2. ALGEBRA LINEAL (2.1_AL_T_062, Revisión: , C12)
|
|
- María Cristina Montes Soto
- hace 4 años
- Vistas:
Transcripción
1 . ALGEBRA LINEAL (._AL_T_06, Rvisió: , C). CONCEPTOS FUNDAMENTALES: ESPACIOS VECTORIALES, BASES, DIMENSIONES... INTRODUCCIÓN. Notació: utilizamos abcdario latio para vctors, grigo para scalars (úmros). x x= ˆi+ ˆ s u vctor -D, so rals (podría sr complos) î ˆi& ˆ so vctors bas Esto s úicamt u sistma d tiqutas para distiguir a d. x =,, i.., como u par ordado d D mara altrativa, podmos dfiir al vctor ( ) úmros. E gral, si tmos u sistma co -grados d librtad, podmos xtdr sta dscripció a -adas. Cosidrmos, por mplo, l siguit problma: ĵ F x = ( ), = (,,, ),,... fc st mplo, x = (,, 3, 4 ), s u vctor qu os da los úmros ordados,... qu os prmit dscribir l stado dl sistma. E álgbra lial os itrsa dfiir 4 opracios fudamtals co los vctors: Si = ( ) x,,...,, = ( η η y,, η ), tocs dfiimos: Suma d vctors: x+ y (, + η, + η, + η) Multiplicació d u vctor por u scalar: αx ( α α α ) Producto Itro (producto puto): (, ),,..., xy = xy = xy i η cougado 8
2 Logitud d u vctor (orma): x Notas: ) Los scalars α, ηprtc, a u campo qu podrá sr l campo d los rals ( αη,, R), o bi, l campo d los complos ( αη,, ). ) Para prmitir qu α, η, utilizamos η l producto itro y la logitud, i..: = si = si 3) No s ha dfiido la multiplicació d vctors, sólo multiplicació por u scalar. 4) S pud dfiir l águlo tr vctors a través dl producto itro & logitud:,, η, η η y x= (, ), y = ( η, η ) θ x ( xy, ) = η+ η β = x cosα y cos β + x sα y s β α = x y ( cosα cos β + sαs β) = x y cos( β α) = x y cosθ (, ) η cosθ x y x y Si dmostramos qu ( xy, ) x y tocs tmos ua dfiició para l águlo tr dos vctors. Esta dsigualdad s la dsigualdad d Schwarz y s vrá postriormt. D xy, 0. cualquir mara, llamamos a dos vctors ortogoals si ( ) Emplo. Si dfiimos los vctors (,, 3, 0) (, 3, 3, ) (,, 0,5) x = y = z = x y ( ) ( ) + = 3, 4, 0,, 3x = 6,3, 9,0, x = 4, y = 3, π ( xy, ) = 4 ( xz, ) x z θ xz = ; 4 cosθxy = 0.3, θxy º 83
3 .. ESPACIOS VECTORIALES. U couto d vctors S s u spacio vctorial si los vctors S cumpl co 4 codicios: (i) Está dfiida la suma d vctors tal qu: Si xy, S x+ y S (cirr bao suma) admás x + y = y+ x (suma s comutativa) ( x+y) + z= x+ ( y+ z ) (suma s asociativa) (ii) S coti l vctor cro 0, tal qu x+ 0= x, x S (iii) Para cada x S " x" x+ ( x), ( x-y x+(-y) ) (iv) Está dfiida la multiplicació por u scalar dl campo F, i.., x, y S, α, β F, αx S. Admás : α ( βx) = ( αβ) ( + ) x= x+ x α β α βx α( x+ y) = αx + αy x= x, 0x= 0 Si F = spacio vctorial spacio vctorial ral Si F = spacio vctorial complo Emplo. Cosidrmos l spacio d las -adas : = (,..., ), = ( η,..., ) dfiimos: x+y (,..., + η + η) 0 ( 0,...,0) ( ) -x,..., x y η. Si tmos u spacio vctorial. Admás s pud dmostrar qu x+y=y+x, pus + η = η + para cualquir úmro ral o complo. El rsto d las codicios pud dmostrars d mara similar. Si dfiimos ahora x+y ( + η,..., + η), o tmos u spacio vctorial ya qu x+y= y+ x, i.., x+y y+x...3 ESPACIOS EUCLIDEANOS. Para podr hablar d logituds d vctors y águlos tr vctors, dfiimos l producto itro (producto puto o producto scalar). DEFINICIÓN. El producto itro cumpl co las siguits propidads: (i) ( x, y) = ( y, x) Simtría cougada. 84
