Método Polar para generación de variables normales Generación de eventos en Procesos de Poisson

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Método Polar para generación de variables normales Generación de eventos en Procesos de Poisson"

Transcripción

1 Método Polar para generación de variables normales Generación de eventos en Procesos de Poisson Georgina Flesia FaMAF 25 de abril, 2013

2 Método polar Con este método se generan dos variables normales independientes. Si X e Y son normales estándar independientes, entonces R 2 = X 2 + Y 2, tan(θ) = Y X determinan variables R 2 y Θ independientes. f (x, y) = 1 2π exp( (x 2 + y 2 )/2) f (d, θ) = π e d/2, 0 < d <, 0 < θ < 2π. R 2 y Θ resultan independientes, con R 2 E(1/2) y Θ U(0, 2π).

3 Método polar Método polar Generar U 1, U 2 U(0, 1); R 2 2 log(u); Θ 2πU 2 ; X R cos(θ); Y R sen(θ) Transformaciones de Box-Muller: X 2 log(u 1 ) cos(2πu 2 ) Y 2 log(u 1 ) sen(2πu 2 ) El cálculo de funciones trigonométricas lo hace poco eficiente. Se puede mejorar generando uniformes V 1 y V 2 en el círculo unitario, para evitar el cálculo directo del seno y el coseno.

4 Método polar Generar un par (V 1, V 2 ) uniformemente distribuido en el círculo unitario. U U(0, 1), entonces 2U U(0, 2) y 2U 1 U( 1, 1), V1 = 2U 1 1, V 2 = 2U 2 1, rechazo hasta que entren en el círculo. R 2 = V1 2 + V 2 2 resulta uniforme en (0, 1). Θ = arctan V 2 /V 1 es uniforme en (0, 2π). sen(θ) = V 2 R cos(θ) = V 1 R

5 Método polar Transformaciones de Box Muller S = V V 2 2 X = ( 2 log U) 1/2 V 1 (V V 2 2 )1/2 Y = ( 2 log U) 1/2 V 2 (V V 2 2 )1/2 y Θ son independientes, luego podemos tomar U = S = V V 2 2

6 Método polar Transformaciones de Box Muller Método polar (última versión) repeat Generar V 1, V 2 U( 1, 1); S V1 2 + V 2 2 until S < 1; X Y 2 log S S V 1 ; 2 log S S V 2 X = ( 2 log S) 1/2 V 1 S 1/2 Y = ( 2 log S) 1/2 V 2 S 1/2

7 Generación de v. a. normales Existen otros métodos de generación de v. a. normales. Uno de ellos es el método rectangle-wedge-tail: Z, Z N(0, 1) 15 rectángulos ( 92%) 15 triángulos. 1 cola. Método de composición: 15 distr. uniformes. 16 restantes: método de rechazo. Referencia: Donald E. Knuth, Seminumerical Algorithms, p.p. 122 en adelante.

8 Proceso de Poisson homogéneo N(t), t 0, es un proceso de Poisson homogéneo de razón λ, λ > 0, si: N(0) = 0 proceso comienza en cero N(t 1 ) 0 N(t n ) N(t n 1 ) t 2 t 3 t 1 t n 1 t n En dos intervalos de tiempo disjuntos, las variables número de llegadas son independientes. La distribución del número de llegadas depende sólo de la longitud del intervalo. N(s) N(t + s) N(t), s < t.

9 Ocurrencia de 1 o más eventos La probabilidad de que ocurra un evento en un intervalo de tiempo pequeño es proporcional al tamaño del intervalo. Constante = λ. P(N(h) = 1) lim = λ, h 0 h La probabilidad de ocurrencia de dos o más eventos en un intervalo muy pequeño es cero. P(N(h) 2) lim = 0. h 0 h

10 Consecuencias Supongamos que N(t) es el número de llegadas en el intervalo de tiempo [0, t], que forma un proceso de Poisson de tasa λ. Entonces, la distribución de cada N(t) es Poisson de tasa λt e 1 e 2 e 3 e n 1 e n X 2 X 1 X 3 X n {X j }, la sucesión de tiempos entre llegadas, son v.a. independientes, igualmente distribuidas, con distribución exponencial con parámetro λ. X i E(λ), i = 1, 2,.... S n el tiempo hasta la n esima legada es Gamma de parámetros (n, λ).

11 Generación de un Proceso de Poisson homogéneo e 1 e 2 e 3 e n 1 e n X 2 X 1 X 3 X n Para generar los primeros n eventos de un Proceso de Poisson homogéneo, generamos exponenciales X i E(λ), 1 i n: Primer evento: al tiempo X 1. j-ésimo evento: al tiempo X 1 + X X j, para 1 j n. Para generar los eventos en las primeras T unidades de tiempo, generamos eventos hasta que j + 1 excede a T.

