3º Año. Vectores. Matemática

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3º Año. Vectores. Matemática"

Transcripción

1 3º Año Cód P r o f. M ó n i N p o l i t n o P r o f. M. D e l L u j á n M r t í n e z R e v i s i ó n P r o f. P t r i i G o d i n o Dpto. de M temáti

2 1- INTRODUCCIÓN En diverss oportuniddes nos hemos enontrdo en tems reliondos on l Físi, on mgnitudes que quedn definids medinte un número, ls denominds mgnitudes eslres. Entre ells, podemos itr l longitud, l ms, el volumen. Otrs, en mio, ls mgnitudes vetoriles, requieren demás del número, pr su definiión, de elementos tles omo direión y sentido representdos por segmentos orientdos o flehs denomindos vetores. Se uent entre ests últims mgnitudes, omo ejemplo, ls fuerzs, los desplzmientos, ls veloiddes, et. 2- VECTOR Definiión. Sus elementos Se llm vetor todo segmento orientdo, es deir, todo segmento determindo por un pr ordendo (; ) de puntos. El punto se llm origen y el punto extremo del vetor. Pr simolizrlo usremos o simplemente u Los elementos de un vetor son tres, ser: Direión L direión de un vetor está dd por l direión de l ret que lo ontiene o ulquier de sus prlels. u Sentido L orientión del vetor sore l ret, definid por su origen y su extremo, determin el sentido del mismo. En d direión hy dos sentidos. Gráfimente el sentido de un vetor es indido on un fleh. P O L I T E C N I C O 1

3 A // B Ejemplo: A B e d f g h En l figur, los vetores tienen distinto sentido. y ef tienen igul sentido y los vetores y hg Oserviones: El sentido se ompr en form gráfi, sólo si tienen igul direión Módulo El módulo es l medid del segmento orientdo. El módulo de un vetor se simoliz Por todo lo preedente, podemos deir que el módulo de un vetor es siempre un número no negtivo, o se u 0 u Oservión: Diremos que dos vetores y d poseen igul módulo si l medid de los segmentos y d son igules, respeto l mism unidd de medid. d = d 12 P O L I T E C N I C O

4 Vetores prtiulres Vetor lire Ddo un segmento, se llm vetor lire l onjunto de todos los vetores que tienen igul módulo, direión y sentido que, inluido el propio. En lo suesivo será indistinto trjr on ulquier de los elementos de diho onjunto. Vetor nulo Llmremos vetor nulo todo punto y lo notremos o En el vetor nulo el origen y el extremo del mismo oiniden. u o El vetor nulo es el únio que tiene módulo ero y que no tiene definido ni direión ni sentido. En símolos: u o u 0 Versor Se llm versor o vetor unitrio ulquier vetor de módulo uno. v w u 1 v; w y 0 u 0 son versores Versor soido un vetor Ddo un vetor u 0, se llm versor soido l vetor u, y se simoliz u 0, l versor que posee igul direión y sentido que u En el ejemplo nterior el versor w por tener igul direión y sentido que u es un versor soido u. P O L I T E C N I C O 13

5 Vetor opuesto un vetor Ddo un vetor ulquier, se llm vetor opuesto de y se simoliz, l vetor que tiene igul direión, igul módulo y distinto sentido que, si no es nulo y si el vetor = o, = o Si direión sent direión 0 sent Si 0 0 = = o Vetores igules Dos vetores son igules undo son mos nulos o tienen igul módulo, direión y sentido. En símolos: u v u v o u v dire. u dire. v sent.u sent.v Ejemplo: u w v u v w Definiión: Dos vetores no nulos son prlelos undo poseen l mism direión. En símolos: // direión de direión de 14 P O L I T E C N I C O

6 Atividdes: 1) Ddos los vetores de ls figurs omplet de modo que ls siguientes expresiones resulten verdders )... es el extremo de ) A B C A // B // C... y... tienen distint direión... y... tienen igul direión... y... tienen distinto sentido 2) Diuj los vetores ; ; ; y t, siendo que L direión de es un ret horizontl y su sentido hi l dereh, on 3 L direión de es un ret vertil y su sentido hi jo on 1 2 y tienen igul direión, igul módulo pero distinto sentido t 0 P O L I T E C N I C O 15

7 3) Ddo diuj ) 3 v / v //, sent. v sent. y v 2 ) m / m m 4) Determin si ls siguientes firmiones son verdders (V) o flss (F). justifi l respuest ) u u0 ) En los vetores de l figur es u v ) u // v u o v o d) u v u 0 v 0 3- OPERACIONES ENTRE VECTORES SUMA DE VECTORES. Definiión Ddos los vetores u y v, se denomin sum de vetores un vetor que se not u + v y se otiene de l siguiente mner Fijdo ritrrimente un punto, qued determindo un punto tl que u y su vez qued determindo un punto tl que v. Se llm sum de u y v l vetor sí otenido. 16 P O L I T E C N I C O