4 (ii) (iii) ( ) ( ) ( ( x, x) > 0, x 0 ( x, x) x αx+ βy, z = α x,z + β y,z) Lialidad. Nóts qu ( x, αy) = ( αyx, ) = α( yx, ) = α( yx, ) = α( xy, ) E la otació d Dirac (Físicos): zαx+ βy = α z x + β z y DEFINICIÓN. U spacio vctorial s u ESPACIO EUCLIDIANO si ti dfiido u producto itro. DEFINICIÓN. La LONGITUD o NORMA d u vctor, x, cumpl co: (i) α x = α x x+y (ii) x > 0, x 0 x x= 0 x (iii) x+ y x + y Dsigualdad dl triágulo (d Mikowsky) Emplo 3. Para l spacio vctorial d -adas (-tuplos) s pud cosidrar ormas dl tipo: Comúmt s utiliza: p = x x p = x = NORMA EUCLIDIANA P = x = max i p / p / y DEFINICIÓN. Distacia tr dos vctors: d( xy, ) x-y DEFINICIÓN. Ua scucia x, =,,... covrg a x si ε > 0 N ( ε ) tal qu x x < ε, > N, lim x = x, o bi: x x. DESIGUALDAD DE SCHWARZ. Esta dsigualdad stablc qu: ( x, y) ( x, x) ( y, y ) 85
5 La dmostració pud hacrs utilizado las propidads dl producto itro: Sabmos qu ( x αy x αy) +, + 0 ( x αy, x αy) ( x, x αy) α( y,x αy) ( x αy,x) α( x αy,y ) = ( x, x) + α( y,x) + α( x,y) + αα( y,y ) + + = = ( x,x) α( x,y) α( y,x) αα( y,y ) 0 = E gral α = a+ bi. Nóts qu sta dsigualdad s cumpl para cualquir α, auqu st úmro pud optimizars, i.., podmos cosidrar ua fució d (a,b) y miimizar la fució. Dfiamos tocs: f( a, b) = ( x,x) + ( a ib)( x,y) + ( a+ ib)( y,x) + ( a + b )( y,y ) 0 f ( x, y) + ( y, x) = ( xy, ) + ( yx, ) + a( yy, ) a = a ( yy, ) f i[ (, ) (, )] = i(, ) + i(, ) + b(, ) x y y x xy yx yy b = b ( yy, ) f f Nóts qu = = ( yy, ) > 0, por lo qu f(a,b) s u míimo. a b ( x, y) ( y, x) ( x, y) + ( y, x) ( x, y) α = a+ ib= = ( yy, ) ( yy, ) ( xy, ) ( yx, ) + ( xy, ) + ( yx, ) ( yx, ) α = a ib= = ( yy, ) ( yy, ) (, ) (, ) (, ) yx xy ( xy, )( yx, ) xx ( xy, ) ( yx, ) + ( yy, ) ( yy, ) ( yy, ) ( xx, )( yy, ) ( yx, )( xy, ) ( xx, )( yy, ) ( yx, )( x, y) = ( x, y)( x, y) = ( x, y ) ( xy, ) ( xx, ) ( yy, ) ( yy, ) 0..4 DEPENDENCIA LINEAL, DIMENSIÓN Y BASES. DEFINICIÓN. Los vctors x, x, x so LINEALMENTE DEPENDIENTES (LD) si scalars α, o todos cro, tal qu: αx+ αx+ α3x α x D otra mara, so LINEALMENTE INDEPENDIENTES (LI). Si so LD, al mos u x pud xprsars como ua combiació lial d los dmás. α α 3 α Emplo 4. Si α 0 x = x x3... x α α α 86
6 DEFINICIÓN. U spacio vctorial ti DIMENSION, si coti u couto d vctors LI. Cualquir couto d + vctors s LD. DEFINICIÓN. Ua BASE para u spacio vctorial s u couto d vctors LI,,,...,, tal qu cualquir x al spacio pud sr xprsado como ua combiació lial d llos, i..: x= α + α + + α... La rprstació térmios d la bas s ÚNICA: supogamos por mplo qu rprstamos x= β+ β β. Sustraydo ambas rprstacios obtmos: ( α β ) ( α β ) ( α β ) Sabmos qu los vctors bas so LI α β, α = β Obsrvació: Si ua bas para l spacio ti vctors, tocs su dimsió db sr, y vicvrsa. Emplo 5. Para l spacio d las -adas: = (,0,...0) Vctors LI l spacio dado: = (0,,...0) α+ α α ( α, α,..., α ) = ( 0,0,...,0) = (0,0,...,) α = α =... = α ( Admás: x =,,..., ) al spacio, pud xprsars como: x= , l couto s ua bas. El spacio s -dimsioal (hay vctors bas). Est s l caso -dimsioal d la bas ˆˆ ik,, ˆ, auqu NO ES LA ÚNICA BASE POSIBLE l spacio d las -adas. La lcció d la bas apropiada surg d mara atural a partir dl problma studio (solució dl problma d autovalors). Ua coscucia importat d stos cocptos s qu, dada ua bas,,..., algú spacio -dimsioal, podmos xprsar x al spacio como Los scalars α s obti proyctado x co la bas, i..: x= α α. 87