12 Proceso de Poisson homogéneo: Primer método Generacion de eventos en el intervalo t 0, I 0; while true do Generar U U(0, 1); if t 1 λ log U > T then stop else t t 1 λ log U; I I + 1; S[I] t end end I: número de eventos. S[I]: tiempo en el que ocurre el evento I. S[1], S[2],..., están en orden creciente.

13 Proceso de Poisson homogéneo: Segundo método Supongamos quiero generar los primeros tiempos de arribo hasta t = T. La variable N(T ) es el número de eventos hasta el tiempo T, con distribución Poisson λt. Dado N(T ), la distribución de los tiempos de arribo en un Proceso de Poisson homogéneo de razón λ es uniforme en (0, T ). Luego, para generar los eventos hasta el tiempo T : Generar una v. a. Poisson de media λt, y tomar n = N(T ). Generar n v. a. uniformes U 1, U 2,..., U n. Los tiempos de arribo son: TU 1, TU 2,..., TU n. Notar que deben ordenarse los tiempos de arribo.

14 El proceso de Poisson no homogéneo N(t), t 0 es un proceso de Poisson no homogéneo con función de intensidad λ(t), t 0, si: N(0) = 0 para cada n 1 y cada partición 0 t 0 < t 1 < < t n se tiene que N(t 0 ), N(t 1 ) N(t 0 ),..., N(t n ) N(t n 1 ) son variables aleatorias independientes. lim h 0 P(N(t + h) N(t) = 1) h = λ(t), lim h 0 P(N(t + h) N(t) = 1) 2) h = 0.

15 Número de eventos en (t, t + s] Proposición Para cada t 0 y s > 0 se tiene que N(t + s) N(t) es una variable aleatoria Poisson con media m(t + s) m(t) = t+s t λ(x) dx. Corolario Si λ(t) = λ (es constante), N(t + s) N(t) es una variable aleatoria Poisson con media λt.

16 Poisson homogéneo y Poisson no homogéneo Supongamos que Existen eventos del tipo A y eventos del tipo B. Independientemente de lo que ocurrió antes, si ocurre un evento del tipo A entonces ocurre uno del tipo B con probabilidad p(t). N(t)= número de eventos del tipo A en [0, t] M(t)= número de eventos del tipo B en [0, t]. Proposición Si (N(t)) t 0 es un proceso de Poisson homogéneo con razón λ > 0, entonces M(t) t 0 es un proceso de Poisson no homogéneo con función de intensidad λ(t) = λ p(t), t > 0.

17 Poisson homogéneo y Poisson no homogéneo El proceso M(t) cumple con las condiciones de comenzar en el cero, tener incrementos independientes y probabilidad nula de observar instantáneamente mas de un evento. Para ver la tasa instantánea de observar un evento P(1 evento del tipo B en [t, t + h]) = P(un evento y es de tipo B) + P(dos o mas eventos y exactamente uno es de tipo B) λhp(t)

18 Generación de un Proceso de Poisson no homogéneo Algoritmo de adelgazamiento En un Proceso de Poisson no homogéneo, con intensidad λ(t), los incrementos no son estacionarios, la intensidad λ(t) indica la tasa de ocurrencia de los eventos, si λ(t) λ, entonces λ(t) = λ p(t) con p(t) = λ(t) λ < 1, podemos considerar p(t) = λ(t)/λ como la probabilidad de ocurrencia de un cierto evento de un Proceso de Poisson homogéneo de razón λ, y "adelgazar" el proceso homogéneo para obtener el proceso no homogeneo de intensidad λp(t).

19 Algoritmo de adelgazamiento Generación de eventos en el intervalo t 0, I 0; while true do Generar U U(0, 1); if t 1 λ log U > T then stop else t t 1 λ log U; Generar V ; if V < λ(t)/λ then I I + 1; S[I] t end end end I: número de eventos. S[1], S[2],...,: tiempos de eventos. El algoritmo es más eficiente cuánto más cerca esté λ de λ(t).

20 Proceso de Poisson no homogéneo Método de adelgazamiento mejorado Un mejora consiste en particionar el intervalo (0, T ) en subintervalos, y aplicar el algoritmo anterior en cada uno de ellos: 0 = t 0 < t 1 < < t k < t k+1 = T λ(s) λ j, si j 1 s < j

21 Proceso de Poisson no homogéneo t 0; J 1; I 0; while true do Generar U U(0, 1); X 1 λ J log U; while t + X > t J do if J = k + 1 then stop end X (X t J + t) λ J λ J+1 ; t t J ; J J + 1 end t t + X; Generar V U(0, 1); if V < λ(t)/λ J then I I + 1; S[I] t end end I: número de eventos. S[1], S[2],...,: tiempos de eventos. El algoritmo es más eficiente cuánto más cerca esté λ de λ(t).

