NOTAS SOBRE INFERENCIA ESTADÍSTICA BAYESIANA. José G. Ríos Alejandro. Abril del 2011.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "NOTAS SOBRE INFERENCIA ESTADÍSTICA BAYESIANA. José G. Ríos Alejandro. Abril del 2011."

Transcripción

1 NOTAS SOBRE INFERENCIA ESTADÍSTICA BAYESIANA José G. Ríos Alejadro Abril del 11.

2 INTRODUCCIÓN E los cursos de estadística usualmete se estudia la estadística co efoque frecuetista, la cual alguos autores llama estadística clásica. Por supuesto que hay razoes para ello, creo que la más importate es que se realiza a través de operacioes algebraicas secillas que fácilmete se puede ejecutar. Si embargo, hay otra maera de hacer iferecia estadística que se basa e el teorema de Bayes, deomiada estadística Bayesiaa. No tiee u efoque frecuetista como la estadística clásica, sio que se basa e ua cojetura que defie el ivestigador co respecto al parámetro que se va a estimar, la cual se actualiza después co los resultados de la muestra aleatoria. Ua de las dificultades de la estadística Bayesiaa es que se complica los cálculos que se debe hacer. Pero e los últimos años la iferecia estadística bayesiaa se ha desarrollado eormemete e sus aplicacioes. La razó de ello es el avace tecológico e las computadoras que hace posible hacer ua serie de cálculos y simulacioes rápidamete, las cuales so ecesarias e la aplicació de esta metodología. Estas otas tiee por objetivo presetarle al lector la idea básica que está detrás de la iferecia bayesiaa. Para más detalles sobre esta metodología se recomieda las referecias a ivel itroductorio que se mecioa al fial. Se supoe que el lector tiee coocimietos sobre elemetos de probabilidad, variable aleatoria, distribucioes de probabilidad. Las primeras seccioes habla brevemete sobre la probabilidad codicioal y el teorema de Bayes. Si el lector ya domia estos temas, pasar directamete a la secció Iferecia Estadística co el Método Bayesiao. José G. Ríos Alejadro (jrios@itesm.mx)

3 La Probabilidad Codicioal. La probabilidad codicioal es u cocepto que aplica cuado al ejecutar el experimeto aleatorio se os iforma que ocurrió u eveto, digamos el eveto B. Co esa iformació ahora se quiere calcular la probabilidad de que ocurra el eveto A. Se ilustra lo aterior co el siguiete ejemplo simple. Supogamos que se laza u dado legal y os iforma que cayó úmero par, co esa iformació dispoible queremos ahora calcular la probabilidad de que haya caído el úmero. Sea el eveto B = cae úmero par y sea el eveto A = cae el úmero. Luego, queremos calcular A) sabiedo que ya ocurrió B, lo aterior se deota por P ( A B) que se lee como probabilidad de A dado que ya ocurrió B o probabilidad de A codicioada a que ya ocurrió B. Aalizado la situació vemos que si ya ocurrió B, etoces los resultados posibles del experimeto so B = {,, 6} y como todos so igualmete probables etoces A B) = B) = 1/3. Si embargo, la probabilidad codicioal P ( A B) se puede expresar e térmios de la probabilidad o codicioal haciedo lo siguiete, 1 1/ 6 A B) A B). 3 3/ 6 B) Dode A B) es la probabilidad o codicioal de que caiga el y caiga úmero par, además, P (B) es la probabilidad o codicioal de que caiga úmero par. Etoces la probabilidad codicioal se puede geeralizar como e la siguiete defiició. A B) A B) como se idica B) Defiició 1. Probabilidad Codicioal Sea A, B dos evetos asociados a u espacio muestral S. Etoces la probabilidad de que ocurra A dado que ya ocurrió B deotado por P ( A B) se defie como A B) A B) co P ( B). B) Observa que al ocurrir el eveto B, etoces los resultados posibles del experimeto so solo los elemetos de B, por tal razó a B se le cooce como el espacio muestra reducido. Ua fórmula útil de la probabilidad codicioal se obtiee al despejar A B) quedado, A B) B) A B) A) B A). (1)