8 NOTA: se puede demostrr que l sum de vetores es independiente del punto elegido y en onseueni de los representntes orrespondientes. y Atividdes: 5) Ddos los vetores t ; u; v y w de l figur i) Determin gráfimente ) u v ) t v ii) ) u w Complet on l relión de orden que orrespond: u v.....u v v t..... v t u w.....u w 6) Prue geométrimente que: y es 7) Diuj dos vetores u y v tles que: ) u + v = s s u v ) u + v = s s 0 Qué rterístis tienen u y v en d so? P O L I T E C N I C O 17

9 Propieddes de l sum de vetores Ddos ; y se puede pror l vlidez de ls siguientes propieddes. S1) L sum de vetores es soitiv S2) L sum de vetores es onmuttiv S3) Existeni del elemento neutro A o se tiene o o se lo denomin elemento neutro de l sum de vetores. S4) Existeni del elemento opuesto Atividdes - / o 8) Sum los vetores indidos en d uno de los sos siguientes si v 2 y w 4 ) ) ) d) e) f) 18 P O L I T E C N I C O

10 9) Ddos los vetores ; y 30º 15º Diuj: d / e / ) d ) e DIFERENCIA ENTRE DOS VECTORES ; es Atividdes 10) Ddos y de l figur Construye: ) ) ) d) e) Cómo son los vetores y? P O L I T E C N I C O 19

11 11) Verifi usndo propieddes de l sum de vetores que: ; es m on m 12) Verifi que si los vetores y on origen omún determinn un prlelogrmo, los vetores y están sore ls digonles del prlelogrmo 13) Expres en d so los vetores indidos en funión de u y v ) = = = ) d es un prlelogrmo d d = d = d = = 14) En l figur tenemos un uo. Nomr: ) tres vetores igules que. Justifi ) tres vetores igules dh ) dos vetores igules que gf d) dos vetores on igul módulo que eh pero distint direión 10 1 P O L I T E C N I C O

12 15) Anliz si l siguiente proposiión es verdder. Justifi ) Ddos ; y determin x gráfimente de modo que x + = 0 17) Ddos ; y del gráfio expres u ; v y w en funión de ; y. u = v = w = km 18) Un nddor quiere trvesr un río ndndo un veloidd v1 6 en h direión perpendiulr l orill; pero l orriente lo desplz on un km veloidd v2 4. Diuj los vetores v 1 y v2 (on un esl h onveniente) y enuentr el vetor v / v v 1 v2. Este vetor represent l veloidd de desplzmiento del nddor. L direión de v es l direión rel en que se mueve el nddor. Clul v oservndo que quedó determindo un triángulo retángulo. P O L I T E C N I C O 11 1

13 PRODUCTO DE UN VECTOR POR UN NÚMERO REAL Definiión Llmmos produto de un u por un número rel, o produto de un número por un vetoru, un vetor v tl que: Si 0 u 0 v.u v.u direión v direión u sentido de v sentido de u si 0 sentido de v sentido de u si 0 Si 0 u o v o 1) Ejemplos: e f d d de ef t d 2t f 5t e 2t fe 1t f 3t 2) 7 d P O L I T E C N I C O

14 Atividd 19) Diuj los vetores t; l y m ) t 0,5 5 ) l 3 ) m 3 tles que 20) Siendo que u, v y w tienen ls direiones y sentidos indidos en ls rists de l pirámide de l figur, y demás v, u y w e, expres en funión de u, v y w o sus opuestos los siguientes vetores: e = e w = e= ed d e u d v v Propieddes del produto de un vetor por un número Pr ulquier pr de vetores u y v y los números reles y demostrr ls siguientes propieddes: se pueden P1) u v u v P2) u u u P3) u u P4) 1 v v P O L I T E C N I C O 13 1

15 Atividdes 1? 21) Por qué u u 22) Ddos ; y Represent gráfimente w siendo: 1 2 w ) Siendo 1 1 ) diuj v y v v v 1 ) demuestr que v v es el versor soido de v v 0 VECTORES PARALELOS Propiedd de los vetores prlelos: Condiión de prlelismo entre vetores Dos vetores u y v no nulos, son prlelos si y sólo si existe un número rel 0 tl que v u En símolos: Si u o v o ; u // v R - 0 / v u Notemos que si: v λ u, entones v u 14 1 P O L I T E C N I C O

16 de donde v u omo v y u son números reles y u 0 siempre existe el oiente v u que nos d el vlor soluto del número usdo, en unto si es positivo o negtivo dependerá que u y v tengn igul o distinto sentido. Atividdes 24) ; y son los vetores prlelos uyos sentidos están indidos en l figur on 2; 4 y 3 ) lul y tl que y ) determin t si t 25) En l figur 3; 6,5 // Construye el vetor v tl que 3 v 5 26) Clul el vlor de k si k v 5 2 y v 2 2 P O L I T E C N I C O 15 1