22 Proceso de Poisson no homogéneo Otra mejora sobre este algoritmo es considerar el mínimo de λ(s) en cada subintervalo. Por ejemplo, en un intervalo (t i 1, t i ): λ min = min{λ(s) s (t i 1, t i )} En este intervalo los eventos ocurren con intensidad (λ(s) λ min ) + λ min, Generar eventos de un P. P. homogéneo con razón λ min. Intercalarlos con eventos de un P. P. no homogéneo con intensidad λ(s) = λ(s) λ min. Ventaja: Disminuye el número promedio de uniformes.

23 Ejemplo Sea λ(s) = 10 + s 0 < s < 1. Adelgazamiento con λ = 11 tiene una media de 11 eventos, que pueden ser aceptados o no. 10 = min{λ(s) s (0, 1)} Generar eventos de un P. P. homogéneo con razón 10. Intercalarlos con eventos de un P. P. no homogéneo con intensidad λ(s) = λ(s) 10 = s. que tiene media 1 de eventos necesarios. Reduce de 11 a 1 el número de uniformes necesarias

24 Proceso de Poisson no homogéneo Otro método consiste en generar directamente los sucesivos tiempos de evento. S 1, S 2,... : sucesivos tiempos de evento. Estos tiempos de evento no son independientes. Para generar S i+1, utilizamos el valor generado S i. Dado que ha ocurrido un evento en t = S i, el tiempo hasta el próximo evento es una variable aleatoria con la siguiente distribución: F s (x) = P{ocurra un evento en (s, s + x)} = 1 P{0 eventos en (s, s + x)} ( s+x ) ( x ) = 1 exp λ(y) dy = 1 exp λ(s + y) dy s 0

25 Proceso de Poisson no homogéneo Ejemplo Describir un algoritmo para la generación de eventos de un P. P. no homogéneo con función de intensidad λ(t) = 1 t + 3, t 0. x 0 λ(s + y) dy = x 0 1 dy = log s + y + 3 F s (x) = 1 s + 3 x + s + 3 = x x + s + 3. u = F s (x) x = ( x + s + 3 u(s + 3) 1 u. s + 3 ).

26 Proceso de Poisson no homogéneo Fs 1 u (u) = (s + 3) 1 u. Los sucesivos tiempos de eventos son entonces: S 1 = 3U 1 1 U 1 U 2 S 2 = S 1 + (S 1 + 3) = S 1 + 3U 2 1 U 2 1 U 2. U j 1 S j = S j 1 + (S j 1 + 3) = S j 1 + 3U j 1 U j 1 1 U j

27 Proceso de Poisson no homogéneo Generación de eventos utilizando el método de la T. Inversa I = 0; S[0] = 0; while true do Generar U U(0, 1); if (S[I] + 3U)/(1 U) > T then stop else I I + 1; S[I] (S[I 1] + 3U)/(1 U); end end

Generación de eventos en Procesos de Poisson

Generación de eventos en Procesos de Poisson Generación de eventos en Procesos de Poisson Georgina Flesia FaMAF 26 de abril, 2012 Proceso de Poisson homogéneo N(t), t 0, es un proceso de Poisson homogéneo de razón λ, λ > 0, si: N(0) = 0 proceso comienza

Más detalles

Generación de variables aleatorias continuas

Generación de variables aleatorias continuas Generación de variables aleatorias continuas Se dice que una variable aleatoria X es continua, o más propiamente, absolutamente continua, si existe f : R R tal que F (x) := P (X x) = x f(t) dt. Al igual

Más detalles

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

Generación de variables aleatorias continuas Método de rechazo

Generación de variables aleatorias continuas Método de rechazo Generación de variables aleatorias continuas Método de rechazo Georgina Flesia FaMAF 18 de abril, 2013 Método de Aceptación y Rechazo Repaso Se desea simular una v. a. X discreta, con probabilidad de masa

Más detalles

Introducción a los Procesos de Poisson *

Introducción a los Procesos de Poisson * Introducción a los Procesos de Poisson * Victor M. Pérez Abreu C. Departamento de Probabilidad y Estadística, CIMAT David Reynoso Valle Licenciatura en Matemáticas, DEMAT, Universidad de Guanajuato 22

Más detalles

Simulación III. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Simulación III. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Simulación III Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Comentario: generación de v.a. exponenciales Generación de v.a. normales Método de convolución:

Más detalles

1.1. Distribución exponencial. Definición y propiedades

1.1. Distribución exponencial. Definición y propiedades CONTENIDOS 1.1. Distribución exponencial. Definición y propiedades 1.2. Procesos de conteo 1.3. Procesos de Poisson - Tiempos de espera y entre llegadas - Partición y mezcla de un proceso de Poisson -

Más detalles

Generación de variables aleatorias discretas Método de la Transformada Inversa

Generación de variables aleatorias discretas Método de la Transformada Inversa Generación de variables aleatorias discretas Método de la Transformada Inversa Patricia Kisbye FaMAF 30 de marzo, 2010 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