7 ( x, ) (, ) α... (, ) ( ) ( ) ( ) ( x, ) (, ) α... (, ) = + + α x, =, α , α ( x, ) = (, ) α, i =,,..., k i k k = = + + α i La solució dl sistma proporcioa los valors para los scalars α i. Ecotrar la solució d sto pud sr complicado y/o tdioso cuado s grad. Afortuadamt, gralmt trabaamos co bass ortogoals, i.., ( i, ), i. El sistma s rduc tocs a: ) α ( x,) (, ) α ( x, ) ( ) ( ) ( x, ) ) ( x, ) ( ) = α = = α x=, = x, =, BASE ORTOGONAL Cuado los vctors stá ormalizados (i.., so uitarios), s dic qu la bas s, = δ ). ORTONORMAL ( st caso ( ) i i..5 Ortogoalizació d Gram-Schmidt Supogamos qu qurmos obtr ua bas ORTOGONAL a partir d ua bas dada,.g., g,g,...,g dod g 0. Para sto, podmos utilizar l procso d la bas { }, ORTOGONALIZACION DE GRAM-SCHMIDT:.- = g.- = g αg = g α Para qu y sa LI y ortogoals: ) (,) = ( g α,) = ( g,) α(, ) ( g,) ( g,) α =, ( = ) ( g,,) = g3 α β 3 ) = ( g3 α β, ) = ( g, 3 ) α ) β ) ( g 3,) α = ) (, ) = ( g α β, ) = ( g, ) α (, ) β )
8 β = ( g,) ) ( g 3,) ) ( g,) ) 3 3 = g 3 3 Gralizado: ( k) ) = g, k k = k k g ORTOGONALIZACIÓN DE GRAM-SCHMIDT. 89
9 EJERCICIOS (Scció.).- Usado la dsigualdad dl triágulo dmostrar qu x + +x x + + x.- Mustr qu la orma x = max satisfac la dsigualdad dl triágulo. 3.- Expadir (αω + βx,γy+δz), dod α, β, γ, δ so scalars. 4.- Expadir x=(3, - i, 0), por cualquir método, térmios d: a) = (,0,0), = (,,0), 3 = (,,) b) = (,0,0), = (0,,0), 3 = (0,0,) c) = (i,0,0), = (0,i,), 3 = (0,0,i) 5.- Dmostrar qu los siguits vctors so bass para l spacio d los pars ordados (i.., l spacio d dimsió dos). a) = (,), = (,-) b) = (,0), = (,) 6.- Obtr bass ortoormals a partir d los siguits vctors LI por mdio dl procso d Gram-Schmidt. = (0,,0), = (,0,), 3 = (,,) 90
SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA 1: Problema Nº 5.34 Oppenheim
SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA : Problma Nº 5.3 Opphim Obsrv l siguit sistma: Dtrmi y() Solució: El traycto d arriba produc, al multiplicar por Cos(/), traslació dl spctro
EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3
Rpaso d Matmáticas E st apédic s hará u brv rpaso d las cuacios y fórmulas básicas d utilidad Química Física gral y Trmodiámica Química particular. EXPONENTES Y POTENCIAS Muchos úmros s xprsa forma más
INTEGRAL INDEFINIDA. Derivación. Integración
TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA. F() s ua primitiva d f() si F ()= f(). Esto s prsa así: f() = F'() = F() La itgració s la opració ivrsa a la drivació, d modo qu: FUNCIONES
Universidad de Costa Rica. Instituto Tecnológico de Costa Rica. Determinar si las integrales impropias convergen o divergen.
Uivrsidad d Costa Rica Istituto Tcológico d Costa Rica Tma: Itgrals impropias. Objtivos: Clasificar las itgrals impropias sgú su spci: primra, sguda o trcra spci. Calcular itgrals impropias utilizado su
1.- a) Hallar a y b para que la siguiente función sea continua en x = 1:
.- a) Hallar a y b para qu la siguit fució sa cotiua = : b L( ) < f = a = > L b) Para sos valors d a y b, studiar la drivabilidad d f =. Solució: a) f s cotiua l puto = lim f = f() E st caso f () = a lim
Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas
Uivrsidad d Purto Rico Rcito Uivrsitario d Mayagüz Dpartamto d Cicias Matmáticas Eam III Mat - Cálculo II d abril d 8 Nombr Númro d studiat Scció Profsor Db mostrar todo su trabajo. Rsulva todos los problmas.
