Instrucciones: Leer detenidamente los siete enunciados y resolver seis de los siete problemas propuestos. Frecuencia absoluta (f i )
|
|
- María del Carmen Montoya Ayala
- hace 4 años
- Vistas:
Transcripción
1 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE 04 - TIPO DURACIÓN MÁIMA.0 HORAS DE NOVIEMBRE DE 0 NOMBRE Apelldo paterno Apelldo materno Nombre (s) Frma Instruccones: Leer detendamente los sete enuncados y resolver ses de los sete problemas propuestos.. Una empresa de elementos prefabrcados de madera procedó a clasfcar los ecedentes de una muestra aleatora de bastdores de una pulgada de espesor, por su longtud en centímetros. Los resultados se muestran en la sguente tabla de dstrbucón de frecuencas: Frontera nferor (L R ) Frontera superor (L Rs ) a) La tabla de dstrbucón de frecuencas queda dada como: Frontera Inferor Frontera Superor Marcas de Clase Frecuenca Absoluta Frecuenca Relatva Frecuenca Acumulada Absoluta Frecuenca Acumulada Relatva LR L Rs f f * F F * f * ( -meda) f ( -meda) f * Clase medana y clase modal Sumas Meda D.Est.Muestral Sesgo <0 La meda, está defnda por: * m m n f f Frecuenca absoluta (f ) a) Calcular la meda, la medana y la moda. b) Determnar el sesgo de la dstrbucón de los datos. PYE_ EF_04-
2 f f * n La medana, es el valor que dvde a la muestra en dos partes guales, entonces: y y nterpolando en la clase medana: y y susttuyendo: La moda es la abscsa con mayor frecuenca absoluta o relatva, entonces:. o ben mo b f f mo f : frecuenca absoluta de la clase que contene a la mod a. mo c : Longtud de la clase que contene a la mod a. mo L _ nf : Límte nf eror de la clase que contene a la mod a. Mo mo mo c) El sesgo de la muestra aleatora está dado por: a * m m f f n Sn Sn susttuyendo para calcular la varanca muestral, se tene: m S n f n sn La raíz es la desvacón estándar: sn sn susttuyendo en el sesgo: 89. a 0.79 tene lgero sesgo negatvo.74 a mo L c mo_nf mo a b a f f mo mo De manera empírca por la poscón de las meddas de tendenca central, se sabe: mo tene sesgo negatvo.. Un centro de cómputo tene tres mpresoras A, B, C, que mprmen a dstnta velocdad. Las probabldades de que una persona envíe el trabajo a las mpresoras A, B y C son 0., 0. y 0., respectvamente. En ocasones los mpresos se atoran en la mpresora y se destruyen. Las probabldades de que se atore el papel en las mpresoras A, B y C son 0.0, 0.0 y 0.04, en ese orden. Un estudante de ngenería utlza este sstema para mprmr un trabajo urgente de nvestgacón, calcular: PYE_ EF_04-
3 a) S el trabajo se atoró, qué probabldad hay de que el estudante haya envado el documento a la mpresora B? b) Qué probabldad hay de que el trabajo haya sdo envado por el estudante a la mpresora A o a la mpresora C?, s se mprmó correctamente. Sean los eventos que representan: A el trabajo se envía a la mpresora A B el trabajo se envía a la mpresora B C el trabajo se envía a la mpresora C D el trabajo se atora y se destruye Datos: P A 0. PB 0. PC 0. PD A 0.0 PD B 0.0 PD C 0.04 a) Dado que el trabajo se atoró, cuál es la probabldad de que el estudante haya envado el documento a la mpresora B, se pde PB D que es Teorema de Bayes, entonces: P B D PB PD B P B D P D P A P D A P B P D B P C P D C susttuyendo: P B D b) Se sabe que el trabajo se mprmó correctamente, cuál es la probabldad de que el estudante haya envado a la mpresora A ó C, con el Teorema de Bayes se tene: PC PD C P AC D P A P D A P AC D PD P A PD A PB PD B PC PD C susttuyendo: P AC D La varable aleatora tene la sguente funcón de probabldad dada por: a b 0 p Determnar los valores a y b de la varable aleatora, s se sabe que E 0 y Var 8 PYE_ EF_04-