Generación de números aleatorios con distribución uniforme

Generación de números aleatorios con distribución uniforme Generadores de Números Aleatorios 1 Existen en la actualidad innumerables métodos para generar números aleatorios En la literatura disponible se pueden encontrar gran cantidad de algoritmos. Generación

Más detalles

GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS

GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS La simulación de eventos se basa en la ocurrencia aleatoria de los mismos, por ello los números aleatorios y las variables aleatorias son de especial

Más detalles

Selección de distribuciones de probabilidad

Selección de distribuciones de probabilidad Selección de distribuciones de probabilidad Georgina Flesia FaMAF 3 de mayo, 2012 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación

Más detalles

Procesos de Poisson. Fabián Mancilla. U. de Santiago de Chile. Fabián Mancilla (Usach) Modelos Estocásticos 1 / 44

Procesos de Poisson. Fabián Mancilla. U. de Santiago de Chile. Fabián Mancilla (Usach) Modelos Estocásticos 1 / 44 Procesos de Poisson Fabián Mancilla U. de Santiago de Chile fabian.mancillac@usach.cl Fabián Mancilla (Usach) Modelos Estocásticos 1 / 44 Introducción En este curso estudiaremos algunos modelos probabiĺısticos

Más detalles

Integración por el método de Monte Carlo

Integración por el método de Monte Carlo Integración por el método de Monte Carlo Georgina Flesia FaMAF 7 de abril 2015 El método de Monte Carlo El método de Monte Carlo es un procedimiento general para estudiar procesos mediante la seleccion

Más detalles

Modelos Estocásticos I Tercer Examen Parcial Respuestas

Modelos Estocásticos I Tercer Examen Parcial Respuestas Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado

Más detalles

Esperanza Condicional

Esperanza Condicional Esperanza Condicional Podemos obtener la esperanza de una distribución condicional de la misma manera que para el caso unidimensional: 129 Caso 2 v.a. discretas X e Y: Caso 2 v.a. continuas X e Y: Percentiles

Más detalles

Unidad 3 Generación de números aleatorios.

Unidad 3 Generación de números aleatorios. Unidad 3 Generación de números aleatorios. Ejercicio 1. Generadores de números aleatorios. La implementación de un buen generador de números aleatorios uniformemente distribuidos sobre el intervalo (0,

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

12.Teoría de colas y fenómenos de espera

12.Teoría de colas y fenómenos de espera .Teoría de colas y fenómenos de espera Notación y terminología Modelado del proceso de llegada Modelado del proceso de servicio Notación de Kendall-Lee Procesos de nacimiento y muerte Modelo M/M/. Análisis

Más detalles

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre:

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre: Nombre: Santiago, julio 6 del 26. Tercera Solemne Cálculo Varias Variables. 1. La temperatura en un punto (x, y) sobre una placa metalica es T (x, y) 4x 2 4xy + y 2. Una hormiga camina sobre la placa alrededor

Más detalles

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0 Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución

Más detalles

PROBABILIDADES Trabajo Práctico 5. 0 si x<0. x3 si 0 x<2 1 si x 2

PROBABILIDADES Trabajo Práctico 5. 0 si x<0. x3 si 0 x<2 1 si x 2 PROBABILIDADES Trabajo Práctico 5 1. Sea X una variable aleatoria con función de distribución acumulada a) Calcular, usando F X, P (X 1) P (0.5 X 1) P (X >1.5) b) Hallar la mediana de esta distribución.

Más detalles

Proceso de llegadas de Poisson

Proceso de llegadas de Poisson Gestión y Planificación de Redes y Servicios Proceso de llegadas de Poisson Area de Ingeniería Telemática http://www.tlm.unavarra.es Grado en Ingeniería en Tecnologías de Telecomunicación, 4º Proceso de

Más detalles

13.Teoría de colas y fenómenos de espera

13.Teoría de colas y fenómenos de espera 3.Teoría de colas y fenómenos de espera Notación y terminología Modelado del proceso de llegada Modelado del proceso de servicio Notación de Kendall-Lee Procesos de nacimiento y muerte Modelo M/M/. Análisis

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.

Más detalles

UNA APLICACIÓN DEL PROCESO DE POISSON EN LA ENSEÑANZA Y APRENDIZAJE DE LA ESTADÍSTICA.

