Rangl por su comprnsión,
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES.
TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bach. TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. Tasa d variación mdia. Cálculo y signiicado EJERCICIO : Considramos la unción:. Halla la tasa
ANÁLISIS (Selectividad 2014) 1
ANÁLISIS (Slctividad 4) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD EN 4 ( Obsrvación: La slcción s ha hcho dando prioridad a las custions más tóricas) Andalucía, junio 4 San
(Soluc: a) ; b)- ; c)± ; d)± ; e)± ; f) 0; g)± ; h) ; i)± ; x 1. 3 f) x e. lim x 2 x 1. lim x. lim. lim log x. lim. lim. x 1 (x 1)(x 4) lim x 1.
+ ln 4 + f + 5 EJERCICIOS de LÍMITES de FUNCIONES y CONTINUIDAD. Calcular los siguientes límites no indeterminados : 4 + + 4 f) e log g) 0, + 4 d) i) 0+ + 4 e) j) 4. Dada la gráfica de la figura, indicar
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4
INTEGRALES INDEFINIDAS
Ingrals Indfinidas@JEMP INTEGRALES INDEFINIDAS MÉTODOS DE INTEGRACIÓN. Ingración inmdiaa.- Tnindo n cuna qu l procso d ingración s l invrso d la drivación, podmos scribir fácilmn las ingrals indfinidas
Ejercicios de Integrales resueltos
Ejercicios de Integrales resueltos. Resuelve la integral: Ln Ln Llamemos I Ln u du Aplicamos partes: dv v I Ln t t 4 t t t 4 t t 4 t 4 4 4t 4 t t t A t B t A( t) B( t) A ; B 4 t t Ln t Ln t t C Deshaciendo
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica
REPRESENTACION GRAFICA.
REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:
COMPUTACIÓN. Práctica nº 2
Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros
La integral indefinida
Apuntes Matemáticas º de bachillerato Leibniz Tema 7 La integral indefinida Matemáticas º de bachillerato 7. Introducción Def.: Dadas dos funciones, F() y f(), si se verifica que: F () f(), para un cierto
26 EJERCICIOS de LOGARITMOS
6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.
Límites finitos cuando x: ˆ
. Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador
si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x (
ANÁLISIS MATEMÁTICO Continuidad y drivabilidad d funcions si = 0 - Estudia la continuidad d la función f ( ) = si o sn si (, π / ) si π / < 0 - Dtrmina los valors d a y d b para qu sa continua la función:
Tabla de contenido. Página
Tabla d contnido Página Ecuacions actas linals Ecuacions difrncials actas Torma 4 Solución d una cuación difrncial acta Ecuacions linals 1 Solución d una cuación linal 1 Rsumn 19 Bibliografía rcomndada
LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN
LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.
. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función:
º BACHILLERATO D MATEMÁTICAS CC SS TEMA 4.- FUNCIONES. DERIVACIÓN.- CONCEPTO DE DERIVADA Tasa d variación mdia S llama tasa d variación mdia d una función f n l intrvalo [a, b] al cocint. La tasa d variación
Función exponencial y logarítmica:
MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. OPTIMIZACIÓN. Aplicaciones de la derivada: condiciones de máximo, mínimo, inflexión
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. OPTIMIZACIÓN Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad. Aplicacions d la drivada: condicions d
FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS.
Prof., Enriqu Matus Nivs Doctorano n Eucación Matmática. FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Una función ponncial s aqulla n la qu la variabl stá n l ponnt. Algunos - - -5 jmplos funcions
ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015
ANÁLISIS (Slctividad 5) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 5 Andalucía, junio 5 Sa f la función dfinida por f( ) para a) [ punto] Estudia y calcula las asíntotas
ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x
ANÁLISIS Junio 9.. Dada la función cos si 0 b si f() a si 0 a) [ punto] Calcular los valors d a y b para qu la función f() sa continua n b) [ punto] Es drivabl la función obtnida n = 0?. En =?. Razona
ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos
Matmáticas II Prubas d Accso a la Univrsidad ANÁLISIS Junio 9.. Dada la función cos f () a b si si si a) Calcular los valors d a y b para qu la función f() sa continua n [ punto] b) Es drivabl la función
LÍMITES DE FUNCIONES.
LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté
Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION
Inroducción a la ingración d funcions compusas INTREGRACION POR SUSTITUCION Cuando s raa d funcions compusas, s aplica un méodo qu s llama ingración por susiución, s méodo srá nndido sin dificulad n la
CONTINUIDAD Y DERIVABILIDAD. DERIVADAS
CONTINUIDAD Y DERIVABILIDAD. DERIVADAS. Dada la función f (), (, ), definir f () y f () de forma que f sea continua sen(π ) en todo el intervalo cerrado [, ]. : f () f () π 5 si. Estudiar la continuidad
CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden
APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión
integración de funciones racionales
VIII 1 / 6 Ejercicios sugeridos para : los temas de las clases del 26 de febrero y 2 de marzo de 2004. Tema : Integración de funciones racionales. 1.- Diga, justificando, cuales de las siguientes fórmulas
RELACIÓN DE EJERCICIOS DE CONTINUIDAD Y DERIVABILIDAD 1º DE BACHILLERATO
RELACIÓN DE EJERCICIOS DE CONTINUIDAD Y DERIVABILIDAD º DE BACHILLERATO.-Dada la curva de ecuación y = -. Calcular la ecuación de su recta tangente punto de abscisa = -. Comprobar si eiste algún punto
UNIVERSIDAD ARTURO PRAT IQUIQUE CHILE DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES
DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES MARIA ELISA VODNIZZA LIRA e-mail : mvodnizz@cec.unap.cl url : www.unap.cl/~mvodnizz SEPTIEMBRE - 00 INTEGRALES Uno de los problemas importantes
Idea La derivada de una función, f(x), en un punto P se interpreta geométricamente con la pendiente de la recta tangente a la curva en ese punto.
http://matmaticas-tic.wikispacs.com Lambrto Cortázar Vinusa 06 DERIVADAS EJERCICIOS WIKI Ida La drivada d una unción, (), n un punto P s intrprta gométricamnt con la pndint d la rcta tangnt a la curva
PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL
PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns
Integral indefinida (CCSS)
ntegral indeinida SS achillerato SS ntegral indeinida (SS). Primitiva de una unción Deinición: Sea () una unción deinida en el intervalo (a,b), llamaremos primitiva de la unción () a toda unción real de
PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.
Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f
INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL
INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE
Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos
. Considr los siguints númros compljos: ) z = 3 i 2) z 2 = 2 3 i 3) z 3 = + 3 i ) z = i π Matmáticas Avanzadas para Ingniría Funcions rals xtndidas al Plano Compljo, problmas rsultos Dtrmin la part ral
CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES
CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES RELACIÓN DE PROBLEMAS DE SELECTIVIDAD º DE BACHILLERATO CIENCIAS DEPARTAMENTO DE MATEMÁTICAS COLEGIO MARAVILLAS TERESA GONZÁLEZ GÓMEZ .-Hallar una primitiva
DERIVADAS APLICACIONES
DERIVADAS APLICACIONES El inglés Isaac Newton (64-77), quien, a la vez que su antagonista el alemán Gottfried Leibniz (646-76), desarrolló el concepto de derivada, aunque sin darle ese nombre. MATEMÁTICAS
Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8
Matmáticas II (Bacillrato d Cincias) Solucions d los problmas propustos Tma 8 7 TEMA 8 Drivadas Tormas Rgla d L Hôpital Problmas Rsultos Drivada d una función n un punto Utilizando la dfinición, calcula
Cálculo Integral Enero 2015
Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones
Integral. F es primitiva de f F (x) = f(x)
o Bachillerato, Matemáticas II. Integración. Integrales indefinidas. Métodos de integración. Primitiva de una función. Integral indefinida. Sean f y F dos funciones reales definidas en un mismo dominio.
x 1 3 f) x e lim x lim + 2 lim lim log x lim x 1 (x 1)(x 4) lim x 1 (x 2)(x 5) (x 2)(x 3) 1. Calcular los siguientes límites no indeterminados 1 :
+ ln 4 + f + 5 EJERCICIOS de LÍMITES DE FUNCIONES y CONTINUIDAD. Calcular los siguientes límites no indeterminados : 4 + + 4 f) e log g) 0, + 4 i) 0+ + 4 e) j) 4. Dada la gráfica de la figura, indicar
LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto
LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima
3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1
1. Calcula la derivada de las funciones: y = Ln3 4 3 ) 5 y = Ln [ 1) )]. Calcula la derivada de las funciones: y = sen y = sen 3 y = sen 3 y = sen 3 3 y = sen 3 ) y = sen 4 3 4 5) 3 3. Calcula la derivada
TEMA 1 INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN
Cód. 80607 TEMA INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN. INTEGRAL INDEFINIDA Dfinición: S dic qu una función F() s una primiiva d la función f() si y sólo si F () = f() Ejmplo: F () = y F ()= son primiivas
TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)
TEMAS DE MATEMÁTICAS (Oposicions d Scundaria) TEMA 3 FUNCIONES CIRCULARES E HIPERBÓLICAS Y SUS RECÍPROCAS. SITUACIONES REALES EN LAS QUE APARECEN.. Introducción.. Funcions circulars... Funcions d Sno y
12 Representación de funciones
Rprsntación d funcions ACTIVIDADES INICIALES.I. Factorizando prviamnt las prsions, rsulv las siguints cuacions: a) 6 7 5 0 6 c) 0 7 b) 6 d) 0 a) 6 7 5 0 ( )(6 5) 0 5 6 5 0, b) 7 6 ( )( ) 6 6 ( ) 7 ( )
CINEMÁTICA (TRAYECTORIA CONOCIDA)