4 Se sabe que E f susttuyendo: E 0 a b 0 8 Var f E E susttuyendo: Var a b queda un sstema de dos ecuacones con dos ncógntas, como: a b 0 ab0 a b a b 8 a b 8 a a 8 a 8 a 4 a entonces: a y b La funcón de probabldad es: 0 p 4. Un call center tene un servco de consulta por teléfono para la solucón de los problemas de sus usuaros. El servco está dsponble de 9:00 a 7:00 horas en días laborables. La eperenca muestra que la varable aleatora, el número de llamadas recbdas por día, tene una dstrbucón de Posson con 0 llamadas al día, calcular la probabldad de que en un día dado, la prmera llamada del día se recba: a) Antes de las 9: horas. b) Después de las 0:00 horas, dado que no se recbó llamada antes de las 9:0 horas. a) Sea Número de llamadas recbdas por día Posson 0 llamadas por día T Eponencal 0 tempo entre llamadas Observando que el día laborable es de 8 horas, entonces: PYE_ EF_04-4
5 0 PT e b) P T T P T e 8 8 P T T e e P T P T e. Un consultoro médco cuenta con dos líneas telefóncas. En un día selecconado al azar, sea la varable aleatora que representa la proporcón del tempo que se utlza la línea telefónca y sea Y la varable aleatora que representa la proporcón del tempo que se utlza la línea telefónca. S la funcón de densdad conjunta de estas varables aleatoras es: y ; 0, 0 y f Y, y 0 ; en otro caso Cuál es la probabldad de que la línea telefónca se encuentre lbre durante el 80% del día? P La línea está desocupada el 80% del día P Y 0. Se pde calcular entonces: 0. y0. 0. P Y0. y dyd y y d d y PY Consdérese el epermento del lanzamento de un dado. Sea la varable aleatora que representa el número que queda haca arrba. a) Qué dstrbucón tene? b) Cuál es la meda y la varanca de? c) S el epermento se modfca y ahora se lanza 0 veces el dado y se promedan los resultados, cuál es la meda y la varanca teórca de la meda muestral? d) Al lanzar 0 veces el dado, cuál es la probabldad apromada de que la meda muestral sea mayor o gual que cuatro? a) El comportamento aleatoro tene dstrbucón Unforme dscreta 4 f PYE_ EF_04-
6 O ben, f ;,,,4,, 0 ; en otro caso b) Puesto que tene dstrbucón unforme dscreta, entonces: E f. E E f 9 E Var E E Var c) es la meda muestral, entonces del teorema del límte central porque n 0, se sabe: Normal susttuyendo: n, Normal 0 0., d) Se pde P 4, utlzando el TLC, puesto que n= FZ P P Z P Z PYE_ EF_04-7. Un médco especalsta drector del área de crugía tene datos estadístcos hstórcos del número de pacentes programados y operados, estos datos corresponden a los meses de marzo, abrl, mayo, juno y julo del año corrente y desea tener un pronóstco con regresón lneal de mínmos cuadrados para saber cuánto necestará de sumnstros para el área de qurófanos en los meses de agosto, septembre y octubre, de este msmo año. a) Trazar el dagrama de dspersón. b) Calcular el coefcente de correlacón lneal. c) Obtener la recta de regresón lneal. Trazar la recta de regresón lneal junto con el dagrama de dspersón. d) Calcular el coefcente de determnacón e nterpretar el resultado.