UNA APLICACIÓN DEL PROCESO DE POISSON EN LA ENSEÑANZA Y APRENDIZAJE DE LA ESTADÍSTICA. 6 II Jornadas de Enseñanza e Investigación Educativa en el campo de las Ciencias Exactas y Naturales Actas, II: 6-68, 009. La Plata. UNA APLICACIÓN DEL PROCESO DE POISSON EN LA ENSEÑANZA Y APRENDIZAJE

Más detalles

Trabajo sobre Simulación de Procesos Poisson y Distribuciones Multivariadas

Trabajo sobre Simulación de Procesos Poisson y Distribuciones Multivariadas Trabajo sobre Simulación de Procesos Poisson y Distribuciones Multivariadas Norman Giraldo Gómez Escuela de Estadística. Universidad Nacional de Colombia ndgirald@unalmed.edu.co Marzo, 2008 1. Introducción

Más detalles

Tema 7. Variables Aleatorias Continuas

Tema 7. Variables Aleatorias Continuas Presentación y Objetivos. Tema 7. Variables Aleatorias Continuas En este tema se propone el estudio de las variables aleatorias continuas más importantes, desde la más simple incrementando el grado de

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

Tema 02. Análisis de prestaciones e introducción al dimensionamiento en redes de conmutación de paquetes. Rafael Estepa Alonso Universidad de Sevilla

Tema 02. Análisis de prestaciones e introducción al dimensionamiento en redes de conmutación de paquetes. Rafael Estepa Alonso Universidad de Sevilla Tema 02 Análisis de prestaciones e introducción al dimensionamiento en redes de conmutación de paquetes Rafael Estepa Alonso Universidad de Sevilla Índice del Tema 02 2.1 Introducción a las Prestaciones

Más detalles

Estimación por intervalos

Estimación por intervalos Capítulo 9 Estimación por intervalos 9.1. Introducción En este capítulo se desarrolla la estimación por intervalos donde el proceso de inferencia se realiza de la forma θ C, donde C = Cx) es un conjunto

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

Test de Kolmogorov-Smirnov

Test de Kolmogorov-Smirnov Test de Kolmogorov-Smirnov Georgina Flesia FaMAF 2 de junio, 2011 Test de Kolmogorov-Smirnov El test chi-cuadrado en el caso continuo H 0 : Las v.a. Y 1, Y 2,..., Y n tienen distribución continua F. Particionar

Más detalles

Proceso de llegadas de Poisson

Proceso de llegadas de Poisson Gestión y Planificación de Redes y Servicios Proceso de llegadas de Poisson Area de Ingeniería Telemática http://www.tlm.unavarra.es Grado en Ingeniería en Tecnologías de Telecomunicación, 4º Proceso de

Más detalles

Teoría de Colas o Teoría de Líneas de Espera Cursada 2015 Ing. Sandra González Císaro

Teoría de Colas o Teoría de Líneas de Espera Cursada 2015 Ing. Sandra González Císaro Investigación Operativa I Facultad Ciencias Exactas. UNICEN Teoría de Colas o Teoría de Líneas de Espera Cursada 2015 Ing. Sandra González Císaro Cursada 2015 Teoría de Colas: Donde?... Teoría de colas

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

OBJETIVOS: Simular en MATLAB/Octave procesos estocásticos sencillos.

OBJETIVOS: Simular en MATLAB/Octave procesos estocásticos sencillos. GRADO en INGENIERIA de TELECOMUNICACION (Sistemas de comunicaciones, audiovisuales y telemática) ESTADISTICA 8-9 PRACTICA 5. PROCESOS ESTOCÁSTICOS OBJETIVOS: Simular en MATLAB/Octave procesos estocásticos

Más detalles

Integración por el método de Monte Carlo

Integración por el método de Monte Carlo Integración por el método de Monte Carlo Georgina Flesia FaMAF 29 de marzo, 2012 El método de Monte Carlo El método de Monte Carlo es un procedimiento general para seleccionar muestras aleatorias de una

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

Contenidos IB-Test Matemática NM 2014.

Contenidos IB-Test Matemática NM 2014. REDLAND SCHOOL MATHEMATICS DEPARTMENT 3 MEDIO NM 1.- Estadística y probabilidad. Contenidos IB-Test Matemática NM 2014. 1.1.- Conceptos de población, muestra, muestra aleatoria, y datos discretos y continuos.

Más detalles

El Teorema de Recurrencia de Poincaré

El Teorema de Recurrencia de Poincaré El Teorema de Recurrencia de Poincaré Pablo Lessa 9 de octubre de 204. Recurrencia de Poincaré.. Fracciones Continuas Supongamos que queremos expresar la relación que existe entre los números 27 y 0. Una

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Tema 6 Modelos de distribuciones discretas y continuas 6.1. Modelos de distribuciones discretas 6.1.1. Distribución uniforme sobre n puntos Definición 6.1.2 Se dice que una v.a. X sigue una distribución

Más detalles

S = N λ = 5 5 = 1 hora.