1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra
32 EJERCICIOS de CONTINUIDAD 2º BACH.
3 EJERCICIOS de CONTINUIDAD º BACH. RECORDAR: f() continua en = a lim f(a) Es decir: Una función es continua en un punto si el límite a coincide con la imagen en dicho punto. A efectos prácticos, para
Ejercicios de integración
1. Calcular las siguientes integrales: 1) ) 8) + 1 d ) + 6 6 + 1 d 5) + + 1 + 1 7) d 8) + Ejercicios de integración d ) + + 1 d 6) ( + 1) + + d + d 9) ( + + 1) ln d + 1 + + 1) d 11) d 1) + + 1 d + 1 1)
INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx
INTEGRAL DEFINIDA. PROBLEMAS. º-Calcular las siguientes integrales definidas: π sen. ln(+ )d. d. + sen - cos -π +. d.5 -) - ( - d.6 E[]d -.7 E[] d.8 cos d - º-Calcular el área limitada por las gráficas
Modelo 3 Opción A. , + ) Decreciente: (0, )) = ( , f(
Modlo Opción A Ejrcicio º Sa f : (, ) R la función dfinida por f() Ln() (Ln dnota la función logarito npriano). (a) [ 5 puntos] Dtrina los intrvalos d crciinto d dcrciinto los tros rlativos d f (puntos
45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( )
5 EJERCICIOS de INTEGRAL DEFINIDA º BACH. Inegral definida:. Enunciar la regla de Barrow. Calcular:. Calcular:. (S) Calcular: d (Soluc: ) a + b a ( ) a + b d Soluc : b d (Soluc: 5/). Calcular: 5. Calcular:
Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real
Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real En la primera parte de este tema vamos a tratar con funciones reales de variable real, esto es, funciones
PRÁCTICA SUMAS DE RIEMANN CURSO CÁLCULO. Práctica 10 (17/12/2014)
PRÁCTICA SUMAS DE RIEMANN CURSO 4-5 CÁLCULO Prácticas Matlab Práctica (7//4) Objtivos Profundizar n la comprnsión dl concpto d intgración. Calcular intgrals dfinidas d forma aproximada, utilizando sumas
La Integral Definida-Usando la técnica de Integración por Partes.- b u dv
a Dtrminar la intgral dfinida f ( ). g ( ) d, bosqjar l ára rprsntada por b la crva y las rctas a y b, con rspcto l j, aplicando l método d intgración por parts d cada no d los sigints problmas: Ejmplo
Matemáticas II TEMA 7 Límites y continuidad de funciones
Matmáticas II TEMA 7 Límits y continuidad d funcions Límit d una función n un punto Ida inicial Si una función f stá dfinida para todos los valors d próimos a a, aunqu no ncsariamnt n l mismo a, ntoncs,
Repaso de integración
TABLA DE INTEGRALES INMEDIATAS Repaso de integración. Tabla de integrales inmediatas n d = n+ + C, si n n + f() n f () d = f()n+ n + + C, si n d = ln + C f() f () d = ln f() + C e d = e + C e f() f ()
, pero lím. 1 x3 1. (x 1) x(x + 1) = x = x 1 1 x 3 = que es una forma indeterminada. (x + 2) (1 + x + x 2 ) = 3
Ana María Albornoz R. Ejercicios resueltos. Calcular los siguientes ites algebraicos + + 5 + + + 0 0 + pero + 0 0 0, pero 0 + + + 4 que es una forma indeterminada. Pero + + + + + + + + + + + + + + + +
UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS
Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo
Cálculo de límites. Continuidad
Chapter 8 Cálculo de límites. Continuidad 8. Definición Una función f () tiene límite l en a, siparatodasucesióndevalores n a las imágines correspondientes f ( n ) l. Sediceentoncesque f () f (a) a 8.2
Curso Introductorio a las Matemáticas Universitarias
Curso Introductorio a las Matemáticas Universitarias Tema 9: Integración Víctor M. Almeida Lozano Rosa M. Gómez Reñasco Licencia Creative Commons 03 9. INTEGRACIÓN Este tema es una introducción al cálculo