17 27) Reprodue l siguiente figur y verigu uánto vle el número x tl que v x w 28) Se l figur siguiente on 6 y d 7. 2 on respeto l entímetro, onstruye el vetor v tl que v 1 3 d 2 3 d 29) Se dn los vetores u y v de l figur, determin el vlor de x tl que v x u 30) Se d un vetor i. Diuj los vetores : 5 i ; 5 1 i; i, onstruye l sum v 2 2 de dihos vetores y determin x tl que v x i 16 1 P O L I T E C N I C O

18 ANGULO ENTRE VECTORES Definiión: Ddos los vetores y no nulos se denomin ángulo entre los vetores y y se indi 0 ; 2 (es deir 0 ) por ellos determindo l ser plidos on origen en el mismo punto. Ejemplo: l ángulo onvexo entre Atividdes 31) Si o o y o isetriz de siguientes ángulos? ) u v d) u u ) w v e) ) u (-u) f) u (-w) o uál es l medid de d uno de los ( 2u)( 3 v) PRODUCTO ESCALAR O INTERNO ENTRE VECTORES Definiión: Ddos dos vetores y, se llm produto eslr o interno entre los vetores y, y se simoliz, l número: 0 os si si o o o o P O L I T E C N I C O 17 1

19 Propieddes ; y R se umplen ls siguientes propieddes: PE 1 ) Demostrión: (1) os os (2) PE 2 ) PE 3 )... os (1) (1) Definiión de Produto Eslr (2) Propiedd onmuttiv de l multipliión (3) os 0 =1 (4) Definiión de poteniión 2 PE 4 ) 0 Demostrión: (1) os (3). (4) 2 PE 5 ) si o o : 0 (ondiión de perpendiulridd entre vetores no nulos) Demostrión: ) 0 os 0 os 0 90º ) 90º os 0 0 Atividdes 32) Siendo 2, determin: ) ) ( 2) ) (-) 33) Siendo que 3, 4 y 30º ) 0 ) ) 0 2, lul: 18 1 P O L I T E C N I C O

20 34) Siendo que u 4, v 6, determin u v si: ) u // v y tienen igul sentido ) u // v y tienen distinto sentido. ) u v d) u v 150 º 35) Determin: ) el ángulo que formn y, siendo que ; 5 y 2 ) El módulo del vetor v, siendo que u v 20, u 10 y u v 120º 4 - SISTEMA DE REFERENCIA CARTESIANO ORTONORMAL En el espio Definiión: Ddo un punto ulquier del espio o (origen de oordends), y en él plidos tres versores i ; j y k perpendiulres dos dos, l onjunto o ;i; j;k se lo denomin sistem de refereni ortonorml en el espio. Denominremos omo: ejes oordendos x ; y y z d un de ls rets que ontienen d uno de los versores i ; j y k, respetivmente. plnos oordendos xy; xz e yz, los plnos que determinn los ejes x e y, los ejes x y z, y los ejes y y z, respetivmente. Gráfimente result: punto fijo o i j k 1 i j j k k i o;i; j;k sistem de refereni ortonorml en el espio P O L I T E C N I C O 19 1

21 En el plno Definiión: Ddo un punto ulquier del plno o (origen de oordends), y en él plidos dos versores i y j perpendiulres, l onjunto o ;i; j se lo denomin sistem de refereni ortonorml en el plno. ejes oordendos x e y d un de ls rets que ontienen d uno de los versores i y j respetivmente. Se denominn l eje x, eje de ls iss y l eje y, eje de ls ordends Gráfimente result: punto fijo o i j 1 i j o;i; j sistem de refereni ortonorml en el plno Atividdes 1) En un sistem de refereni ;i; j y (-4; 0) 2) En un sistem de refereni ;i; j;k ( 1; 0 ; 0) y d (4; 0 ; 3). o ui los puntos (-1; 3) ; (2 ; - 3) ; (o; 3) o ui los puntos: (2;1; 3) ; (0; 2;1) ; 3) Complet de modo que resulten verdders ls siguientes proposiiones. p x;... eje de ls siss on x R. p 0; y eje... on y R. p0; 0; z eje on z R d. p4; 3; 0 plno P O L I T E C N I C O

22 4) Represent en distintos sistems de refereni los siguientes suonjuntos de puntos ) A x;y ) B x;y ) C x;y d) D x;y / x 2 1 y / x 1 y 3 / x 2 y 1 2 / x y e) E x;y f) F x / x 0 g) G x;y h) H x;y;z / x Z; y Z; / / x 0 x 0 x.y 12 5) Esrie el onjunto de puntos que se indi en d so ) j A i ) P O L I T E C N I C O 21 1