S = N λ = 5 5 = 1 hora. Teoría de Colas / Investigación Operativa 1 PROBLEMAS DE INVESTIGACIÓN OPERATIVA. Hoja 5 1. Al supercomputador de un centro de cálculo llegan usuarios según un proceso de Poisson de tasa 5 usuarios cada

Más detalles

Algunas Distribuciones Discretas de Probabilidad. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Discretas de Probabilidad. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Discretas de Probabilidad UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

TRIGONOMETRÍA DEL CÍRCULO

TRIGONOMETRÍA DEL CÍRCULO TRIGONOMETRÍA DEL CÍRCULO Otra unidad de medida para ángulos: RADIANES 1 Usamos grados para medir ángulos cuando aplicamos trigonometría a los problemas del mundo real. Por ejemplo, en topografía, construcción,

Más detalles

0 en otro caso. P (X > 0) P ( 0.5 < X < 0.5) P ( X > 0.25) x 3 si 0 x < 2. 1 si 2 x P(X 1) P(0.5 X 1) P(0.5 < X 1 X < 1) f X (x) = (1+αx) 2

0 en otro caso. P (X > 0) P ( 0.5 < X < 0.5) P ( X > 0.25) x 3 si 0 x < 2. 1 si 2 x P(X 1) P(0.5 X 1) P(0.5 < X 1 X < 1) f X (x) = (1+αx) 2 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad { 0.75(1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:

Más detalles

SISTEMAS DE COORDENADAS EN 3D GEOMETRÍA ANALÍTICA: Tema 1 Profesor Antonio Herrera Escudero Universidad Veracruzana. x, y, z, r,,,

SISTEMAS DE COORDENADAS EN 3D GEOMETRÍA ANALÍTICA: Tema 1 Profesor Antonio Herrera Escudero Universidad Veracruzana. x, y, z, r,,, SISTEMAS DE COORDENADAS EN 3D GEOMETRÍA ANALÍTICA: Tema 1 Profesor Antonio Herrera Escudero Universidad Veracruzana Antes de comenzar, observemos el siguiente dibujo, e identifiquemos los parámetros,,

Más detalles

Trigonometría Analítica. Sección 6.6 Funciones trigonométricas inversas

Trigonometría Analítica. Sección 6.6 Funciones trigonométricas inversas 6 Trigonometría Analítica Sección 6.6 Funciones trigonométricas inversas Funciones Inversas Recordar que para una función, f, tenga inversa, f -1, es necesario que f sea una función uno-a-uno. o Una función,

Más detalles

FUNCIONES DE GENERACIÓN DE NÚMEROS ALEATORIOS NÚMEROS ALEATORIOS UNIFORMES

FUNCIONES DE GENERACIÓN DE NÚMEROS ALEATORIOS NÚMEROS ALEATORIOS UNIFORMES FUNCIONES DE GENERACIÓN DE NÚMEROS ALEATORIOS Hay muchos problemas de ingeniería que requieren números aleatorios para obtener una solución. En algunos casos, esos números sirven para crear una simulación

Más detalles

Preparación de los datos de entrada

Preparación de los datos de entrada Preparación de los datos de entrada Clase nro. 6 CURSO 2010 Objetivo Modelado de las características estocásticas de los sistemas. Variables aleatorias con su distribución de probabilidad. Por ejemplo:

Más detalles

Distribuciones de probabilidad Discretas

Distribuciones de probabilidad Discretas Distribuciones de probabilidad Discretas Distribución Uniforme Discreta Definición Una variable aleatoria X, tiene una distribución uniforme discreta, si cada uno de los valores x 1, x 2,.. x n, tiene

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

PROCESO DE NACIMIENTO PURO Y MUERTE PURA

PROCESO DE NACIMIENTO PURO Y MUERTE PURA PROCESO DE NACIMIENTO PURO Y MUERTE PURA En esta sección consideraremos dos procesos especiales. En el primer proceso, los clientes llegan y nunca parten y en el segundo proceso los clientes se retiran

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

6.4. APLICACIÓN DE REDES NEURONALES EN EL CÁLCULO DE LA TASA DE CONTORNEAMIENTOS Velocidad de retorno del rayo con distribución uniforme

6.4. APLICACIÓN DE REDES NEURONALES EN EL CÁLCULO DE LA TASA DE CONTORNEAMIENTOS Velocidad de retorno del rayo con distribución uniforme Aplicación de redes neuronales en el cálculo de sobretensiones y tasa de contorneamientos 233 6.4. APLICACIÓN DE REDES NEURONALES EN EL CÁLCULO DE LA TASA DE CONTORNEAMIENTOS 6.4.1. Introducción Como ya

Más detalles

Selección de distribuciones de probabilidad

Selección de distribuciones de probabilidad Selección de distribuciones de probabilidad Patricia Kisbye FaMAF 6 de mayo, 2010 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación

Más detalles

METODOS ESTADÍSTICOS

METODOS ESTADÍSTICOS METODOS ESTADÍSTICOS Introducción. Uno de los objetivos de la asignatura de Hidrología, es mostrar a los alumnos, las herramientas de cálculo utilizadas en Hidrología Aplicada para diseño de Obras Hidráulicas.