Sistemas de ecuaciones diferenciales lineales
695 Aálisis matmático para Igiría M MOLERO; A SALVADOR; T MENARGUEZ; L GARMENDIA CAPÍTULO Sistmas d cuacios difrcials lials d primr ord Cuado s studia matmáticamt ua situació d la ralidad, l modlo qu s
ESPACIOS VECTORIALES EUCLÍDEOS: Proceso de ortonormalización (Gram-Schmidt)
Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 04/5 PRÁCTICA Nº ESPACIOS VECTORIALES EUCLÍDEOS: Procso d ortonormalización (Gram-Schmidt) En sta práctica vamos a vr como podmos calcular
TEMA 1: CALCULO DIRECTO DE LÍMITES
INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Rsolució Nº 88 d ovimbr.8/ ScrtariaD Educació Distrital REGISTRO DANE Nº-99 Tléfoo Barrio Bastidas Sata Marta DEPARTAMENTO DE MATEMATICAS ACTIVIDAD ESPECIAL
a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.
(Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar
Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,...
TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN S llama sucsió a u cojuto d úmros dados ordadamt d modo qu s puda umrar: primro, sgudo, trcro,... Los lmtos d la sucsió s llama térmios y s
INTEGRAL INDEFINIDA. Derivación. Integración
TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA F() s ua primitiva d f() si F ()= f(). Esto s prsa así: La itgració s la opració ivrsa a la drivació, d modo qu: f() F'() F() FUNCIONES PRIMITIVAS
Tema 5. Análisis de Fourier para Señales y Sistemas Discretos.
Tma 5. Aálisis d Fourir para Sñals y Sistmas Discrtos. E l tma 3 hmos hcho u studio d los sistmas discrtos l domiio tmporal. Esto os ha prmitido ralizar ua caractrizació d los mismos y hacr u studio d
Cap. II: Principios Fundamentales del Flujo de Tránsito
Cap. II: Pricipios Fudamtals dl Flujo d Trásito Diagrama Espacio-Timpo Distacia 1 2 Itralo (i) 3 4 5 6 Espaciamito () Timpo Flujo, q Dsidad, Vlocidad, Tasa horaria quialt a la cual trasita los hículos
Teoría de Sistemas y Señales
Toría d Sistmas y Sñals Trasparias: Aálisis ruial d sñals TD Autor: Dr. Jua Carlos Gómz Aálisis ruial d Sñals Timpo Disrto. Sri d ourir d Sñals Timpo Disrto Sa () ua sñal priódia o príodo, s dir: ( ) +
1.1 DEFINICIÓN 1.2 ENFOQUE GEOMÉTRICO 1.3 IGUALDAD 1.4 OPERACIONES
Moisés Villea Muñoz Vectores e,,,. DEFINICIÓN. ENFOQUE GEOMÉTRICO. IGUALDAD.4 OPERACIONES Los pares ordeados, que a se ha tratado, so los que llamaremos ectores de. Pero el iterés ahora es ser más geerales.
ANÁLISIS DE FOURIER CAPÍTULO CUATRO TIEMPO DISCRETO Introducción
CAPÍTULO CUATRO AÁLISIS DE FOURIER TIEMPO DISCRETO 4. Itroducció Las técicas dl aálisis d Fourir timpo cotiuo dsarrolladas l capítulo atrior ti mucho valor l aálisis d las propidads d sñals y sistmas d
TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS
Tma Sucsios Matmáticas I º Bach. TEMA SUCESIONES SUCESIONES Y TÉRMINOS EJERCICIO : Si l térmio gral d ua sucsió s a 0 Halla l térmio sgudo y l décimo. b) Hay algú térmio qu valga? Si hay dcir qu lugar
Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin
Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,
Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del / 26
Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del 2016 1 / 26 1 Subespacios y combinaciones lineales 2 Dependencia
CÁLCULO NUMÉRICO ( )
CÁLCULO NUMÉRICO (808068) Tma. Fudamtos d la Toría d Errors Octubr 0. Al studiar l fómo diario d la variació qu primta las codicios mtorológicas, s suprim muchas variabls qu dbría d itrvir los cálculos.