7 Los datos son los sguentes: Mes Consecutvo Mes Número de pacentes programados para crugía y Marzo 00 Abrl 4 0 Mayo 00 Juno 4 0 Julo 7 0 Del enuncado se tene: Número de pacentes Mes Mes Consecutvo programados para crugía y y y Marzo Abrl Mayo Juno Julo Sumas a) La gráfca de dspersón y la recta de mejor estmacón es: b) El coefcente de correlacón está dado por: R y yy PYE_ EF_04-7
8 ss ss yy yy 0 y y y y y 880 ssy susttuyendo r c) La recta de regresón es: ŷ ˆ ˆ 0 donde se sabe que los promedos están defndos por:, n n y n n y susttuyendo los valores de las sumas en los promedos: los estmadores se defnen por: ˆ y y ˆ , y PYE_ EF_04-8
9 ˆ y ˆ 0 0 ˆ 7 0 Por lo tanto el modelo está dado por: yˆ ˆ ˆ 0 yˆ 0 d) Como el coefcente de determnacón se utlza como medda de efcaca de la regresón, éste se calculará a partr del cuadrado del coefcente de correlacón. El coefcente de determnacón se defne por: R y r yy Del resultado anteror, se puede observar y conclur, que el coefcente de determnacón, 88.9 % y no es tan cercano al 00%, por lo que se consdera que el modelo lneal es sufcente para el número de pacentes programados para crugía. PYE_ EF_04-9
NOMBRE Apellido Paterno Apellido Materno Nombre(s) Porcentaje de defectos producidos Máquina Porcentaje de producción
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIONES
PyE_ EF1_TIPO1_
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE
Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística
Facultad de Ingenería Dvsón de Cencas Báscas Coordnacón de Cencas Aplcadas Departamento de Probabldad y Estadístca Probabldad y Estadístca Prmer Eamen Fnal Tpo A Semestre: 00- Duracón máma:. h. Consderar
3. VARIABLES ALEATORIAS.
3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)
Problemas donde intervienen dos o más variables numéricas
Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa
Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:
Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón
INTRODUCCIÓN. Técnicas estadísticas
Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad
Tema 1: Estadística Descriptiva Unidimensional
Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde
PROBABILIDAD Y ESTADÍSTICA
PROBABILIDAD Y ESTADÍSTICA 1. S A es un suceso de probabldad 0.3, la probabldad de su suceso contraro es: a) 0. b) 1.0 c) 0.7 (Convocatora juno 006. Eamen tpo H) S A es un suceso, la probabldad de su suceso
LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION
Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas
Inferencia en Regresión Lineal Simple
Inferenca en Regresón Lneal Smple Modelo de regresón lneal smple: Se tenen n observacones de una varable explcatva x y de una varable respuesta y, ( x, y)(, x, y),...,( x n, y n ) el modelo estadístco
Descripción de una variable
Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad
ESTADÍSTICA UNIDIMENSIONAL
ESTADÍSTICA UNIDIMENSIONAL La estadístca undmensonal trata de resumr la nformacón contenda en una tabla que contene nformacón de una sola varable en unos pocos números. Las meddas de poscón pueden ser:
EJERCICIOS RESUELTOS TEMA 2
EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones;
2 Dos tipos de parámetros estadísticos
Dos tpos de parámetros estadístcos Págna 198 1. Calcula la meda, la medana y la moda de cada una de estas dstrbucones estadístcas: a) 4, 5, 6, 6, 6, 6, 7, 11, 1, 17 b), 1, 6, 9,, 8, 9,, 14, c), 3, 3, 3,
Medidas de centralización
1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos
Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.
ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:
ESTADÍSTICA. Definiciones
ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una
LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA
LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas
Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias
Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8
ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística
ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es
Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma
Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................
Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos
Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes
Relaciones entre variables
Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.
Tema 1 Descripción de datos: Estadística descriptiva unidimensional Estadística descriptiva
Descrpcón de datos: Estadístca descrptva undmensonal Estadístca descrptva Objetvos: Ordenar, clasfcar, resumr grandes conjuntos de datos de modo que puedan ser fáclmente nterpretables Defncones báscas:
Regresión y Correlación Métodos numéricos
Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.mx mbenavdesr5@gmal.com Regresón lneal El
TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).
TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen
Tema 4: Variables aleatorias
Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son
A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.
MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan
Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.
Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco
Estadísticos muéstrales
Estadístcos muéstrales Una empresa dedcada al transporte y dstrbucón de mercancías, tene una plantlla de 50 trabajadores. Durante el últmo año se ha observado que 5 trabajadores han faltado un solo día
TEMA 3. VARIABLE ALEATORIA
TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad
Tema 1: Análisis de datos unidimensionales
Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones
Muestra: son datos de corte transversal correspondientes a 120 familias españolas.
Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas 3. APLICACIONES INFORMÁTICAS Fchero : cp.wf (modelo de regresón smple) Seres: : consumo famlar mensual en mles de pesetas RENTA: renta
unidad 12 Estadística
undad 1 Estadístca Qué es una tabla de frecuencas Págna 1 Al número de veces que se repte un dato se le denomna frecuenca de ese dato. Una tabla de frecuencas es una tabla en la que cada valor de la varable
VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.
VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un expermento, un número real.
Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1
Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale
Análisis de Regresión y Correlación
1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón
Media es la suma de todas las observaciones dividida por el tamaño de la muestra.
Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,
Variable aleatoria: definiciones básicas
Varable aleatora: defncones báscas Varable Aleatora Hasta ahora hemos dscutdo eventos elementales y sus probabldades asocadas [eventos dscretos] Consdere ahora la dea de asgnarle un valor al resultado
Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp
Análss de Webull Resumen El procedmento del Análss de Webull está dseñado para ajustar una dstrbucón de Webull a un conjunto de n observacones. Es comúnmente usado para analzar datos representando tempos
Teoría de Modelos y Simulación Enrique Eduardo Tarifa Facultad de Ingeniería - Universidad Nacional de Jujuy. Generación de Números Aleatorios
Teoría de Modelos y Smulacón Enrque Eduardo Tarfa Facultad de Ingenería - Unversdad Naconal de Jujuy Generacón de Números Aleatoros Introduccón Este capítulo trata sobre la generacón de números aleatoros.
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora
REGRESION LINEAL SIMPLE
REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente
FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)
FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz
REGRESION Y CORRELACION
nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda
el blog de mate de aida CSI: Estadística unidimensional pág. 1
el blog de mate de ada CSI: Estadístca undmensonal pág. ESTADÍSTICA La estadístca es la cenca que permte hacer estudos de grandes poblacones escogendo sólo un pequeño grupo de ndvduos, lo que ahorra tempo
LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION
Unversdad Católca Los Ángeles de Chmbote LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 4: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION. DEFINICION Las meddas estadístcas son meddas de resumen
Correlación y regresión lineal simple
. Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan
Pruebas Estadísticas de Números Pseudoaleatorios
Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =
Medidas de Tendencia Central y de Variabilidad
Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.
Tema 1.3_A La media y la desviación estándar
Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.
REGRESION LINEAL SIMPLE
REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una muestra de observacones formadas por pares de varables: (x 1, y 1 ), (x, y ),.., (x n, y n ) A través de esta muestra, se desea estudar la relacón
Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica?
Relacones entre varables cualtatvas Problema: xste relacón entre el estado nutrconal y el rendmento académco de estudantes de enseñanza básca? stado Nutrconal Malo Regular Bueno TOTAL Bajo 13 95 3 55 Rendmento
H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme
Una hpótess estadístca es una afrmacón con respecto a una característca que se desconoce de una poblacón de nterés. En la seccón anteror tratamos los casos dscretos, es decr, en forma exclusva el valor
ESTADÍSTICA. x es el cociente entre la frecuencia absoluta del valor
el blog de mate de ada: ESTADÍSTICA pág. 1 ESTADÍSTICA La estadístca es la cenca que permte acer estudos de grandes poblacones escogendo sólo un pequeño grupo de ndvduos, lo que aorra tempo y dnero. Poblacón
Riesgos Proporcionales de Cox
Resgos Proporconales de Cox Resumen El procedmento Resgos Proporconales de Cox esta dseñado para ajustar un modelo estadístco sem-parámetrco a los tempos de falla de una o mas varables predctoras. Los
Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos
Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos
TEMA 10: ESTADÍSTICA
TEMA 10: La Estadístca es la parte de las matemátcas que se ocupa de recoger, organzar y analzar grandes cantdades de datos para estudar alguna característca de un colectvo. 1. VARIABLES S UIDIMESIOALES
( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas )
MUETREO ALEATORIO IMPLE I Este esquema de muestreo es el más usado cuando se tene un marco de muestreo que especfque la manera de dentfcar cada undad en la poblacón. Además no se tene conocmento a pror
Análisis del caso promedio. Técnicas Avanzadas de Programación - Javier Campos 70
Análss del caso promedo Técncas Avanzadas de Programacón - Javer Campos 70 Análss del caso promedo El plan: Probabldad Análss probablsta Árboles bnaros de búsqueda construdos aleatoramente Tres, árboles
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ C. DE LA ESCUELA PREPARATORIA
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ C. DE LA ESCUELA PREPARATORIA PROBLEMARIO DE ESTADÍSTICA MÓDULO I. REPRESENTACIÓN DE DATOS MÓDULO II. MEDIDAS DE TENDENCIA CENTRAL ELABORADO
EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL.
EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Una cofradía de pescadores regstra la cantdad de sardnas que llegan al puerto (X), en klogramos, el preco de la subasta en la lonja (Y), en euros por klo, han
Relación 2: Regresión Lineal.
Relacón 2: Regresón Lneal. 1. Se llevó a cabo un estudo acerca de la cantdad de azúcar refnada (Y ) medante un certo proceso a varas temperaturas dferentes (X). Los datos se codfcan y regstraron en el
Modelos triangular y parabólico
Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular
Universitas Scientiarum ISSN: Pontificia Universidad Javeriana Colombia
Unverstas Scentarum ISS: 0-7483 revstascentfcasjaverana@gmal.com Pontfca Unversdad Javerana Colomba Aranda, Mosés; Molna, Fabo; Moreno, Vladmr EL PROBLEMA DEL CUMPLEAÑOS, UA GEERALIZACIÓ Unverstas Scentarum,
Métodos Estadísticos de la Ingeniería Tema 3: Medidas Estadísticas Grupo B
Métodos Estadístcos de la Ingenería Tema 3: Meddas Estadístcas Grupo B Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Enero 2010 Contendos...............................................................
Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza
Maestría en Admnstracón Meddas Descrptvas Formularo e Interpretacón Dr. Francsco Javer Cruz Arza A contnuacón mostramos el foco de atencón de las dstntas meddas que abordaremos en el presente manual. El
T. 9 El modelo de regresión lineal
1 T. 9 El modelo de regresón lneal 1. Conceptos báscos sobre el análss de regresón lneal. Ajuste de la recta de regresón 3. Bondad de ajuste del modelo de regresón Modelos predctvos o de regresón: la representacón
Análisis cuantitativo aplicado al Comercio Internacional y el Transporte
Máster de Comerco, Transporte y Comuncacones Internaconales Análss cuanttatvo aplcado al Comerco Internaconal y el Transporte Ramón úñez Sánchez Soraya Hdalgo Gallego Departamento de Economía Introduccón
EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general
PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que
5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS.
5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. Para organzar los datos a medda que el número de observacones crece, es necesaro condensar más los datos en tablas apropadas, a fn de presentar, analzar e nterpretar
Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c.
Estadístca robablístca 6. Tablas de contngenca y dagramas de árbol. En los problemas de probabldad y en especal en los de probabldad condconada, resulta nteresante y práctco organzar la nformacón en una
TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE
TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE LECTURA OBLIGATORIA Regresón Lneal Múltple. En Ral, A. y Varela, J. (008). Estadístca Práctca para la Investgacón en Cencas de la Salud. Coruña: Netbblo.
Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1
Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para
Reconocimiento de Locutor basado en Procesamiento de Voz. ProDiVoz Reconocimiento de Locutor 1
Reconocmento de Locutor basado en Procesamento de Voz ProDVoz Reconocmento de Locutor Introduccón Reconocmento de locutor: Proceso de extraccón automátca de nformacón relatva a la dentdad de la persona
PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN
PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general). 3. En el modelo lneal general Y = X b + e, explcar la forma
4. PROBABILIDAD CONDICIONAL
. ROBBILIDD CONDICIONL La probabldad de que ocurra un evento B cuando se sabe que ha ocurrdo algún otro evento se denomna robabldad Condconal, Se denota como (B/) y se lee como la probabldad de que ocurra
Cálculo y EstadísTICa. Primer Semestre.
Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd
Estadística. Problemas de Estadística 1º Ciclo ESO Departamento de Matemáticas Raúl González Medina
1 Estadístca 01.- Indca que varables son cualtatvas y cuales cuanttatvas: a) Comda Favorta. b) Profesón que te gusta. c) Número de goles marcados por tu equpo favorto en la últma temporada. d) Número de
Pronósticos. Humberto R. Álvarez A., Ph. D.
Pronóstcos Humberto R. Álvarez A., Ph. D. Predccón, Pronóstco y Prospectva Predccón: estmacón de un acontecmento futuro que se basa en consderacones subjetvas, en la habldad, experenca y buen juco de las
ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS
METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 0 INSTITUTO NACIONAL DE ESTADÍSTICAS 03 ÍNDICE I. METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE INTERURBANO DE PASAJEROS POR CARRETERA.
SEMESTRE TIPO 1 DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 3 DE 2008
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE 9- TIPO DURACIÓN
DATOS AGRUPADOS POR INTERVALOS DE CLASE
3. Datos agrupados por ntervalo (Varable contnua) Generalmente los datos se agrupan por medo de ntervalos de clase, los cálculos son una aproxmacón a la realdad, se faclta los cálculos. En la agrupacón
ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL
ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas
10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD
10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo
Capítulo 4 Probabilidades Estadística Computacional II Semestre 2006
Unversdad Técnca Federco Santa María Departamento de Informátca ILI-80 Capítulo 4 Probabldades Estadístca Computaconal II Semestre 006 Profesores: Héctor llende (hallende@nf.utfsm.cl) Carlos Valle (cvalle@nf.utfsm.cl)
PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES
PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno
GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES
GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES PRONÓSTICOS PREDICCIÓN, PRONÓSTICO Y PROSPECTIVA Predccón: estmacón de un acontecmento futuro que
Introducción. Escuela Técnica Superior de Ingeniería Informática. Universidad de La Laguna. Fernando Pérez Nava
Reconocmento de Patrones Introduccón Tema : Reconocmento Estadístco de Patrones Por qué una aproxmacón estadístca en el RP? La utlzacón de característcas para representar una entdad provoca una pérdda
Regresión Lineal Simple y Correlación
4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse
MEDIDAS DESCRIPTIVAS
Tema 2: MEDIDAS DESCRIPTIVAS DE LOS DATOS 1. MEDIDAS DE CETRALIZACIÓ: Meda Medana Moda Cuantles Otras 2. MEDIDAS DE DISPERSIÓ: Desvacón típca Varanza Rango Otras 3. MEDIDAS DE FORMA: Asmetría Apuntamento
Regresión Binomial Negativa
Regresón Bnomal Negatva Resumen El procedmento Regresón Bnomal Negatva está dseñado para ajustar un modelo de regresón en el cual la varable dependente Y consste de conteos. El modelo de regresón ajustado
EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla.
EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. Consdere la sguente tabla, donde 0 : 0 y y0 y Deducr la fórmula para el polnomo de Lagrange de grado a lo más uno que Interpola la tabla.. Consdere la sguente
Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos:
MEDIDAS DE POSICIÓN Y DISPERSIÓN Estadístca En la clase anteror vmos como resumr la nformacón contenda en un conjunto de datos medante tablas y gráfcos. En esta clase vamos a ver como resumrlos medante
Relación de ejercicios de TÉCNICAS CUANTITATIVAS 1. Curso 2016/2017
Relacón de ejerccos de TÉCNICAS CUANTITATIVAS 1 Curso 016/017 En los datos de los ejerccos aparecen los valores A, B, C y D, que representan respectvamente las 4 últmas cfras de su DNI (NIE, ) Por ejemplo,
Regresión y correlación simple 113
Regresón y correlacón smple 113 Captulo X ANALISIS DE REGRESION Y CORRELACION El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes
Unidad 14: DISTRIBUCIONES DE PROBABILIDAD
Undad 4: DISTRIBUCIONES DE PROBABILIDAD 4..- DISTRIBUCIONES ESTADÍSTICAS Gráfcos: dagramas de barras e hstogramas Observa las dos dstrbucones dadas gráfcamente: En un hstograma, las frecuencas correspondentes
Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011
Departamento de Señales, Sstemas y Radcomuncacones Comuncacones Dgtales, juno 011 Responder los problemas en hojas ndependentes. No se permte el uso de calculadora. Problema 1 6 p.) En este ejercco se
Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis
Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