Más detalles

Integrales paramétricas

Integrales paramétricas 5 Integrales paramétricas Página 1 de 29 1. uchas de las funciones que se manejan en Análisis atemático no se conocen mediante expresiones elementales, sino que vienen dadas a través de series o integrales.

Más detalles

Funciones generadoras de probabilidad

Funciones generadoras de probabilidad Funciones generadoras de probabilidad por Ramón Espinosa Armenta En este artículo veremos cómo utilizar funciones generadoras en teoría de la probabilidad. Sea Ω un conjunto finito o numerable de resultados

Más detalles

Simulación SIMULACIÓN 1

Simulación SIMULACIÓN 1 Simulación 1. Ejemplo e introducción a la simulación 2. Ventajas e inconvenientes de la simulación 3. Tipos de sistemas y simulaciones 4. Elementos de la simulación por eventos discretos 5. Simulación

Más detalles

1. Problema 2.3 LO (Ingolfsson, 1993; Kang, 2001)

1. Problema 2.3 LO (Ingolfsson, 1993; Kang, 2001) URBAN OPERATIONS RESEARCH MATERIAL REUNIDO POR JAMES S. KANG OTOÑO 2001 Soluciones trabajo 1 3/10/2001 1. Problema 2.3 LO (Ingolfsson, 1993; Kang, 2001) Cualquiera que llegue a la estación de transbordo

Más detalles

Procesos de Poisson (Borradores, Curso 23)

Procesos de Poisson (Borradores, Curso 23) Procesos de Poisson (Borradores, Curso 3) Sebastian Grynberg de abril de 013 ollin tonatiuh el tiempo sólo es tardanza de lo que está por venir (Martín Fierro) 1 Índice 1. Proceso puntual de Poisson 1.1.

Más detalles

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones

Más detalles

PROGRAMA DE MATEMÁTICAS TABLA DE ESPECIFICACIONES PRE Y POST PRUEBA TRIGONOMETRÍA: MATE TRIGONOMETRÍA AVANZADA: MATE

PROGRAMA DE MATEMÁTICAS TABLA DE ESPECIFICACIONES PRE Y POST PRUEBA TRIGONOMETRÍA: MATE TRIGONOMETRÍA AVANZADA: MATE PROGRAMA DE MATEMÁTICAS TABLA DE ESPECIFICACIONES PRE Y POST PRUEBA TRIGONOMETRÍA: MATE 11-166 TRIGONOMETRÍA AVANZADA: MATE 11-167 Estándar % de ejercicios asignados Cantidad de ejercicios Punto de Ejecución

Más detalles

Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria continua. Varianza. 2

Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria continua. Varianza. 2 Curso de nivelación Estadística y Matemática Cuarta clase: Distribuciones de probablidad continuas Programa Técnico en Riesgo, 2016 Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria

Más detalles

Simulación a Eventos Discretos. Clase 5: Muestreo de variables aleatorias

Simulación a Eventos Discretos. Clase 5: Muestreo de variables aleatorias Simulación a Eventos Discretos Clase 5: Muestreo de variables aleatorias Muestreos Los problemas que tratamos son estocásticos. No podemos predecir la conducta de los elementos del sistema, pero sí podemos

Más detalles

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También

Más detalles

Tema 8: Métodos de cadenas de Markov Monte Carlo

Tema 8: Métodos de cadenas de Markov Monte Carlo Tema 8: Métodos de cadenas de Markov Monte Carlo Conchi Ausín Departamento de Estadística Universidad Carlos III de Madrid concepcion.ausin@uc3m.es CESGA, Noviembre 2012 Introducción Los métodos de cadenas

Más detalles

MODELOS DISCRETOS DE PROBABILIDAD

MODELOS DISCRETOS DE PROBABILIDAD MODELOS DISCRETOS DE PROBABILIDAD M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Modelo Uniforme Discreto Modelo Uniforme Discreto Sea

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Tema 9: Contraste de hipótesis.

Tema 9: Contraste de hipótesis. Estadística 84 Tema 9: Contraste de hipótesis. 9.1 Introducción. El objetivo de este tema es proporcionar métodos que permiten decidir si una hipótesis estadística debe o no ser rechazada, en base a los

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@unam.mx T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la

Más detalles

Universidad Católica de Valparaíso Facultad de Ingeniería Escuela de Ingeniería de Transporte

Universidad Católica de Valparaíso Facultad de Ingeniería Escuela de Ingeniería de Transporte 1. NÚMEROS ALEATORIOS 1.0 INTRODUCCIÓN El papel que desempeñan las variables aleatorias uniformemente distribuidas en la generación de variables aleatorias tomadas de otras distribuciones de probabilidad,

Más detalles

Instituto de Matemática Aplicada del Litoral

Instituto de Matemática Aplicada del Litoral PROBLEMAS DE BARRERA EN PROCESOS ESTOCÁSTICOS Ernesto Mordecki http://www.cmat.edu.uy/ mordecki mordecki@cmat.edu.uy Facultad de Ciencias Montevideo, Uruguay. Instituto de Matemática Aplicada del Litoral

Más detalles

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS DESCRIPCIÓN DEL TEMA: 10.1. Introducción. 10.2. Método de las transformaciones. 10.3. Método de inversión. 10.4. Método de aceptación-rechazo.

Más detalles

Técnicas de validación estadística Bondad de ajuste

Técnicas de validación estadística Bondad de ajuste Técnicas de validación estadística Bondad de ajuste Georgina Flesia FaMAF 28 de mayo, 2013 Pruebas de bondad de ajuste Dado un conjunto de observaciones, de qué distribución provienen o cuál es la distribución

Más detalles

DISTRIBUCIÓN DE POISSON

DISTRIBUCIÓN DE POISSON DISTRIBUCIÓN DE POISSON P O I S S O N Siméon Denis Poisson, (1781-1840), astronauta francés, alumno de Laplace y Lagrange, en Recherchés sur la probabilité des jugements..., un trabajo importante en probabilidad

Más detalles

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo

Más detalles

Derivada y diferencial

Derivada y diferencial Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5 ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 5 DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Números Complejos Se define el conjunto de los

Más detalles

Fundamentos de espectroscopia: aspectos de óptica

Fundamentos de espectroscopia: aspectos de óptica Fundamentos de espectroscopia: aspectos de óptica Jesús Hernández Trujillo Abril de 2015 Óptica/JHT 1 / 20 Óptica: Estudio del comportamiento de la luz y en general de la radiación electromagnética Óptica

Más detalles

Las Funciones Trigonométricas. Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos

Las Funciones Trigonométricas. Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos 5 Las Funciones Trigonométricas Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos Triángulos Rectos Un triángulo es recto (triángulo rectángulo) si uno de sus ángulos internos mide 90 o. La suma

Más detalles

Lista de Ejercicios (Parte 1)

Lista de Ejercicios (Parte 1) ACT-11302 Cálculo Actuarial III ITAM Lista de Ejercicios (Parte 1) Prof.: Juan Carlos Martínez-Ovando 15 de agosto de 2016 P0 - Preliminar 1. Deriva las expresiones de las funciones de densidad (o masa

Más detalles

ENUNCIADO y SOLUCIONES. Problema 1

ENUNCIADO y SOLUCIONES. Problema 1 Ingeniería Industrial Métodos estadísticos de la Ingeniería Examen Junio 007. ENUNCIADO y SOLUCIONES Problema La memoria RAM para un ordenador se puede recibir de dos fabricantes A y B con igual probabilidad.

Más detalles

Procesos estocásticos

Procesos estocásticos Procesos estocásticos Las cadenas de Markov estudian procesos estocásticos Los procesos estocásticos son modelos matemáticos que describen sistemas dinámicos sometidos a procesos aleatorios Parámetros:

Más detalles

Determinación del tamaño de muestra (para una sola muestra)

Determinación del tamaño de muestra (para una sola muestra) STATGRAPHICS Rev. 4/5/007 Determinación del tamaño de muestra (para una sola muestra) Este procedimiento determina un tamaño de muestra adecuado para la estimación o la prueba de hipótesis con respecto

Más detalles

Introducción a la Teoría de Colas

Introducción a la Teoría de Colas Tema 5 Introducción a la Teoría de Colas A groso modo, podemos describir un sistema de colas (o sistema de líneas de espera) como un sistema al que los clientes llegan para recibir un servicio, si el servicio

Más detalles

Mapa Curricular: Funciones y Modelos

Mapa Curricular: Funciones y Modelos A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,

Más detalles

GRADO en INGENIERIA de TELECOMUNICACION (Sistemas de comunicaciones, audiovisuales y telemática)

GRADO en INGENIERIA de TELECOMUNICACION (Sistemas de comunicaciones, audiovisuales y telemática) GRADO en INGENIERIA de TELECOMUNICACION (Sistemas de comunicaciones, audiovisuales y telemática) ESTADISTICA 2008-2009 PRACTICA 2. VARIABLES ALEATORIAS OBJETIVOS: Introducción a las variables aleatorias:

Más detalles

Definición Una hipótesis es una afirmación acerca de un parámetro.

Definición Una hipótesis es una afirmación acerca de un parámetro. Capítulo 8 Prueba de hipótesis Existen dos áreas de interés en el proceso de inferencia estadística: la estimación puntual y las pruebas de hipótesis. En este capítulo se presentan algunos métodos para

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción.

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción. Raíces Raíces Ma3002 Raíces Raíces Las potencias y las enteras números complejos son muy fáciles calcular cuando el número complejo está en la forma polar. Primeramente, veremos la forma polar un número

Más detalles