23 ) 2 y x d) e) 22 1 P O L I T E C N I C O

24 AUTOEVALUACIÓN 1) Determin si ls siguientes proposiiones son V (verdders) o F (flss). Justifi tus respuests ) u prlelo v u v u v ) Si u 4 2 u 2 2 entones 2 ) En el retángulo d l se es el dole de su ltur, entones: i) ii) iii) d d 1 d 2 d iv) v) 2 d d d) Todo vetor tiene módulo distinto de ero. e) Si dos vetores tienen igul direión y módulo, son opuestos. f) Si dos vetores son opuestos tienen igul direión y módulo. g) Dos vetores que tienen distinto sentido pueden tener distint direión. h) Dos vetores igules son prlelos. i) El versor soido un vetor es prlelo ese vetor. j) Todos los versores son igules. k) Si y tienen igul módulo, son igules u opuestos. 3) Expres u ; v y w en funión de y y/o de sus opuestos. f d e P O L I T E C N I C O 23 1

25 Biliogrfí Apunte Cod ALGEBRA VECTORIAL Autores vrios Apunte Cod VECTORES Cttáneo, B.; Lgre, N P O L I T E C N I C O

Álgebra Vectorial Matemática

Álgebra Vectorial Matemática I- Introduión En diverss oortuniddes nos hemos enontrdo en tems reliondos on l Físi, on mgnitudes que quedn definids medinte un número, ls denominds mgnitudes eslres. Entre ells, odemos itr l longitud,

Más detalles

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal . ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los

Más detalles

Álgebra Vectorial. Matemática

Álgebra Vectorial. Matemática Álger Vectoril 3º Año Cód. 3-5 P r o f. N o e m í L g r e c P r o f. M i r t R o s i t o P r o f. S u s n S t r z z i u s o Dto. de I- Introducción En diverss oortuniddes nos hemos encontrdo en tems relciondos

Más detalles

Figura 1. Teoría y prática de vectores

Figura 1. Teoría y prática de vectores UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio UDB Físi Cátedr FÍSICA I VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010 UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio --- UDB Físi Cátedr VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo de su

Más detalles

LA PROPORCIONALIDAD EN LOS TRIÁNGULOS

LA PROPORCIONALIDAD EN LOS TRIÁNGULOS Proorionlidd en los triángulos Tles Mtemáti º Año Cód. 104-15 P r o f. J u n C r l o s B u e P r o f. D n i e l C n d i o P r o f. N o e m í L g r e P r o f. M r í d e l L u j á n M r t í n e z Dto. de

Más detalles

5. RECTA Y PLANO EN EL ESPACIO

5. RECTA Y PLANO EN EL ESPACIO Teorí ejeriios de Mtemátis II. Geometrí Rets plnos en el espio. RECTA Y PLANO EN EL ESPACIO. PUNTOS EN EL ESPACIO Semos que pr determinr l posiión de un punto en el plno neesitmos tomr, por un prte, un

Más detalles

TRIGONOMETRÍA (4º OP. A)

TRIGONOMETRÍA (4º OP. A) SEMEJANZA DE TRIÁNGULOS TRIGONOMETRÍA (4º OP. A) Dos figurs son semejntes undo tienen l mism form: Dos triángulos son semejntes si tienen: Sus ldos proporionles: r rzón de semejnz ' ' ' Sus ángulos, respetivmente

Más detalles

α A TRIGONOMETRÍA PLANA

α A TRIGONOMETRÍA PLANA TRIGONOMETRÍ PLN El origen de l plr trigonometrí puede enontrrse en el griego, trígono triángulo y metrí medid. L trigonometrí justmente trt de eso, l mediión y resoluión de situiones donde se preten triángulos.

Más detalles

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO OJETIVO 1 lulr l RzÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

Una condición necesaria y suficiente para que el triangulo PBP sea equilátero es que el ángulo HBP sea 30º. b que es la relación buscada.

Una condición necesaria y suficiente para que el triangulo PBP sea equilátero es que el ángulo HBP sea 30º. b que es la relación buscada. Hoj de Prolems Geometrí III 49. Dd l elipse, si tommos el etremo B de ordend positiv del eje menor omo entro, se desrie un irunfereni de rdio igul diho eje menor, ortr l elipse en dos punto P P. Determinr

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 03 - Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio

Más detalles

TEMA 1. CÁLCULO VECTORIAL.