1. Algunas deniciones y resultados del álgebra lineal
. Algunas deniciones y resultados del álgebra lineal Denición. (Espacio vectorial o espacio lineal sobre R) Un espacio vectorial o espacio lineal sobre el campo de los números reales, R, es un conjunto
Análisis del caso promedio El plan:
Aálisis dl caso promdio El pla: Probabilidad Aálisis probabilista Árbols biarios d búsquda costruidos alatoriamt Tris, árbols digitals d búsquda y Patricia Listas sip Árbols alatorizados Técicas Avazadas
CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero
Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE
El espacio euclídeo El espacio vectorial R n. Definición. Conjunto de todas las n-uplas de números reales:
Lección 1 El espacio euclídeo 1.1. El espacio vectorial R n Definición. Conjunto de todas las n-uplas de números reales: R n = {(x 1,x 2,...,x n ) : x 1,x 2,...,x n R} Nos interesan los casos n = 2 y n
PROBLEMAS TEMA 4 EJERCICIO 1 (Ej 9.15 de Fernández Abascal)
PROLMAS TMA JRCICIO j 9.5 d Frádz Abascal La cotizació olsa d u cirto título s cosidra ua variabl alatoria ormalmt distribuida co arámtros dscoocidos, ro s diso d la siguit iformació: a ist u,5% d robabilidad
1. ESPACIOS DE HILBERT Y OPERADORES
1. ESPACIOS DE HILBERT Y OPERADORES 1. DEFINICIÓN, PROPIEDADES Y EJEMPLOS Definición. Sea H un espacio vectorial sobre el cuerpo C de los números complejos, un producto escalar sobre H es una aplicación
Cálculo numérico. Sistemas de ecuaciones lineales.
José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2010. Las raíces de x 2 bx + c = 0. r = b ± b 2 4c 2 b = 3.6778, c = 0.0020798 r 1 = 3.67723441190... r 2 = 0.00056558809...
Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas
Elementos Básicos de Análisis Funcional en Análisis Numérico Dr. Oldemar Rodríguez Rojas Agosto 2008 Contents 1 Elementos Básicos de Análisis Funcional 2 1.1 Espacios normados...........................
Competencia Matemática E. Paenza. Sexta Realización 1991
Competecia Matemática E. Paeza Seta Realizació 99 Resolució de los problemas Participate N : Problema. Sea C u cuadrilátero coveo. Si el área del cada uo de los cuatro triágulos determiados por las dos
Resumen que puede usarse en el examen
Resume que puede usarse e el exame ema. Optimizació Irrestrigida. Codicioes ecesarias y suficietes de optimalidad. Proposició (C. Necesarias) Sea x* u míimo local irrestrigido de f :!! y supogamos que
Capítulo IV. Estadísticas cuánticas.
Capítulo I. stadísticas cuáticas. Lcció 6 Itroducció a las stadísticas cuáticas. Partículas distiguibls idistiguibls. stadísticas d Bos-isti y d rmi-dirac. Lcció 7 Gas idal d rmi: lctros mtals. Lcció 8
Tema 11. Limite de funciones. Continuidad
Tma. Limit d fucios. Cotiuidad. Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito
1. Sumar monomios semejantes:
HOJA 1: Monomios 1. Sumar monomios semejantes: a) 3x + 4x 5x b) 6x 3 x 3 + 3x 3 c) x 5 + 4x 5 7x 5 d) x 4 + 6x 4 + 3x 4 5x 4 e) 7x + 9x 8x + x f) y + 5y 3y g) 3x y 6x y + 5x y h) 4xy xy 7xy i) a 6 3a 6
Tema 2: Espacios vectoriales
Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 Tema 2: Espacios vectoriales Ejercicios 1. En R 2 se definen las siguientes operaciones: (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +
Universidad Antonio Nariño Matemáticas Especiales
Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.
8 Límites de sucesiones y de funciones
Solucioario 8 Límits d sucsios y d ucios ACTIVIDADES INICIALES 8.I. Calcula l térmio gral, l térmio qu ocupa l octavo lugar y la suma d los ocho primros térmios para las sucsios siguits., 6,,,..., 6, 8,,...,,,,...
2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros
.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros 59.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros Variació d parátros U procdiito
si G es abierto. La función del conjunto m tiene las siguientes propiedades: de partes de se dice que es una , entonces E.
LA INTGRAL D LBSGU PARA FUNCIONS D UNA SOLA VARIABL RSULTADOS TÓRICOS LA MDIDA D LBSGU CONJUNTOS MDIBLS Dado u couto abierto o vació G de la recta real, existe ua amilia iita o umerable {V: œl}, ormada
Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07.
Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander Monday, November 5, 2007 at 8:44 am (FA07.01,02) Para uso exclusivo en el salón de clase. 2007 c Julio C. Carrillo
ESPACIO VECTORIAL EUCLÍDEO
ESPACIO VECTORIAL EUCLÍDEO PRODUCTO ESCALAR Sea V un espacio vectorial sobre C. Una aplicación que asocia un número complejo < u, v > a cada pareja de vectores u y v en V, se dice que es un producto escalar
Variables aleatorias discretas
Probabilidads y stadística Comutació Facultad d Cicias actas y aturals. Uivrsidad d Buos Airs Aa M. Biaco y la J. Martíz 4 Variabls alatorias discrtas istribució Biomial: Muchos rimtos alatorios satisfac
5 MECÁNICA ESTADÍSTICA CUÁNTICA DE GASES IDEALES
ma 5 MCÁICA SADÍSICA CUÁICA D GASS IDALS stadística d rmi-dirac y stadística d Bos-isti. l límit clásico. Gas idal d rmi: lctros mtals. Gas idal d Bos: fotos y 4H líquido. Codsació d Bos-isti. [RI-9; HUA-8;
ESTIMADOR DE AITKEN Y PROPIEDADES DEL MISMO (Última revisión: 1 de marzo de 2007)
Apts d clas d coomtría II / 6 STIMADOR D AITKN Y ROIDADS DL MISMO Última rvisió: d marzo d 7 rof. Rafal d Arc rafal.darc@am.s stimació d los parámtros dl MBRL por máxima vrosimilitd Apoádoos la hipótsis
Espacios de señales. 2 Espacios de señales
Procesamiento Digital Señales Licenciatura en Bioinformática FI-UER Agosto Procesamiento Digital Señales Espacio señales Agosto /44 Organización lineal 3 lineales Procesamiento Digital Señales Espacio
1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,...
TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mil: imozs@lx.ud.s http://tlfoic.t/wb/imm EJERCICIOS DE SERIES NUMÉRICAS PROPUESTOS EN EXÁMENES.- Estudi l cráctr d l sri uméric. (Fbrro 00, x. or.) Solució.- Pusto
Tema 0 Repaso de Señales y Sistemas Discretos. 4º Ing. Telecomunicación EPS Univ. San Pablo CEU
Tma Rpaso d Sñals y Sistmas Discrtos 4º Ig. Tlcomuicació EPS Uiv. Sa Pablo CEU Lcturas complmtarias Opp., Pro (sólo hasta.: Itroducció a TDS Importacia d TDS la igiría Prspctiva histórica Esquma d u sistma
Tema 8. Limite de funciones. Continuidad
. Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito asítota horizotal... 8.
61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS
Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr
Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno.
Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno. Teoremas con demostraciones que se pueden incluir en el examen: 1. Fórmula para f(j m (λ)), donde J m (λ) es el bloque
Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica
Vectores 1) Vectores en R 2 Vector fijo en el plano Elementos de un vector fijo ( módulo, dirección, sentido, origen y extremo) Vectores equipolentes Vector libres Propiedad fundamental de los vectores
CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; =
CÁLCULO DE LÍMITES Propidds d los límits.- ( b ) b.- ( b ) b.- ( b ) b.- ( b ) b b.- ( ) ( ) 6.- k k b Por otro ldo s importt distiguir l cálculo d límits, los csos idtrmidos d los dtrmidos: Csos dtrmidos:
una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:
Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes
TEMA 11.- VECTORES EN EL ESPACIO
TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos
IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala d Granada Junio d 03 (Modlo Espcífico ) Grmán-Jsús Rubio Luna Opción A Ejrcicio opción A, modlo Junio 03, spcífico [ 5 puntos] Halla las dimnsions dl rctángulo d ára máima inscrito n un triangulo
520142: ALGEBRA y ALGEBRA LINEAL
520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición
Problemas Tema 2: Sistemas
SISTEMAS Y CIRCUITOS ~ PROBLEMAS Curso Académico 00900 Problmas Tma Sismas PROBLEMA. Dados los siguis sismas impo coiuo las sñals d rada idicadas, drmi las sñals d salida corrspodis ( ) x sñal d rada x
Matrices. Operaciones con matrices.
Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =
Matemáticas I. Tema 2 E.I.I. Aplicaciones Lineales y Matrices. Curso 2012-2013
Matemáticas I E.I.I Tema 2 Aplicacioes Lieales y Matrices Curso 202-203 Itroducció 2 Como requisitos previos para maejar todos lo que e este tema se itroduce se tiee que recordar de cursos ateriores los
3. Modelos Univariantes de Probabilidad. Curso Estadística. Modelos Univariantes
3. Modlos Uivariats d Probabilidad Curso - Estadística Modlos Uivariats Procso d Broulli El rsultado d u rimto admit dos catgorías: Actabl y Dfctuoso. S rit l rimto vcs. La robabilidad d dfctuoso s la
Superficies cuádricas
Superficies cuádricas Jana Rodriguez Hertz GAL2 IMERL 9 de noviembre de 2010 definición superficie cuádrica definición (forma cuadrática) una superficie cuádrica está dada por la ecuación: definición superficie
AMPLIACIÓN DE MATEMÁTICAS APLICACIONES.
AMPLIACIÓN DE MATEMÁTICAS APLICACIONES. Ejemplo 1. La ecuació poliómica x 2 + 2x + 2 = 0, co coeficietes reales, tiee dos solucioes complejas cojugadas: 1 + i y 1 i. Este o es u hecho aislado. Proposició
Análisis Geostadístico. de datos funcionales
á í á - á é í : í é : á ó í ( ). é í á ó,,,., í é.,, é ó., í á. í., ó, ó. é ó., á, ó.., ó - ()., é á í. é á., á. ó, ó á. é ó é. í á ó. : ; ; ó ; ; ; ó. ó í............................... á..............................................................
Espacios Vectoriales
Espacios y subespacios vectoriales Espacios Vectoriales 1. Demuestre que con la suma y multiplicación habituales es un espacio vectorial real.. Considere el conjunto C de los números complejos con la suma
EJERCICIOS DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 2
EJECICIOS DE ANÁLISIS FUNCIONAL (Asigatura VCAF) HOJA Ejercicio : Idicar u ejemplo de la sucesió x () (x (),x (),...) que perteezca a cada uo del par cosiderado de los espacios y que: a) Coverja e l,peroocoverjael.
Política Fiscal. Gobiernos de coalición o de intereses geográficos dispersos
Política Fiscal Goiros d coalició o d itrss oráficos disrsos Goiros d coalició o d itrss oráficos disrsos Escario olítico dod l oiro stá comusto or dos artidos coalició:. Partidos ti rfrcias distitas sor
INFERENCIA ESTADISTICA
Uivrsidad Católica Adrés Bllo UIVERSIDAD CATOLICA ADRES BELLO Urb. Motalbá La Vga Apartado 068 Tléfoo: 47-448 Fa: 47-3043 Caracas, 0 - Vzula Facultad d Igiría Escula d Igiría Iformática -----------------------
José Humberto Serrano Devia Página 1
Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección se muestra la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad
Tema 1: Espacios vectoriales
PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina
Z = número atómico o número de protones del núcleo Z = 1 (H); 2 (He + ); 3 (Li 2+ ).
CAPITULO. l átoo d idógo ) Atoo d idógo idogoid Z úo atóico o úo d poto dl úclo Z (H); (H + ); (Li + ). F q q / ε F q q / θ.6-9 cul.8 - u N u cul /( ε ) / φ V() -Z / ( u ) Hˆ Hˆ Hˆ + Ψ (, ) ψ ( )ψit( )
Capítulo 9. Método variacional
Capítulo 9 Método variacioal 9 Miimizació de la eergía 9 Familia de fucioes 9 Partícula ecerrada e ua dimesió etre [-aa] 9 Oscilador armóico e ua dimesió 93 Átomo de helio 93 Combiació lieal de fucioes
MMAF: Espacios normados y espacios de Banach
MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el
1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias:
EJERCICIOS de POTENCIAS º ESO FICHA : Potecias de expoete IN RECORDAR: a a a a... a a Defiició de potecia ( veces). Aplicar la defiició para hallar, si calculadora, el valor de las siguietes potecias:
L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2
Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los
CAP ITULO I ALGEBRA LINEAL. 1
CAPÍTULO I ÁLGEBRA LINEAL 1 Tema 1 Espacios Vectoriales Notaremos por R al cuerpo de los úmeros reales Defiició 11 Sea E u cojuto o vacío e el que se tiee defiida ua ley de composició itera (llamada suma):
DECAIMIENTO RADIOACTIVO
DECIMIETO RDIOCTIVO El dcaimito radioactivo s idpdit dl modo d dcaimito, y s aplica a todos llos: α,β +, β -, CE (captura lctróica), γ, y fisió spotáa. Postulados: LEY DE DESITEGRCIO RDIOCTIV. La probabilidad
Espacios Vectoriales Introducción Espacio Vectorial. (4 de Abril de 2003)
Capítulo 1 Espacios Vectoriales 4 de Abril de 2003 1.1. Introducción Frecuentemente se encuentran objetos matemáticos que pueden ser sumados entre si o multiplicados por un número. Ejemplos de tales objetos
FAyA Licenciatura en Química Física III año 2006 MECANICA CUANTICA
FAyA Licciatura Química Fíica III año 006 MECANICA CUANTICA E la mcáica cláica l tado d u itma dcrib u itat dtrmiado dado toda u coordada q y u vlocidad q. E mcáica cuática l tado d u itma dfi dado ua
Jueves, 25 de abril. Dificultades de los modelos PNL. Dónde está la solución óptima? Otro ejemplo: Óptima Local frente a Global
. Jueves, de abril Teoría sobre la programació o lieal Programació separable Dificultades de los modelos PNL PL: Etregas: material de clase PNL: Aálisis gráfico de la programació o lieal e dos dimesioes:
CÁLCULO VECTORIAL PRODUCTO ESCALAR (PRODUCTO PUNTO) El producto escalar de dos vectores no nulos es cero si y solamente si ambos son perpendiculares.