4 El Teorema de Bayes. El teorema de Bayes es ua probabilidad codicioal calculada bajo ua situació especial, es decir calculada e ua partició, luego, se debe defiir que es ua partició. Defiició. Partició. Los evetos E 1, E,, E forma ua partició del espacio muestra S si cumple lo siguiete: (a) E i E j para todo i j. (b) 1 Ei S. Es decir, la colecció de evetos { E 1, E,, E } forma ua partició si so ajeos dos a dos y si la uió de todos ellos es igual al espacio muestra S. La figura 1 ilustra la idea gráficamete. S i E 1 E 3 E 5 E E 6 Figura 1. Diagrama de Ve para ua partició co = 6. El siguiete teorema idica como calcular la probabilidad de cualquier eveto cuado se tiee ua partició. Se le cooce como la ley de probabilidad total. Teorema 1. La Ley de Probabilidad Total Sea { E 1, E,, E } ua partició y sea A u eveto cualquiera. Etoces A) i Ei ) A E 1 i ). Demostració. Observar que A se puede expresar como la uió de evetos mutuamete ajeos de la siguiete maera A A E ) ( A E ) ( A E ), la figura ilustra ( 1 la idea. Etoces, P A) P[( A E ) ( A E ) ( A E )], luego, ( 1 P A) A E ) A E ) A E ) y aplicado la fórmula (1) ( 1 A) E1 ) A E1) E) A E ) i Ei ) A E 1 i ). E

5 S E 1 E 3 E 5 E E 6 A E Figura. Ilustració de u eveto A y ua partició co = 6. A cotiuació se demuestra el teorema de Bayes. Teorema. El Teorema de Bayes. Sea { E 1, E,, E } ua partició y sea A u eveto cualquiera. Sea E j u eveto de la partició. Etoces E j ) A E j ) E j A). E ) A E ) i 1 i Demostració. Por defiició de probabilidad codicioal se tiee que E j A) E j A). Pero como E j es u eveto de la partició { E 1, E, E A), }, fialmete por la fórmula (1) y la ley de probabilidad total se tiee que, i E j A) E j ) A E j ) E j A). A) E ) A E ) i 1 i i El teorema de Bayes se puede geeralizar para la distribució de ua variable aleatoria cotiua quedado como, f ( x y) f ( x) f ( y x). () f ( x) f ( y x) dx Dode f (x) es la fució de desidad de la variable aleatoria X, f ( y x) es la fució de desidad codicioal de Y dado el valor de X = x. Fialmete, f ( x y) es la fució de desidad de x codicioada a que Y = y. La fórmula () es la que se usa e la iferecia estadística usado el método de Bayes. Comparado co el teorema se tiee que E se j

6 sustituye por x, A se sustituye por y, la suma se sustituye por ua itegral y la probabilidad putual P se sustituye por ua fució de desidad f. Iferecia Estadística co el Método Bayesiao. Se ilustra la aplicació del método bayesiao co el siguiete ejemplo y luego se geeraliza. Se desea estimar la proporció de focos que dura más de 1 horas e ua prueba acelerada. Sea p la proporció poblacioal de focos que dura más de 1 horas e la prueba acelerada. Ates de hacer esta prueba, el igeiero sospecha que el valor de p es alrededor de.7, esto lo va a reflejar a través de ua distribució de probabilidad que al meos tega ua media igual a.7. Pero debe usar ua distribució de probabilidad tal que el rago valor de la variable aleatoria sea etre y 1 (porque < p < 1). La distribució coveiete es la distribució Beta (ver aexo), que aplicada a p queda, ( ) 1 1 p (1 p) para p 1. (3) ( ) ( ) Dode (w) es la fució Gamma (ver aexo). Ahora debemos determiar el valor de y. Como el valor esperado de la distribució Beta es E ( p) y como el igeiero sospecha que el valor de p es alrededor de.7 etoces propoe que 7 y 3, quedado la distribució de p (que llamaremos distribució a priori), (7 3) p (1 p) para p 1. () (7) (3) Al ejecutar la prueba acelerada e 6 focos resultó que duraro más de 1 horas. El objetivo ahora es obteer la distribució de p codicioado a los resultados de las pruebas (datos), es decir la iferecia se hará co f ( p datos), que se le llama distribució a posteriori. Aplicado la fórmula () sería, f (datos p) f ( p datos) 1. (5) f (datos p) dp Pero f ( datos p) éxitos e 6 focos p) Biomial( x, 6, p) C(6,) p (1 p) sustituyedo e la igualdad (5) se obtiee, C(6,) p (1 p) f ( p datos) 1. (6) C(6,) p (1 p) dp,

7 Pero observa que el deomiador de (6) es u resultado que o depede de p, luego se puede cosiderar como ua costate (cte) quedado, Sustituyedo e (7) se tiee que, C(6,) p (1 p) f ( p datos). (7) cte 6 {[ (1) / (7) (3)] p (1 p) } C(6,) p (1 p) f ( p datos). (8) cte Expresado como costate (cte) todo lo que o cotiee p e (8) se obtiee, 6 f ( p datos) ( cte) p (1 p) p (1 p) ( cte) p (1 p). (9) 1 Observado (9) o es difícil cocluir que la costate cte debe ser el correspodiete a ua distribució Beta( 11, 5). Etoces, la distribució a posteriori de p (posterior a los datos) es, (11 5) 1 f ( p datos) p (1 p) para p 1. (9) (11) (5) La figura 3 muestra las gráficas de la distribució a priori (ates de los datos) y a posteriori (después de los datos) de p a priori a posteriori Figura 3. Gráficas de la desidad a priori y a posteriori de p.

8 La estimació putual de p es el E ( p datos) e la desidad a posteriori f ( p datos). E este caso es p ˆ E( p datos) 11/ La estimació por itervalo (aquí se le llama itervalo de credibilidad) co ivel de credibilidad 1 se puede obteer co los valores p 1 / y p 1 / de f ( p datos) como se ilustra e La figura f(p datos) / / p1 / p / Figura. Itervalo de Credibilidad 1 1. Por ejemplo, para obteer u itervalo de credibilidad para p del 95%, se tiee que 1.95, /. 5 y 1 / E Excel se obtiee que, p BETAINV(1-.975,11,5) =.9 y p BETAINV(1-.5,11,5) =.88, es.975 decir, se tiee ua probabilidad del 95% de que la proporció de focos que dura más de 1 hrs e la prueba acelerada es.9 p. 88. Por supuesto, mietras más grade sea la.5 muestra aleatoria el itervalo de credibilidad será más estrecho. E geeral, para estimar ua proporció p, si la distribució a priori de p es ua distribució Beta(, ) y e pruebas de Beroulli se observa r éxitos, etoces la distribució a posteriori de p es Beta( r, r ). La distribució a posteriori actualiza la distribució del parámetro a estimar mediate los resultados de la muestra aleatoria (datos). A cotiuació se geeraliza el método bayesiao. Problema: El ivestigador desea estimar el valor de u parámetro poblacioal de ua població co fució de desidad (probabilidad) f ( x, ). El ivestigador sospecha que el valor de esta cercao a cierto valor y ello lo refleja a través de ua distribució de probabilidad cuya fució de desidad es f ( ) deomiada distribució a priori o previa a los datos. Luego, seleccioa ua muestra aleatoria de tamaño obteiedo los resultados (datos) x x, x,, x ). El objetivo es obteer la fució de desidad a posteriori de o ( 1

9 posterior a los datos, es decir f ( x). Usado la formula () geeralizada del teorema de Bayes se tiee que, f ( x ) f ( ) f ( x ). (1) f ( ) f ( x ) d Pero el deomiador de (1) o depede de, luego es ua costate (cte) quedado, f ( ) f ( x ) f ( x) ( cte) f ( ) f ( x ). (11) cte Luego, se acostumbra decir que f ( x) es proporcioal a f ( ) f ( x ) que se deota por f ( x) f ( ) f ( x ). Ahora, como los valores de la muestra aleatoria x x, x,, x ) so mutuamete idepedietes, etoces f ( x ) se puede expresar como, ( 1 f ( x ) f ( x1 ) f ( x ) f ( x ) i f ( x 1 i ). (1) A (1) se le llama fució de verosimilitud y depede de ya que los valores de las x i co coocidos (datos). Etoces la distribució a posteriori (11) queda, i 1 f ( x ) ( cte) f ( ) f ( x ). (13) i Depediedo de lo que resulte e (13) a veces se puede deducir su distribució teórica y e cosecuecia se deduce el valor de la costate cte. E ocasioes o es posible deducir la distribució obteida e (13), si embargo mediate simulació se puede hacer de todos modos iferecia estadística. E importate subrayar que solo co la distribució a posteriori f ( x) se hace toda la iferecia estadística. La estimació putual de se hace co E ( x) y el itervalo de credibilidad 1 se puede obteer co los valores 1 / y / obteidos e la distribució a posteriori f ( x). La pricipal vetaja del método bayesiao es que o se requiere aálisis de covergecia y se combia la cojetura del ivestigador (la distribució a priori) y la iformació de la muestra (la fució de verosimilitud) para obteer la distribució actualizada o posteriori del parámetro. Ua desvetaja del método bayesiao es que se presta a coclusioes diferetes si se parte de distribucioes a priori diferetes, pero se puede demostrar que si la

10 muestra es grade, el resultado es el mismo si importar que distribució a priori se haya cosiderado. Otra desvetaja del método Bayesiao es que la itegral del deomiador de (1) puede resultar muy compleja, pero gracias a los avaces tecológicos e las computadoras, se puede hacer iferecia estadística mediate simulació, razó por la cual últimamete se ha desarrollado muchas metodologías (diseño de experimetos, regresió lieal, etc.) bayesiaas. No dudo que e el corto plazo e los cursos de estadística de liceciatura se icluya la metodología bayesiaa. Estas otas so solo para dar ua idea muy geeral de la metodología bayesiaa, cosultar las referecias para más detalles. Referecias. Elemetary Bayesia Statistics Gordo Atelma, Albert Madasky, Robert E. McCulloch. Editorial: Edward Elgar Pub, Itroductio to Bayesia Statistics, d editio William M. Bolstad. Wiley-Itersciece, 7. Aexos. La Fució Gamma. La fució Gamma que se deota por ( ) 1 t ( ) t e dt para. La figura A.1 muestra la gráfica de ( ). se defie como, Figura A.1. Gráfica de ( ).

11 La fució Gamma tiee las siguietes propiedades básicas. A) ( 1) 1. B) ( 1) ( ). C) Si es etero positivo ( ) ( 1)!. Por la propiedad C), alguos autores llama a la fució gamma como la fució factorial geeralizada. La Distribució Beta. Ua variable aleatoria X tiee distribució Beta si su fució de desidad es, ( ) 1 1 f ( x) x (1 x) para x 1 (A.1) ( ) ( ) dode,. Además se puede probar que E (X ) y Var ( X ). La figura A. muestra la gráfica de la fució de desidad ( ) ( 1) de la distribució Beta alfa = 3, beta = 8 alfa = 3, beta = 3 alfa = 1, beta = Figura A. Gráfica de la fució de desidad de la distribució Beta. Las probabilidades de la distribució Beta se puede obteer e Excel co la fució BETADIST( ) y los percetiles se puede obteer co la fució BETAINV( ).

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

El método de Monte Carlo

El método de Monte Carlo El método de Mote Carlo El método de Mote Carlo es u procedimieto geeral para seleccioar muestras aleatorias de ua població utilizado úmeros aleatorios. La deomiació Mote Carlo fue popularizado por los

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad.

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad. Slide 1 Uiversidad Diego Portales Facultad de Ecoomía y Negocios Martes 13 de Abril, 2010 Slide 1 Slide 2 Capítulo 4 Itroducció a la Probabilidad Temas Pricipales: Experimetos, Reglas de Coteo, y Asigació

Más detalles

Probabilidad FENÓMENOS ALEATORIOS

Probabilidad FENÓMENOS ALEATORIOS Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

Combinatoria y definiciones básicas de probabilidad

Combinatoria y definiciones básicas de probabilidad Combiatoria y defiicioes básicas de probabilidad Defiicioes de probabilidad Probabilidad como ituició Probabilidad como la razó de resultados favorables Probabilidad como medida de la frecuecia de ocurrecia

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS arte Desigualdad de Chebyshev rof. María B. itarelli 4 - DESIGULDD DE CHEBYSHE- LEY DE LOS GRNDES NUMEROS La desigualdad de Chebyshev es ua importate herramieta teórica. Etre otras aplicacioes costituirá

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departameto Admiistrativo acioal de Estadística Direcció de Regulació, Plaeació, Estadarizació y ormalizació -DIRPE- Especificacioes de Coeficiete y Variaza Ecuesta de Cosumo Cultural Julio 008 ESPECIFICACIOES

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

SESION 15 DISTRIBUCIONES DE MUESTREO

SESION 15 DISTRIBUCIONES DE MUESTREO SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

2 FUNDAMENTOS DE PROBABILIDAD

2 FUNDAMENTOS DE PROBABILIDAD 2 FUNDAMENTOS DE PROBABILIDAD T al vez el estudio de la probabilidad toma setido cuado se percibe y se acepta la existecia de la aleatoriedad e diversos aspectos de la vida diaria. Si embargo, si cosideramos

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

Estimación de los parámetros de las distribuciones Bernoulli y Poisson bajo cero eventos

Estimación de los parámetros de las distribuciones Bernoulli y Poisson bajo cero eventos Publicado e la Rev. Fac. Nac. Salud Pública 999; 7(): 30-36 Estimació de los parámetros de las distribucioes Beroulli y Poisso bajo cero evetos Estimatig parameters of the Beroulli ad Poisso distributios

Más detalles

Capítulo VARIABLES ALEATORIAS

Capítulo VARIABLES ALEATORIAS Capítulo VI VARIALES ALEATORIAS. Itroducció Detro de la estadística se puede cosiderar dos ramas perfectamete difereciadas por sus objetivos y por los métodos que utiliza: Estadística Descriptiva o Deductiva

Más detalles

Probabilidad. Departamento de Análisis Matemático Universidad de La Laguna. 1. Introducción 1

Probabilidad. Departamento de Análisis Matemático Universidad de La Laguna. 1. Introducción 1 Probabilidad BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimeez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es) ALEJANDRO SANABRIA

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

Introducción a la Inferencia Estadística. Muestreo en poblaciones normales

Introducción a la Inferencia Estadística. Muestreo en poblaciones normales Ídice 5 Itroducció a la Iferecia Estadística Muestreo e poblacioes ormales 51 51 Itroducció 51 52 Estadísticos y mometos muestrales 53 521 Media muestral Propiedades 54 522 Variaza muestral Propiedades

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA DE CORRECCIÓN PRUEBA RECUPERATIVA N 2 Profesor: Hugo S. Salias. Segudo Semestre 2009 DESARROLLO

Más detalles

Práctica 2 VARIABLES ALEATORIAS CONTINUAS

Práctica 2 VARIABLES ALEATORIAS CONTINUAS Práctica. Objetivos: a) Apreder a calcular probabilidades de las distribucioes Normal y Chi-cuadrado. b) Estudio de la fució de desidad de la distribució Normal ~ N(µ;σ) c) Cálculo de la fució de distribució

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

CUADRATURA GAUSSIANA

CUADRATURA GAUSSIANA CUADRATURA GAUSSIANA Este método de basa e muestrear el itegrado de la fució cuya itegral se desea ecotrar, a valores que represeta raíces de poliomios ortogoales Los más populares de éstos so los poliomios

Más detalles

Se utilizan tres enunciados para básicos para definir los procesos de Poisson. Sea t un t 0, entonces se tiene:

Se utilizan tres enunciados para básicos para definir los procesos de Poisson. Sea t un t 0, entonces se tiene: 9 TEORÍA DE TRÁFIO La teoría de tráfico es ua herramieta ampliamete utilizada para el aálisis del comportamieto de las redes de comuicacioes, las cuales puede ser de comutació de circuitos, como las redes

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7 Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}

Más detalles

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática República Bolivariaa de Veezuela Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Fórmulas y Tablas Cursos: 738, 745, 746 y 748 Prof. Gilberto Noguera Lista de Formulas N 1) µ = x

Más detalles

TEMA 3: INFERENCIA ESTADISTICA

TEMA 3: INFERENCIA ESTADISTICA ESTADÍSTICA, CURSO 008 009 TEMA 3: INFERENCIA ESTADISTICA INTRODUCCION oblació. Muestra, muestreo. Objetivos de la iferecia estadística. Métodos paramétricos y o paramétricos. TEORIA ELEMENTAL DEL MUESTREO.

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

es un proceso de conteo si representa el número de eventos ocurridos hasta el tiempo t.

es un proceso de conteo si representa el número de eventos ocurridos hasta el tiempo t. PROCESOS ROBABILIDADES ESTOCÁSTICOS (ITEL-3005) (80807) Tema 4. Los Procesos Tema. de Fudametos Poisso y otros de Estadística procesos asociados Descriptiva Semaa Distribució 5 Clase 07 de frecuecias Lues

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

Luis González Abril y Luis M. Sánchez-Reyes {luisgon, - Dpto. Economía Aplicada I Universidad de Sevilla

Luis González Abril y Luis M. Sánchez-Reyes {luisgon, - Dpto. Economía Aplicada I Universidad de Sevilla ETUDIO OBRE EL EXCEO DE AMPLITUD EN LA CONTRUCCIÓN DE INTERVALO DE CONFIANZA PARA LA MEDIA POBLACIONAL CON VARIANZA DECONOCIDA EN UNA POBLACIÓN NORMAL Luis Gozález Abril y Luis M. áchez-reyes {luisgo,

Más detalles

Hoja de Problemas Tema 3. (Sucesiones y series)

Hoja de Problemas Tema 3. (Sucesiones y series) Depto. de Matemáticas Cálculo (Ig. de Telecom.) Curso 23-24 Hoja de Problemas Tema 3 (Sucesioes y series) Sucesioes de úmeros reales. Sea {a } N, {b } N sucesioes de úmeros reales. Demostrar o refutar

Más detalles

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

Topografía 1. II semestre, José Francisco Valverde Calderón   Sitio web: II semestre, 2013 José Fracisco Valverde Calderó Email: geo2fra@gmail.com Sitio web: www.jfvc.wordpress.com José Fracisco Valverde C Cualquier actividad técica dode se requiera recopilar iformació espacial,

Más detalles

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números. Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,

Más detalles

Introducción básica a series

Introducción básica a series Itroducció básica a series Gearo Lua Carreto * 2 Noviembre de 206, 8 pm. Series: u caso particular de sucesió Supoga que tiee ua sucesió cualquiera a. Explicaremos la forma de geerar ua sucesió s, muy

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

e i y i y i y i 0 1 x 1i 2 x 2i k x ki

e i y i y i y i 0 1 x 1i 2 x 2i k x ki Demostracioes de Rgresió múltiple El modelo que se platea e regresió múltiple es: y i 0 1 x 1i x i k x ki u i dode x 1, x,,x k so las variables idepedietes o explicativas. La variable respuesta depede

Más detalles

Series infinitas de números reales. Series convergentes

Series infinitas de números reales. Series convergentes Series ifiitas de úmeros reales. Series covergetes Series ifiitas de úmeros reales. Series covergetes Las sucesioes de úmeros reales se itrodujero co la iteció de poder cosiderar posteriormete sus sumas

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

MODELOS DE PROBABILIDAD Y MUESTREO ALEATORIO Julián de la Horra Departamento de Matemáticas U.A.M.

MODELOS DE PROBABILIDAD Y MUESTREO ALEATORIO Julián de la Horra Departamento de Matemáticas U.A.M. MODELOS DE PROBABILIDAD Y MUESTREO ALEATORIO Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció La Estadística Descriptiva os ofrece ua serie de herramietas muy útiles para resumir gráfica

Más detalles

SEMANA 01. CLASE 01. MARTES 04/10/16

SEMANA 01. CLASE 01. MARTES 04/10/16 EMANA 0. CLAE 0. MARTE 04/0/6. Experimeto aleatorio.. Defiició. Experimeto e el cual o se puede predecir el resultado ates de realizarlo. Para que u experimeto sea aleatorio debe teer al meos dos resultados

Más detalles

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS UNIVERSIDAD DE LOS ANDES NUCLEO UNIVERSITARIO RAFAEL RANGEL DEPTO DE CIENCIAS ECONOMOMICAS Y ADMIMISTRATIVAS AREA DE ESTADÍSTICA ESTADÍSTICA BASICA CONTADURÍA PÚBLICA Tema 8. Sesioes 5 y 6 Guía de clase

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual ETIMACIÓN TEMA 5: Estimació putual I. Propiedades de los estimadores TEMA 6: Estimació putual II. Métodos de estimació putual TEMA 7: Estimació por itervalos CONTRATE DE HIPÓTEI TEMA 8: Cotrastes paramétricos

Más detalles

Ejercicios resueltos de Muestreo

Ejercicios resueltos de Muestreo Tema Ejercicios resueltos de Muestreo Ejercicio Sea ua població ita de 4 elemetos: P = f; 4; ; g : Se cosidera muestras de elemetos que se supoe extraidos y o devueltos a la població y que el muestreo

Más detalles

Resolución N 2. Axiomas de Probabilidades. Ejercicios Resueltos. Profesor: Iván Rapaport Z. Auxiliar: Abelino Jiménez G.

Resolución N 2. Axiomas de Probabilidades. Ejercicios Resueltos. Profesor: Iván Rapaport Z. Auxiliar: Abelino Jiménez G. Resolució N 2 Axiomas de Probabilidades Profesor: Ivá Rapaport Z Auxiliar: Abelio Jiméez G Ejercicios Resueltos 1 Cierta efermedad se trasmite e forma geética de los padres a los hijos, del siguiete modo:

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

1. SUCESIONES Y SERIES

1. SUCESIONES Y SERIES 1. SUCESIONES Y SERIES Objetivo: El alumo aalizará sucesioes y las series para represetar fucioes por medio de series de potecias 1.1 Defiició se sucesió. Límite y covergecia de ua sucesió qué es ua sucesió?

Más detalles

- estimación de parámetros, - intervalos de confianza y

- estimación de parámetros, - intervalos de confianza y Iferecia estadística: es el proceso de sacar coclusioes de la població basados e la iformació de ua muestra de esa població. Objetivos de la iferecia: - estimació de parámetros, - itervalos de cofiaza

Más detalles

PROBABILIDAD. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles que pueden producirse.

PROBABILIDAD. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles que pueden producirse. PROAILIDAD 1.- EXPERIMENTOS ALEATORIOS De forma geeral podemos distiguir etre experimetos determiistas y experimetos aleatorios. Las leyes de la física, de la química y de otras ciecias os provee de ecuacioes

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

INTEGRALES DE RIEMANN

INTEGRALES DE RIEMANN NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES DE RIEMANN Ig. Jua Sacerdoti Departameto de Matemática Facultad de Igeiería Uiversidad de Bueos Aires 00 INDICE.- INTEGRAL..- INTRODUCCIÓN..-

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

No obstante, cuando intentamos hacer lo mismo con los números racionales y reales vemos que. con como lo hicimos con. es diferente de los conjuntos

No obstante, cuando intentamos hacer lo mismo con los números racionales y reales vemos que. con como lo hicimos con. es diferente de los conjuntos Departameto de Matemáticas Guía Iducció Matemática Objetivos: Eteder el pricipio del bue orde Realizar demostracioes matemáticas por medio del pricipio de iducció matemática El pricipio del bue orde: iducció

Más detalles

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES MATE 3032 - DR. UROYOÁN R. WALKER. Sucesioes Teorema.. Sucesioes mootóicas acotadas coverge. Ejemplo.2. Sea {a } la sucesió deida recursivamete

Más detalles

PRUEBAS DE HIPÓTESIS.

PRUEBAS DE HIPÓTESIS. PRUEBAS DE HIPÓTESIS. HIPÓTESIS ESTADÍSTICA Paramétrica : No Paramétrica Es ua afirmació sobre los valores de los parámetros poblacioales descoocidos. Es ua afirmació sobre algua característica Simple

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

Conceptos generales de inferencia estadística. Estimación de parámetros. Intervalos de confianza.

Conceptos generales de inferencia estadística. Estimación de parámetros. Intervalos de confianza. FCEyN - Estadística para Química do. cuat. 006 - Marta García Be Coceptos geerales de iferecia estadística. Estimació de parámetros. Itervalos de cofiaza. Iferecia estadística: Dijimos e la primera clase

Más detalles

1. QUÉ ES LA ESTADÍSTICA?

1. QUÉ ES LA ESTADÍSTICA? 1. QUÉ ES LA ESTADÍSTICA? Cuado coloquialmete se habla de estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular

Más detalles

Axioma 1 (Principio de inducción matemática) Sea S N con la propiedad que: a) 1 S. b) k R, k S k + 1 S. Entonces S = N.

Axioma 1 (Principio de inducción matemática) Sea S N con la propiedad que: a) 1 S. b) k R, k S k + 1 S. Entonces S = N. Iducció matemática A meudo deseamos probar proposicioes de la forma N, p. Por ejemplo: 1 N, 1 + + 3 + + 1 + 1. N, + 4. 3 N, par implica par. Proposicioes y 3 se puede probar usado la técica de variable

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

MODELOS DE PROBABILIDAD Y MUESTREO ALEATORIO Julián de la Horra Departamento de Matemáticas U.A.M.

MODELOS DE PROBABILIDAD Y MUESTREO ALEATORIO Julián de la Horra Departamento de Matemáticas U.A.M. MODELOS DE PROBABILIDAD Y MUESTREO ALEATORIO Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció La Estadística Descriptiva os ofrece ua serie de herramietas muy útiles para resumir gráfica

Más detalles

PALABRAS CLAVES: Cadena de Markov, Martingala y Valores propios.

PALABRAS CLAVES: Cadena de Markov, Martingala y Valores propios. Scietia et Techica Año IV, No 39, Septiembre de 2008 Uiversidad Tecológica de Pereira ISSN 0122-1701 459 PROPIEDADES DE LA MATRIZ Properties of the matrix EN UNA CADENA DE MARKOV i a Markov chai RESUMEN

Más detalles