TEMA 1. CÁLCULO VECTORIAL. TEMA 1. CÁLCUL VECTRIAL. MAGNITUDES FÍSICAS ESCALARES Son quells que quedn determinds por su vlor numérico y l unidd de medid. Ejemplos: ms, energí, tiempo, tempertur, etc. MAGNITUDES FÍSICAS VECTRIALES

Más detalles

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ Definiión. L elipse Est Guí tiene..todas...ls respuests MALAS Se llm elipse, l lugr geométrio de los puntos de un plno u sum de distnis dos puntos fijos del mismo plno es onstnte. Los puntos fijos se ostumrn

Más detalles

1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2)

1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2) Mr l opión que ontiene el vetor fijo definido por los puntos A(3,4) y B(-2,-5). AA AB = (-1,1) AA AB = (5,9) AB = (-5,-9) AB = (1,-1) Mr tods ls opiones que definen el vetor fijo AB = (-2,1). AA A(-5,-3)

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,

Más detalles

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO Unidd uno Geometrí y Trigonometrí 4. TRIÁNGULOS 4.1 Definiión y notión de triángulos El triángulo es un polígono de tres ldos. Los puntos donde se ortn se llmn vérties. Los elementos de un triángulo son:

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 007 - Noiones de Trigonometrí: L trigonometrí se dedi l estudio de ls reliones que existen entre ls medids de los ángulos y ldos de un triángulo.

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

GEOMETRÍA DEL ESPACIO

GEOMETRÍA DEL ESPACIO Mtemáti Diseño Industril Poliedros Ing. Gustvo Moll GEOMETRÍA DEL ESPACIO L geometrí pln estudi el onjunto de todos los puntos del plno, l geometrí del espio se refiere l onjunto de puntos del espio, es

Más detalles

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como

Más detalles

Relaciones Métricas 1º Año Cód Matemática Dpto. de Matemática

Relaciones Métricas 1º Año Cód Matemática Dpto. de Matemática Reliones Métris 1º Año Cód. 1104-16 Mtemáti Dpto. de M t emáti 1. SISTEMA DE MEDICIÓN DE ÁNGULOS Prolems de Revisión 1) Clul el vlor de ˆ, expresdo en grdos, minutos y segundos: ) ˆ 2,8 1735' ) 5ˆ 83'

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución. Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se

Más detalles

11La demostración La demostración en matemáticas (geometría)

11La demostración La demostración en matemáticas (geometría) L demostrión en mtemátis (geometrí) ág. 1 Tl vez los lumnos y lumns hyn demostrdo, en lgun osión, lgun fórmul o lgun propiedd mtemáti, o hyn ontempldo su demostrión. omo semos, pr ellos, el proeso no es

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero

Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero Vectores en el espcio º Bchillerto An Mª Zptero El conjunto R Es un conjunto de terns ordends de números reles R { ( x, y, z ) / x R, y R, z R } Primer componente Segund componente Tercer componente Iguldd

Más detalles

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z ) Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres

Más detalles

- Aplicar la ley de Ohm en los circuitos puros de corriente alterna.

- Aplicar la ley de Ohm en los circuitos puros de corriente alterna. 9. CIRCUITOS SIMPLES DE CORRIENTE ALTERNA Conoidos los omponentes, hor se prenderá ómo se omportn de form individul l estr onetdos un fuente de limentión de orriente ltern. El onoimiento de l ley de Ohm

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log EJERCICIOS DE POTECIAS Y LOGARITMOS - Clul, medinte l pliión de l definiión, el vlor de los siguientes ritmos: ) ) 79 ) 09 e) f) g) h) - Clul, medinte l pliión de l definiión, el vlor de los siguientes

Más detalles

z b 2 = z b y a + c 2 = y a z b + c

z b 2 = z b y a + c 2 = y a z b + c 47 ESTUDIO DEL CONO ELIPTICO Not: Lo diujos orrespondientes ls interseiones de este estudio tienen el mismo speto l estudio del ono irulr. Sin emrgo l interseión on plnos prlelos l plno son en este so

Más detalles

Apéndice V. Ing. José Cruz Toledo M. Vectores tridimensionales

Apéndice V. Ing. José Cruz Toledo M. Vectores tridimensionales Apéndie V Ing. José Cruz Toledo M. Vetores tridimensionles En este péndie se present un resúmen de ls reliones vetoriles que son referenidos en este liro. y(j) (x,y,z) y Simologí (Ver Fig. V-1): ( x i

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 7 Pág. Págin 66 PRTI Rzones trigonométris de un ángulo gudo Hll ls rzones trigonométris del ángulo en d uno de estos triángulos: ) ) ), m, m,6 m 8, m m 8, m ) sen, 0, os 0, 0,89 tg 0, 0,, 0,89 ) tg,6,

Más detalles

UNIDAD I. El Punto y la Recta

UNIDAD I. El Punto y la Recta SSTEMS E REPRESENTÓN 10 UN SESÓN 3 L Ret: efiniión, trzs y posiiones notles ORE L. LERÓN S. SSTEMS E REPRESENTÓN 10 1.5 L RET Es el eleento geoétrio unidiensionl y puede deterinrse trés de un segento de

Más detalles

10 Figuras planas. Semejanza

10 Figuras planas. Semejanza 10 Figurs plns. Semejnz Qué tienes que ser 10 QUÉ tienes que ser Atividdes Finles 10 Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los

Más detalles

Unidad didáctica 4. Trigonometría plana

Unidad didáctica 4. Trigonometría plana Interpretión Gráfi Unidd didáti 4. Trigonometrí pln 4.1 Medids de ros y ángulos omo en un mism irunfereni ros igules orresponden ángulos igules, se quiere enontrr un medid de ros que sirv pr ángulos y

Más detalles

Matemática. Cód P r o f. M a. D e l L u j á n M a r t í n e z P r o f. M i r t a R o s i t o P r o f. N o e m í L a g r e c a

Matemática. Cód P r o f. M a. D e l L u j á n M a r t í n e z P r o f. M i r t a R o s i t o P r o f. N o e m í L a g r e c a Punto - et Plno Mtemáti 1º Año Cód. 1102-16 P r o f. M. D e l L u j á n M r t í n e z P r o f. M i r t o s i t o P r o f. N o e m í L g r e Dpto. de M temáti INTODUCCIÓN L plr geometrí está formd por dos

Más detalles

x x = 0 es una ecuación compatible determinada por que sólo se

x x = 0 es una ecuación compatible determinada por que sólo se Euiones Denominmos euión l iguldd que se stisfe pr uno o más vlores de l(s) vrile(s), o inógnit(s), que interviene en ell. Ejemplos: + 5 + 5 + 6 0 + 0 Denominmos euión lgeri tod euión del tipo: n n n +

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

Integrales dobles y triples

Integrales dobles y triples Integrles dobles y triples 1 Integrles dobles Integrles triples 3 Cmbios de vrible R: retángulo R = [, b [, d f : R R: mpo eslr e dos vribles. Si f es ontinu en R f x : [, d R y f y : [, b R son funiones

Más detalles

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

GEOMETRÍA EN EL ESPACIO

GEOMETRÍA EN EL ESPACIO . Vetores en el espio GEOMETRÍA EN EL ESPACIO. Vetores en el espio B AB Ddos dos pntos del espio, A y B, se define el vetor fijo AB omo el segmento orientdo de origen A y extremo B. A Los vetores de espio

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMS DE MTEMÁTICS (Oposiiones de Seundri) TEM 37 L SEMEJNZ EN EL PLNO. CONSECUENCIS. TEOREM DE THLES. RZONES TRIGONOMÉTRICS. 1. Introduión.. Homoteis: Definiión y propieddes. 3. L semejnz en el plno. 3.1.

Más detalles

DETERMINANTES SELECTIVIDAD ZARAGOZA

DETERMINANTES SELECTIVIDAD ZARAGOZA DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

UNIDAD 12.- Productos vectorial y mixto. Aplicaciones. (tema 7 del libro)

UNIDAD 12.- Productos vectorial y mixto. Aplicaciones. (tema 7 del libro) UNIDAD.- Produto etoril mixto. Apliione. (tem 7 del liro). PRODUCTO VECTORIAL DE DOS VECTORES LIBRES Definiión: El produto etoril de do etore lire - Si 0 ó 0 ó on proporionle, entone - En o ontrrio, etore

Más detalles

Vectores y Trigonometría

Vectores y Trigonometría Griel Villloos 12/09/2016 Vetores y Trigonometrí 1) Vetores Mgnitudes eslres y mgnitudes vetoriles Reordemos que un mgnitud es ulquier propiedd de un sistem mteril que se puede medir. Ls mgnitudes ls podemos

Más detalles

7 Semejanza. y trigonometría. 1. Teorema de Thales

7 Semejanza. y trigonometría. 1. Teorema de Thales 7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se

Más detalles

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene

Más detalles

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes Geovny Snri B. Propuest sore l enseñnz de los números rionles Geovny Snri Brenes Un mner de ordr los números rionles es trvés del onoimiento previo de rzones. En l tulidd, ls friones en primri no son vists

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

A es de 2 2 y tiene dos valores propios distintos, por lo tanto es diagonalizable sobre IR.

A es de 2 2 y tiene dos valores propios distintos, por lo tanto es diagonalizable sobre IR. Sergio Ynsen Núñez. Se A 8 3 3 Muestre que A es digonlizle sore IR. Soluión: 8 3 3 6 5 3 Los vlores propios de A sony3 A es de y tiene dos vlores propios distintos, por lo tnto es digonlizle sore IR. Otr

Más detalles

Si este proceso de subdivisión se repitiese muchas veces, se obtendrían dos sucesiones, s i y S

Si este proceso de subdivisión se repitiese muchas veces, se obtendrían dos sucesiones, s i y S Integrles LA INTEGRAL DEFINIDA Integrl definid: áre jo un urv L integrl definid permite lulr el áre del reinto limitdo, en su prte superior por l gráfi de un funión f (, ontinu y no negtiv, en su prte

Más detalles

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola Moisés Villen Muñoz Cónis. Cirunfereni. Práol. Elise. Hierol Ojetivos. Se ersigue que el estudinte: Identifique, grfique determine los elementos de un óni onoiendo su euión generl. Ddo elementos de un

Más detalles

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS Frnisnos T.O.R. Cód. 867 TEMA INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS. INTEGRAL DEFINIDA El álulo de l integrl definid, que se denot por: f ( d, onsiste en lulr l integrl de l funión f( en el intervlo [, ].

Más detalles

determinante haciendo todos los productos, Tema 8. Determinantes.

determinante haciendo todos los productos, Tema 8. Determinantes. Tem. Determinntes.. Definiión de determinntes.. Propieddes de los determinntes.. Cálulo de determinntes de orden myor que (No entr en seletividd).. Rngo de un mtriz.. Mtriz invers... Definiión del determinnte

Más detalles

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto. º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

α, β Escalares α u Multiplicación por un escalar Espacios Vectoriales Vector: Magnitud, dirección y sentido Combinación lineal Suma de vectores

α, β Escalares α u Multiplicación por un escalar Espacios Vectoriales Vector: Magnitud, dirección y sentido Combinación lineal Suma de vectores Tem Álger Linel (Espios etoriles) Espios Vetoriles Vetor: Mgnitd direión y sentido ω ν Cominión linel ω Vetores Eslres Mltipliión por n eslr Sm de etores de Tem Álger Linel (Espios etoriles) de Se { }

Más detalles

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse.

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse. X. LA ELIPSE 10.1. DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO Definiión Se llm elipse l lugr geométrio de un punto P que se mueve en el plno, de tl modo que l sum de ls distnis del punto P dos puntos fijos

Más detalles

En donde x representa la incógnita, y a, b y c son constantes.

En donde x representa la incógnita, y a, b y c son constantes. FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo

Más detalles

SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO

SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO : L euión generl es de l form M N Pz donde todos los oefiientes son no nulos M N P Se puede esriir l euión nterior en l form: ± ± on Llmd form nóni de un uádri sin entro. Álger B Fultd de Ingenierí UNMdP

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14

SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14 R= SOLUCONES DE LOS PROLEMS DE ELECTRCDD DE C.C. SOLUCONES DE LOS EJERCCOS DE CORRENTE CONTNU - er TRMESTRE-. prolems:, y ª ) Soluionremos este prolem por el método generl de nálisis por lzos ásios, omprondo

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

La Parábola A. Definición B. Construcción de la parábola C. Elementos de la parábola. Und. 11 Geometría Analítica

La Parábola A. Definición B. Construcción de la parábola C. Elementos de la parábola. Und. 11 Geometría Analítica Cundo ls orgniziones de vuelos espiles desen poner en órit un stélite deen lnzrlos on un veloidd proimd de 8 km/s. Pero undo quieren que slg de l órit terrestre deen lnzrlo on un veloidd 8 km/s l tretori

Más detalles

B 1. d 1 d 2 B 2 XI.2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN

B 1. d 1 d 2 B 2 XI.2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN Págin del Colegio de Mtemátis de l ENP-UNAM Hipérol Autor: Dr. José Mnuel Beerr Espinos HIPÉRBOLA UNIDAD XI XI.1 DEFINICIÓN DE HIPÉRBOLA Un hipérol es el lugr geométrio de todos los puntos P del plno,

Más detalles

GEOMETRÍA ANALÍTICA DEL ESPACIO

GEOMETRÍA ANALÍTICA DEL ESPACIO CAPITULO Espero que l posteridd me jugue on enevoleni no solo por ls oss que he eplido sino tmién por quells que he omitido inteniondmente pr dejr los demás el pler de desurirls René Desrtes. GEOMETRÍA

Más detalles

1. INTEGRAL DEFINIDA DE UNA FUNCIÓN CONTÍNUA Y POSITIVA EN UN INTERVALO.

1. INTEGRAL DEFINIDA DE UNA FUNCIÓN CONTÍNUA Y POSITIVA EN UN INTERVALO. TEMA 9 Integrl Definid. INTEGRAL DEFINIDA DE UNA FUNCIÓN CONTÍNUA Y POSITIVA EN UN INTERVALO. y = f() Un trpeio urvilíneo (o mitilíneo) T es un figur pln omo l que pree en l figur: T O Está limitd por:

Más detalles

Guía - 4 de Matemática: Trigonometría

Guía - 4 de Matemática: Trigonometría 1 entro Eduionl Sn rlos de rgón. oordinión démi Enseñnz Medi. Setor: Mtemáti. Nivel: NM Prof.: Ximen Gllegos H. Guí - de Mtemáti: Trigonometrí Nomre(s): urso: Feh. ontenido: Trigonometrí. prendizje Esperdo:

Más detalles

SISTEMA DE COORDENADAS EN EL PLANO

SISTEMA DE COORDENADAS EN EL PLANO Mtemáti Diseño Inustril Coorens en el lno Ing. Avil Ing. Moll SISTEMA DE CRDENADAS EN EL LAN SISTEMA UNIDIMENSINAL Es sio que es posile soir los números reles on los puntos e un ret reípromente. Es lo

Más detalles

TRANSFORMACIONES LINEALES

TRANSFORMACIONES LINEALES . 7 Cpítulo 5 RANSFORMACIONES LINEALES Mrtínez Hétor Jiro Snri An Mrí Semestre,.7 5.. Introduión Reordemos que un funión : A B es un regl de soiión entre los elementos de A y los elementos de B, tl que

Más detalles

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011.

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011. Reliones métris en un triángulo Resumen redo or Hernán Verdugo Fini, rofesor de Mtemáti y Físi, ril 011. El estudio de un triángulo siemre revestido interés y or ello es ue existen un serie de desriiones,

Más detalles

04) Vectores. 0402) Operaciones Vectoriales

04) Vectores. 0402) Operaciones Vectoriales Págin 1 04) Vectores 040) Operciones Vectoriles Desrrolldo por el Profesor Rodrigo Vergr Rojs Octubre 007 Octubre 007 Págin A) Notción Vectoril El vector cero o nulo (0 ) es quel vector cuy mgnitud es

Más detalles

UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro

UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro CARRERA: Ingenierí en Sistems de Computión PLAN DE ESTUDIOS: 00 ASIGNATURA: AÑO ACADÉMICO: DOCENTE: MATEMATICA BASICA I Año Ing. Enmnuel de Jesús Fonse Alfro UNIDAD I: ALGEBRA Al finlir est unidd el estudinte

Más detalles

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2? ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni

Más detalles

B 1. d 1 d 2 B 2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN

B 1. d 1 d 2 B 2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN Fultd de Contdurí Administrión. UNAM Hipérol Autor: Dr. José Mnuel Beerr Espinos MATEMÁTICAS BÁSICAS HIPÉRBOLA DEFINICIÓN DE HIPÉRBOLA Un hipérol es el lugr geométrio de todos los puntos P del plno, tles

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado

Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado Determinntes hillerto º Determinntes Introduión: Los determinntes histórimente son nteriores ls mtries, pero por el uge de éstos hn queddo relegdos un º plno. El uso de los determinntes nos permitirá:

Más detalles

INTRODUCCIÓN: PRIMITIVA DE UNA FUNCIÓN.

INTRODUCCIÓN: PRIMITIVA DE UNA FUNCIÓN. Mt. Apl. ls C. Soiles II: Fniones V: Interles. Cállo de primitivs y de áres. pá. INTRODUCCIÓN: PRIMITIVA DE UNA FUNCIÓN. Nos plntemos si dd n nión, eiste otr F tl qe F =. Se llm primitiv de n nión otr

Más detalles

2. Integrales iteradas dobles.

2. Integrales iteradas dobles. 2 Integrles prmétris e integrles dobles y triples. Eleonor Ctsigers. 9 Julio 26. 2. Integrles iterds dobles. 2.. Integrles iterds en dominios simples respeto de x. Se omo en l subseión.2, el retángulo

Más detalles

GEOMETRÍA DEL TRIÁNGULO

GEOMETRÍA DEL TRIÁNGULO GEOMETRÍA DEL TRIÁNGULO Definiión de triángulo Se llm triángulo un onjunto { ABC,, } de tres puntos no linedos del plno. Los puntos A, B y C reien el nomre de vérties del triángulo. Los segmentos (o en

Más detalles

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS Geometrí y Trigonometrí Resoluión de triángulos oliuángulos 9. RESOLUIÓN DE TRIÁNGULOS OLIUÁNGULOS Un triángulo es oliuángulo undo no present un ángulo reto, se denomin de dos forms: triángulo utángulo

Más detalles

Determinantes D - 1 DETERMINANTES

Determinantes D - 1 DETERMINANTES Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos

Más detalles

f(t)dt para todo x [a, b].

f(t)dt para todo x [a, b]. ANÁLISIS MATEMÁTICO BÁSICO. EL TEOREMA FUNDAMENTAL DEL CÁLCULO. L integrl lnz todo su poder undo se li on l derivd. Esto ourre en el Teorem Fundmentl del Cálulo. Funiones definids trvés de l integrl. Dd

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

4. Trigonometría II. c) c 2 b 2 a 2 2ba cos C c 11,17 cm a A 61,84. B 38,11 se n B sen C d) A B C 180 A 70 a b 5,32. l 40 sen.

4. Trigonometría II. c) c 2 b 2 a 2 2ba cos C c 11,17 cm a A 61,84. B 38,11 se n B sen C d) A B C 180 A 70 a b 5,32. l 40 sen. 9 ) os 11,17 m se n 61,84 38,11 se n d) 180 70 se n 5,3 se n 10,48 lul un ulquier de ls lturs de los triángulos resueltos en el ejeriio nterior y utilízl después pr lulr su áre. Pr resolver este ejeriio

Más detalles