PRODUCTO ESCALAR (PRODUCTO PUNTO) El producto escalar de dos vectores A yb, denotado por A B, se define como el número (un escalar, no un vector) que se obtiene del siguiente modo. Ai B = A B cos ( A,
ESPACIOS VECTORIALES SUBESPACIOS FINITAMENTE GENERADOS:
SUBESPACIOS FINITAMENTE GENERADOS: Teorema S G={v, v,, v } es u sstema fto de geeradores de u subespaco S V K-EV, etoces G`= {v, v,, v,w} sedo w combacó leal de vectores de G, també geera a S. Demostracó
Grupos, Campos y Espacios Vectoriales
1. Grupos Grupos, Campos y Espacios Vectoriales Considere el siguiente conjunto G = {g 1, g 2, g 3,, g n, } y la operación binaria entonces estos elementos forman un grupo abeliano 1 respecto a la operación
102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.
102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina
Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm
Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la
1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias:
EJERCICIOS de POTENCIAS º ESO académicas FICHA : Potecias de expoete IN RECORDAR: a a a a... a a Defiició de potecia ( veces). Aplicar la defiició para hallar, si calculadora, el valor de las siguietes
LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN
LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.
con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,
Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes
ALGEBRA Y GEOMETRIA ANALITICA
Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 009 Profesora Mariana Suarez PRACTICA N 8: RECTA EN EL ESPACIO PLANO ALGEBRA Y GEOMETRIA ANALITICA - Segundo cuatrimestre
Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.
Álgebra Geometría Analítica Prof. Gisela Saslavsk Vectores en R en R 3. Rectas planos en el espacio Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..
Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados
Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones
A P U N T E S D E Á L G E B R A L I N E A L
A P U N T E S D E Á L G E B R A L I N E A L Universidad Nacional Autónoma de Méico Facultad de Ingeniería. M.I. Luis Cesar Vázquez Segovia Grupo: Semestre: - TEMA.- ESPACIOS VECTORIALES. Definición. Sea
CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS
CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E
Funciones Exponencial y Logaritmo
. 9th May 2007 La fució expoecial Itroducció. Recuerdo Sabemos lo siguiete para la sucesió a = + h ) Si lim h 2, 0) etoces lim a = 0. 2 Si lim h / [ 2, 0] etoces lim a o existe. 3 Si lim h = 0 y lim h
OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis
MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa
APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO
APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO ÍNDICE VECTORES EN EL PLANO... 3 Vector Fijo... 3 VECTOR LIBRE... 3 Operaciones con Vectores... 3 Suma de vectores... 3 Producto de un número por
( ) ( ) ( ) RESOLUCIÓN Dato: NºDiag.= 4(Nº s internos) RESOLUCIÓN RESOLUCIÓN SEMANA 4 POLÍGONOS Y CUADRILÁTEROS 11( 11 1) RPTA.: E RPTA.
SEMN 4 OLÍGONOS Y URILÁTEROS 1. lcul l úmro d digols mdis d u polígoo, dod l úmro d digols s l cuádrupl dl úmro d águlos itros. ) 0 ) 7 ) ) 44 E) to: Nºig.= 4(Nº s itros) id: Nºig.Mdis= ( 1 ) =? Rmplzdo
Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER
F.I.U.B.A AÁLISIS AEÁICO III rabajo Práctico ro. 9 rabajo Práctico ro. 9 ECUACIOES DIFERECIALES E DERIVADAS PARCIALES Y SERIES DE FOURIER I.- Itroducció a las Ecuacioes Difereciales e Derivadas Parciales
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar
SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.
CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio
Espacios Vectoriales
Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios