1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS
|
|
- Vanesa Suárez Gil
- hace 4 años
- Vistas:
Transcripción
1 T3: TRIGONOMETRÍ 1º T 1 RESOLUIÓN DE TRIÁNGULOS RETÁNGULOS Resolver un triángulo es llr ls longitudes de sus ldos y ls mplitudes de sus ángulos. Ls fórmuls que se plin son: ) Ls rzones trigonométris: ˆ ˆ ˆ sen ; os ; tg ˆ ˆ ˆ sen ; os ; tg ) El teorem de Pitágors: + ) L sum de los ángulos gudos: + 90º Resolver un triángulo retángulo, es lulr los ino elementos, sus ldos y sus ángulos gudos, prtir de dos de ellos. Se pueden presentr utro sos: NOT: Hy distints forms de lulr los dtos, nosotros los vmos determinr prtiendo de los dtos iniiles. 1.1 ONOIDO LOS DOS TETOS DTOS: LOS DOS TETOS y ) Emplendo el teorem de Pitágors, lulmos l ipotenus: + ) Emplendo ls rzones trigonométris, lulmos los ángulos: ˆ tg ˆ rtg (Tmién se puede empler el seno y oseno pr lulr ˆ ) tg rtg (Tmién se puede empler: ˆ + 90º ) Se 48, 4, lulr los restntes elementos del triángulo: tg ˆ tg ˆ tg ˆ tg ˆ ˆ 60º Ĉ 30 Luis Muñoz - 1 -
2 T3: TRIGONOMETRÍ 1º T 1. ONOIDO L HIPOTENUS Y UN TETO DTOS: L HIPOTENUS Y UN TETO ) Emplendo el teorem de Pitágors, lulmos el otro teto: ) Emplendo ls rzones trigonométris, lulmos los ángulos: ˆ sen ˆ rsen (Tmién se puede empler el oseno y tngente pr lulr ˆ ) os ros (Tmién se puede empler: ˆ + 90º ) Se 18, 3, lulr los restntes elementos del triángulo: Si los dos tetos son igules entones los dos ángulos gudos miden igul, por tnto: ˆ Ĉ 45º ompromos emplendo los dtos iniiles: sen ˆ 3 3 sen ˆ 18 3 ˆ 45º os ˆ 3 3 os 18 3 Ĉ 45º 1.3 ONOIDO L HIPOTENUS Y UN ÁNGULO GUDO DTOS: L HIPOTENUS Y UN ÁNGULO GUDO ˆ ) Emplendo ˆ + 90º, lulmos el otro ángulo: 90º ˆ ) Emplendo ls rzones trigonométris, lulmos los ldos: ˆ sen sen ˆ os os ˆ (Tmién se puede empler el teorem de Pitágors) Luis Muñoz - -
3 T3: TRIGONOMETRÍ 1º T Se ˆ 60º, 6, lulr los restntes elementos del triángulo: 90º ˆ Ĉ 90º 60º 30º sen ˆ sen 60º 6 os os 60º sen 60º os 60º ONOIDO UN TETO Y UN ÁNGULO GUDO DTOS: UN TETO Y UN ÁNGULO GUDO ˆ ) Emplendo ˆ + 90º, lulmos el otro ángulo: 90º ˆ ) Emplendo ls rzones trigonométris, lulmos los ldos: ˆ sen sen ˆ tg tg (Tmién se puede empler el teorem de Pitágors) Se ˆ 30º, 5, lulr los restntes elementos del triángulo: 90º ˆ Ĉ 90º 30º 60º sen ˆ sen 30º sen 30º 1 tg ˆ tg 30º tg 30º 1 3 Luis Muñoz - 3 -
4 T3: TRIGONOMETRÍ 1º T tividdes resuelts 1.- Un punto del suelo orizontl dist 00 m de l puert de l iglesi y desde él se oserv el etremo del mpnrio 1º por enim de l orizontl. uál es l ltur del mpnrio? Relizmos un diujo esquemátio de l siguiente situión. OPQ es un triángulo retángulo. Q Los dtos que tenemos son: El ángulo de 1º y l distni OP 00 m (teto ontiguo l ángulo de 1º) L inógnit es PQ (teto opuesto l ángulo de 1º). P 00 m 1º O L rzón trigonométri que relion el teto ontiguo y el opuesto es l tngente: tg 1º 0,1 00 0,1 4, 5 m Queremos insriir un retángulo en un irunfereni de 0 m de rdio, de mner que l digonl del retángulo forme un ángulo de 5 on su ldo m yor. Hz un diujo y lul ls dimensiones que tiene que tener ese retángulo. L digonl del retángulo tiene que ser un diámetro de l irunfereni, pues es un triángulo retángulo. Dtos : 5 y l ipotenus ( 40 m). Inógnits: los tetos. 40 5º Pr lulr el ldo myor (, que es el teto ontiguo l ángulo de 5 ) utilizmos l definiión de os : os 5º 0,906 0, , 5 m Pr llr el ldo menor, tenemos dos opiones: 1ª form: sen 5º 0,4 0, ,8 m ª form: Por el teorem de Pitágors: 40 36, 5 16, 91 Luis Muñoz - 4 -
5 T3: TRIGONOMETRÍ 1º T RESOLUIÓN DE TRIÁNGULOS NO RETÁNGULOS Si se dese llr l ltur de un montñ, el no de un río, et, y no se puede llegr st lguno de los puntos pr relizr diretmente ls mediiones, se utiliz el método de l dole oservión, que onsiste en elegir dos puntos esiles, medir l distni entre ellos y los ángulos neesrios. Se llm líne de visión l ret imginri que une el ojo de un oservdor on el lugr oservdo. Llmmos ángulo de elevión l que formn l orizontl del oservdor y el lugr oservdo undo éste está situdo rri del oservdor. undo el oservdor está más lto lo llmremos ángulo de depresión. Horizontl Horizontl Ángulo de elevión Ángulo de depresión tividdes resuelts 1.- En l llnur, desde un punto ulquier, se mide el ángulo de elevión, 40º. erándonos 300 m, se vuelve medir el ángulo de elevión, 55º. Se dese llr l ltur de un montñ. Diujmos l situión, e indimos los dtos, omo en l figur de l dere. D? 40º 55º 300 m En el triángulo D se tiene: tg 40º ( + 300) tg 40º En el triángulo D se tiene: tg 55º tg 55º Otenemos el siguiente sistem, que se resuelve por igulión: tg55º ( + 300) tg 40º tg 55º 0,839 ( + 300) 1,48 0, ,7 ( + 300) tg40º 1,48 0,589 51,7 47,33 m Sustituyendo en l segund euión: 1,48 47,33 610, m Luis Muñoz - 5 -
6 T3: TRIGONOMETRÍ 1º T.- lulr l ltur de l torre, pr ello se miden los ángulos de elevión desde los puntos y. on los dtos de l figur tenemos que: tg 35º (10 + ) 0, tg 63º 1,96 Igulndo ls dos epresiones, tenemos: (10 + ) 0,7 1,96 35º 63º 10 m D 7 + 0,7 1,96 1,6 7 5,55 m Luego, l ltur es: 5,55 1,96 10,88 m 3.- Un vión vuel iert ltur y en un determindo instnte se enuentr sorevolndo l líne imginri que une dos torres que están seprds 10 Km. l no funionr el ltímetro, el piloto tom los ángulos de depresión de ms torres (0º y 15º). Determin l ltur l que se enuentr el vión en ese momento. on los dtos de l figur tenemos que: tg 15º 10 (10 ) 0,68 15º 0º tg 0º 0,364 Igulndo ls dos epresiones, tenemos: (10 ) 0,68 0,364,68 0,68 0,364 0,63,68 4,4 Km? 15º 0º Km Luego, l ltur es: 4,4 0,364 1,54 Km 4.- Un piloto oserv dos vérties geodésios desde un ltur de 3500 m sore l líne que los une, jo ángulos de 4º y 18º. lul l distni entre mos puntos. on los dtos de l figur tenemos que: 3500 tg 18º y y y m tg 18º 0, tg 4º m tg 4º 0,45 Luego, l distni es: d + y m 18º 4º º 4º y d? Luis Muñoz - 6 -
7 T3: TRIGONOMETRÍ 1º T. TEOREM DEL SENO En ulquier triángulo de ángulos, ɵ y y ldos, y, se umple que: sen senɵ sen Demostrión: Pr demostrrlo trzmos un de ls lturs,. En un triángulo, oteniendo dos triángulos: H y H. H Trjndo on el triángulo H: sen sen Trjndo on el triángulo H: Igulndo, otenemos: ɵ sen sen ɵ sen sen ɵ Repitiendo el mismo proeso on l ltur, otendrímos: senɵ sen sen senɵ Ejemplos: 1) De un triángulo semos que: 60º, 40 y 15m. lul los restntes elementos. ɵ 180º - ɵ - 180º - 40º - 60º 80º 60º 15 m 40º 15 sen 60º sen 80º 15 sen 40º sen 80º 15 sen 60º sen 80º 15 sen 40º sen 80º 13, m 9,8 m ) Hll el ángulo y el ldo en el triángulo en el que: 60, 0 m, 10 m. 10 m 0 m 10 0 sen sen 60º 5 39' 3'' 10 sen 60º sen 0 0,43 60º ɵ 180º ' 3'' - 60º 94 0' 8'' 0 sen ɵ sen 60º 0 sen sen 60º 3,03 m Luis Muñoz - 7 -
8 T3: TRIGONOMETRÍ 1º T.3 TEOREM DEL OSENO En ulquier triángulo de ángulos, ɵ y y ldos, y, se umple que: + os ɵ + os + os En un triángulo el udrdo de d ldo es igul l sum de los udrdos de los otros dos menos el dole produto del produto de mos por el oseno del ángulo que formn. Demostrión: Pr demostrrlo trzmos un de ls lturs,. En un triángulo, oteniendo dos triángulos: H y H. H - Trjndo on el triángulo H: sen sen os os plindo el teorem de Pitágors en el triángulo H: ( ) + ( os ) + ( sen ) os + os + sen os + (os + sen ) os + Luego: + os De form nálog se demuestrn ls otrs dos igulddes. 1) De un triángulo semos que: 5 m, 30 y 3m. lul los restntes elementos. + os ɵ os 30º 5 m 3 m 30º 8,0,83 m + os os os 0,47 118º , , º 118º º 31º55 3 Luis Muñoz - 8 -
Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51
Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y
TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal
. ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
7 Pág. Págin 66 PRTI Rzones trigonométris de un ángulo gudo Hll ls rzones trigonométris del ángulo en d uno de estos triángulos: ) ) ), m, m,6 m 8, m m 8, m ) sen, 0, os 0, 0,89 tg 0, 0,, 0,89 ) tg,6,
Unidad didáctica 4. Trigonometría plana
Interpretión Gráfi Unidd didáti 4. Trigonometrí pln 4.1 Medids de ros y ángulos omo en un mism irunfereni ros igules orresponden ángulos igules, se quiere enontrr un medid de ros que sirv pr ángulos y
α A TRIGONOMETRÍA PLANA
TRIGONOMETRÍ PLN El origen de l plr trigonometrí puede enontrrse en el griego, trígono triángulo y metrí medid. L trigonometrí justmente trt de eso, l mediión y resoluión de situiones donde se preten triángulos.
7 Semejanza. y trigonometría. 1. Teorema de Thales
7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se
RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO
Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto
Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente.
89566 _ 009-06.qxd /6/08 :55 Págin Trigonometrí INTRODUCCIÓN En est unidd se pretende que los lumnos dquiern los onoimientos ásios en trigonometrí, que serán neesrios en ursos posteriores, sore todo pr
Matemática Diseño Industrial Trigonometría Ing. Avila Ing. Moll
Mtemáti Diseño Industril Trigonometrí Ing. vil Ing. Moll TRIGONOMETRÍ Es l rm de l mtemáti que tiene por ojeto el estudio de ls reliones numéris que existen entre los elementos retilíneos y ngulres de
Trigonometría Ing. Avila Ing. Moll
Trigonometrí Ing. vil Ing. Moll TRIGONOMETRÍ Es l rm de l mtemáti que tiene por ojeto el estudio de ls reliones numéris que existen entre los elementos retilíneos y ngulres de un triángulo o de un figur
TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS
TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO
1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.
º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems
SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA
Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 03 - Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio
1. Definición de Semejanza. Escalas
Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión
NOMBRE: CURSO: FECHA: coseno. a (cateto contiguo dividido entre hipotenusa) cos α = c a = 4 5
00 _ 00-06.qd 9/7/0 9:7 Págin RAZONES OBJETIVO TRIGONOMÉTRICAS Ddo un triánguo retánguo, definimos s rzones trigonométris de uno de sus ánguos gudos : seno sen = (teto opuesto dividido entre ipotenus)
UNIDAD 7 Trigonometría
UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier
TRIGONOMETRÍA (4º OP. A)
SEMEJANZA DE TRIÁNGULOS TRIGONOMETRÍA (4º OP. A) Dos figurs son semejntes undo tienen l mism form: Dos triángulos son semejntes si tienen: Sus ldos proporionles: r rzón de semejnz ' ' ' Sus ángulos, respetivmente
4. Trigonometría II. c) c 2 b 2 a 2 2ba cos C c 11,17 cm a A 61,84. B 38,11 se n B sen C d) A B C 180 A 70 a b 5,32. l 40 sen.
9 ) os 11,17 m se n 61,84 38,11 se n d) 180 70 se n 5,3 se n 10,48 lul un ulquier de ls lturs de los triángulos resueltos en el ejeriio nterior y utilízl después pr lulr su áre. Pr resolver este ejeriio
Guía - 4 de Matemática: Trigonometría
1 entro Eduionl Sn rlos de rgón. oordinión démi Enseñnz Medi. Setor: Mtemáti. Nivel: NM Prof.: Ximen Gllegos H. Guí - de Mtemáti: Trigonometrí Nomre(s): urso: Feh. ontenido: Trigonometrí. prendizje Esperdo:
UNIDAD 7 Trigonometría
UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier
RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS
Geometrí y Trigonometrí Resoluión de triángulos oliuángulos 9. RESOLUIÓN DE TRIÁNGULOS OLIUÁNGULOS Un triángulo es oliuángulo undo no present un ángulo reto, se denomin de dos forms: triángulo utángulo
MATEMÁTICA MÓDULO 3 Eje temático: Geometría
MATEMÁTICA MÓDULO 3 Eje temátio: Geometrí 1. SEGMENTOS PROPORCIONALES EN EL TRIÁNGULO RECTÁNGULO En el ABC retángulo en C de l figur: Se pueden estbleer ls siguientes semejnzs: 1) De est semejnz, se obtienen
Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO
Unidd uno Geometrí y Trigonometrí 4. TRIÁNGULOS 4.1 Definiión y notión de triángulos El triángulo es un polígono de tres ldos. Los puntos donde se ortn se llmn vérties. Los elementos de un triángulo son:
SenB. SenC. c SenC = 3.-
TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,
SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA
SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 007 - Noiones de Trigonometrí: L trigonometrí se dedi l estudio de ls reliones que existen entre ls medids de los ángulos y ldos de un triángulo.
UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA
REPUBLICA DE COLOMBIA SECRETARIA DE EDUCACION DISTRITAL DE SANTA MARTA INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resoluión Nº 88 de noviemre.8/ Emnd de l Seretri De Eduión Distritl DANE Nº7-99
cos sa, a 10 cm. Calcula el valor de los ángulos agudos, y la c) Factorizando y expresando cos 2 1 sen 2,se obtiene: medida de los catetos.
0 Demuestr, de form rzond, ls siguientes igulddes: lul el ángulo de elevión del Sol sore el orizonte, se ) ( sen ) ose o se siendo que un esttu proyet un somr que mide otg os tres vees su ltur. ) ( sen
RESOLUCIÓN DE TRIÁNGULOS
RESOLUIÓN DE TRIÁNGULOS Págin 0 PR EMPEZR, REFLEXION Y RESUELVE Prolem Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr llr l ltur de un pirámide de Egipto: omprr
Haga clic para cambiar el estilo de título
Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles
1. Razones trigonométricas en triángulos rectángulos. (Ángulos agudos)
Trigonometrí (I). Rzones trigonométris en triángulos retángulos. (Ángulos gudos).... Reliones trigonométris fundmentles.... Rzones trigonométris de 0º, 45º y 60º... 4 4. Resoluión de triángulos retángulos....
Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011.
Reliones métris en un triángulo Resumen redo or Hernán Verdugo Fini, rofesor de Mtemáti y Físi, ril 011. El estudio de un triángulo siemre revestido interés y or ello es ue existen un serie de desriiones,
Problemas de trigonometría
Prolems de trigonometrí Reliones trigonométris de un ángulo. Clulr ls rzones trigonométris de un ángulo α, que pertenee l primer udrnte, y siendo que 8 sin α. 7 sin α + os α 8 7 + os α os α 64 5 5 osα
10 Figuras planas. Semejanza
10 Figurs plns. Semejnz Qué tienes que ser 10 QUÉ tienes que ser Atividdes Finles 10 Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los
INTRODUCCIÒN Solución de triángulos rectángulos
INTRODUIÒN omo se vio en l unidd 1, l trigonometrí, se encrg de enseñr l relción entre los ldos y los ángulos de un tringulo. Es de sum importnci y que nos yud encontrr ls respuests en l físic, pr medir
- Aplicar la ley de Ohm en los circuitos puros de corriente alterna.
9. CIRCUITOS SIMPLES DE CORRIENTE ALTERNA Conoidos los omponentes, hor se prenderá ómo se omportn de form individul l estr onetdos un fuente de limentión de orriente ltern. El onoimiento de l ley de Ohm
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis
Resolución de triángulos rectángulos
Resoluión de triángulos retángulos Ejeriio nº 1.- Uno de los tetos de un triángulo retángulo mide 4,8 m y el ángulo opuesto este teto mide 4. Hll l medid del resto de los ldos y de los ángulos del triángulo.
Resolución de triángulos de cualquier tipo
Resoluión de triángulos de ulquier tipo Ejeriio nº 1.- Hll los ldos y los ángulos de este triángulo: Ejeriio nº.- Clul los ldos y los ángulos del siguiente triángulo: Ejeriio nº 3.- Hll los ldos y los
11La demostración La demostración en matemáticas (geometría)
L demostrión en mtemátis (geometrí) ág. 1 Tl vez los lumnos y lumns hyn demostrdo, en lgun osión, lgun fórmul o lgun propiedd mtemáti, o hyn ontempldo su demostrión. omo semos, pr ellos, el proeso no es
UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE
UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.
RESOLUCIÓN DE TRIÁNGULOS
RESOLUIÓN DE TRIÁNGULOS Págin 103 REFLEXION Y RESUELVE Prolem 1 Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr hllr l ltur de un pirámide de Egipto: omprr su somr
DISTINGUIR LAS RAZONES TRIGONOMÉTRICAS
7 REPSO Y POYO OJETIVO DISTINGUIR LS RZONES TRIGONOMÉTRICS Nomre: Curso: Feh: Ddo un triánguo retánguo, definimos s rzones trigonométris de uno de sus ánguos gudos : seno sen oseno os tngente tg (teto
Senx a) 0 b) 1 c) 2 d) 2
EJERIIOS. lculr en : Sen( - 0º) = os( + 0º) ) b) c) 4 d) 6 e). Si : Tg (8 º) Tg ( + º) = Hllr: K = Sen tg 6 7 7 ) b) c) - d) - e) ) 0, b) c), d) e) 8. Si : Tg =, Sen lculr : K Tg ) c) e) ( ) b) d) ( ).
1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)
Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics
MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA
MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA CURSO 4 TRIGONOMETRIA Y TRANSFORMACIONES GEOMETRICAS EN EL PLANO CARTA DIDÁCTICA Desripión: Con este
Razones trigonométricas de un ángulo agudo. Relaciones fundamentales
B C Mtemátis I - º Billerto Rzones trigonométris de un ángulo gudo. Reliones fundmentles En todo triángulo retángulo BC ls rzones trigonométris (seno, oseno y tngente) de uno de sus ángulos gudos, en este
RESOLUCIÓN DE TRIÁNGULOS
RESOLUIÓN DE TRIÁNGULOS Págin 103 REFLEXION Y RESUELVE Prolem 1 Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr hllr l ltur de un pirámide de Egipto: omprr su somr
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
SOLUIONES LOS EJERIIOS DE L UNIDD Pág. 1 Págin 187 PRTI Rzones trigonométrics de un ángulo 1 Hll ls rzones trigonométrics de los ángulos y en cd uno de los siguientes triángulos rectángulos. Previmente,
Departamento de Matemáticas
Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1
TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)
TEMS DE MTEMÁTICS (Oposiiones de Seundri) TEM 37 L SEMEJNZ EN EL PLNO. CONSECUENCIS. TEOREM DE THLES. RZONES TRIGONOMÉTRICS. 1. Introduión.. Homoteis: Definiión y propieddes. 3. L semejnz en el plno. 3.1.
C? a = 5 m. Área? B? c = 4 m. b 2 = a 2 c 2. b = 3 m c = 4 m. c cos B = a. 4 cos B = B = 36 52' 12'' 5 C C = 90 B. 1 Área = b c 2. a = 5,41 cm. Área?
4 Resoluión de triángulos. Resoluión de triángulos retángulos Piens y lul lul mentlmente l inógnit que se pide en los siguientes triángulos retángulos: ) = 6 m, = 8 m; ll l ipotenus ) = 35 ; ll el otro
BLOQUE III Geometría
LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40
Triángulos y generalidades
Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro
344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:
LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un
LEY DE SENOS Y COSENOS
FULTD DE IENIS EXTS Y NTURLES SEMILLERO DE MTEMÁTIS GRDO: 10 TLLER Nº: 1 SEMESTRE 1 LEY DE SENOS Y OSENOS RESEÑ HISTÓRI Menelo de lejndrí L trigonometrí fue desrrolld por strónomos griegos que onsidern
EJERCICIOS DE 1º BACHILLERATO CIENCIAS DE LA SALUD
EJERCICIOS DE º BACHILLERATO CIENCIAS DE LA SALUD TRIGONOMETRÍA I - Sin utilizr l clculdor, hll el vlor de l siguientes expresiones: π π 5 π π 7π 4π π sen. 4sen + senπ sen sen cos + tg + tg 6 6 - Comprueb:
UNIDAD DE APRENDIZAJE IV
UNIDAD DE APRENDIZAJE IV Seres procedimentles 1. Utiliz correctmente el lenguje lgerico, geométrico y trigonométrico.. Identific l simologí propi de l geometrí y l trigonometrí. 3. Identific ls uniddes
Teorema de Pitágoras
Profr. Efrín Soto Apolinr. Teorem de Pitágors En geometrí, uno de los teorems más importntes es el teorem de Pitágors porque se pli muy freuentemente pr resolver prolems. En todo triángulo retángulo que
OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO
OJETIVO 1 lulr l RzÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un
Trigonometría. Prof. María Peiró
Trigonometrí Prof. Mrí Peiró Trigonometri Funciones Trigonométrics Ls funciones trigonométrics son rzones o cocientes entre dos ldos de un triángulo rectángulo. Hy seis funciones trigonométrics: Directs
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I
Evlución NMBRE PELLIDS CURS GRUP FECH CLIFICCIÓN 4 L solución de l ecución sen 0,5 es: ) 0 y 50 b) 50 y 0 c) 0 y 0 Si sen 0 0,4, entonces cos 0 será: ) 0,4 b) 0,94 c) 0,4 Un estc de longitud, clvd verticlmente
7Soluciones a los ejercicios y problemas PÁGINA 161
7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60
de Thales y Pitágoras
8 Teorems de Thles y Pitágors 8.1. Cuents y problem del dí 1. Reliz l siguiente operción: 874,53 + 3 607,8 + 875,084 2. Reliz l siguiente operción, obtén dos decimles en el cociente y hz l prueb de l división:
( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9
1 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 < x + 4 c) x + 51 > 15x + 9 x < x > -1 c) x < 4 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 > x + 4 c) 5x + 10 < 1x - 4 x > x < -
x x = 0 es una ecuación compatible determinada por que sólo se
Euiones Denominmos euión l iguldd que se stisfe pr uno o más vlores de l(s) vrile(s), o inógnit(s), que interviene en ell. Ejemplos: + 5 + 5 + 6 0 + 0 Denominmos euión lgeri tod euión del tipo: n n n +
b sen A = a sen B = b sen C = c sen B =
T3: TRIGONOMETRÍ 1º T 9. TEOREM EL SENO emstrión: 2R sen sen R Trzms l ltur rrespndiente l vértie : En el triángul se verifi: h h h En el triángul se verifi: h sen h sen Igulnd ms expresines result l iguldd:
9 Proporcionalidad geométrica
82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l
Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES
8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =
Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:
ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un
Trigonometría II. 1. Identidades trigonométricas página Triángulos. 3. Aplicaciones de la trigonometría página
Trigonometrí II E S Q U E M D E L U N I D D.. Rzones trigonométrics de l sum de dos ángulos págin 9. Identiddes trigonométrics págin 9.. Rzones trigonométrics de l diferenci de dos ángulos págin 94.. Rzones
LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS
LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS Prlels y Perpendiulres Lámin nº 1 Prlels y Perpendiulres Lámin nº 1 Trzr un perpendiulr en el extremo de un segmento de 60 mm. de longitud. Trzr un perpendiulr
XVI Encuentro Departamental de Matemáticas: La innovación en el proceso docente educativo en Matemáticas a partir de diferentes medios de aprendizaje
XVI Enuentro Deprtmentl de Mtemátis: L innovión en el proeso doente edutivo en Mtemátis prtir de diferentes medios de prendizje y I Enuentro Deprtmentl de GeoGer Netmente intuitivos. Inextitud de los
TEOREMA DE PITÁGORAS
TEOREMA DE PITÁGORAS 1.- El ldo de un udrdo mide 10 m. Cuánto mide su digonl? (Aproxim el resultdo hst ls déims)..- Ls digonles de un romo miden 15 m y 17 m, respetivmente. Cuánto miden sus ldos? (Aproxim
Resolución de triángulos
8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del
Clasifica los siguientes polígonos. a) b) c) d)
1 FIGURS PLNS EJERIIS PR ENTRENRSE Polígonos 1.44 lsific los siguientes polígonos. ) b) c) d) ) Pentágono irregulr cóncvo. b) Heptágono regulr convexo. c) ctógono irregulr cóncvo. d) Hexágono irregulr
3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola
Moisés Villen Muñoz Cónis. Cirunfereni. Práol. Elise. Hierol Ojetivos. Se ersigue que el estudinte: Identifique, grfique determine los elementos de un óni onoiendo su euión generl. Ddo elementos de un
DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE
DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí
CAPÍTULO 4: RELACIÓN ENTRE ÁNGULOS Y ARCOS DE CIRCUNFERENCIA (III)
PÍTULO 4: RELIÓN ENTRE ÁNGULOS Y ROS DE IRUNFERENI (III) Dnte Guerrero-hnduví Piur, 2015 FULTD DE INGENIERÍ Áre Deprtmentl de Ingenierí Industril y de Sistems PÍTULO 4: RELIÓN ENTRE ÁNGULOS Y ROS DE IRUNFERENI
2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería
Resolución de Triángulos - Soluciones 1. Un rectángulo circunscribe simétricmente un sector circulr tl como muestr el dibujo djunto. Si el ángulo del sector es de 1 rdián y su áre es de 7 ², hll en milímetros
Triángulos congruentes
Leión#4 Triángulos ongruentes y triángulos similres Ojetivos Aplir ls propieddes de triángulos ongruentes Aplir ls propieddes de ongrueni Aplir ls propieddes de triángulos similres Aplir el teorem de Pitágors
X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse.
X. LA ELIPSE 10.1. DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO Definiión Se llm elipse l lugr geométrio de un punto P que se mueve en el plno, de tl modo que l sum de ls distnis del punto P dos puntos fijos
Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz
Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo
Problema 1. En cuál de los dos diseños el ángulo de inclinación de la rampa con el suelo es mayor?
ONTENIDOS Ls reliones trigonométris en un triángulo retángulo Seno y oseno de un ángulo Tngente de un ángulo Relión entre l tngente y l pendiente de un ret Teorems del seno y del oseno Existen vris situiones
PROBLEMAS DE OLIMPIADAS MATEMÁTICAS SOBRE GEOMETRÍA El triángulo
. PROLEMS DE OLIMPIDS MTEMÁTIS SORE GEOMETRÍ El triángulo ELISETH GONZÁLEZ FUENTES Máster de Mtemátis Universidd de Grnd. 014 Prolems sore triángulos Trjo Fin de Máster presentdo en el Máster Interuniversitrio
Distancia de la Tierra a la Luna
ASTRONOMÍA: Cálculo del rdio de l Tierr, distnci de l Tierr l Lun, distnci de l Tierr l Sol, predicción de eclipses, confección de clendrios... CARTOGRAFÍA: Elborción del mp de un lugr del que se conocen
Qué tipo de triángulo es? Prof. Enrique Díaz González
Universidd Intererin de Puerto Rio Reinto de Pone 1 Revist 360 / N o. 6/ 011 Qué tipo de triángulo es? Prof. Enrique Díz González En lguns situiones de tipo prátio, se neesit onoer si un deterindo triángulo
SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14
R= SOLUCONES DE LOS PROLEMS DE ELECTRCDD DE C.C. SOLUCONES DE LOS EJERCCOS DE CORRENTE CONTNU - er TRMESTRE-. prolems:, y ª ) Soluionremos este prolem por el método generl de nálisis por lzos ásios, omprondo
REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS
TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o
LA PROPORCIONALIDAD EN LOS TRIÁNGULOS
Proorionlidd en los triángulos Tles Mtemáti º Año Cód. 104-15 P r o f. J u n C r l o s B u e P r o f. D n i e l C n d i o P r o f. N o e m í L g r e P r o f. M r í d e l L u j á n M r t í n e z Dto. de
Definimos a la trigonometría como la parte de la Matemática que trata de la resolución de triángulos por medio del cálculo.
Introduión L trigonometrí es un ieni ntigu, y onoid por ls ulturs orientles y mediterránes pre-ristins. No ostnte, l sistemtizión de sus prinipios y teorems se produjo sólo prtir del siglo XVI, pr inorporrse
Vectores y Trigonometría
Griel Villloos 12/09/2016 Vetores y Trigonometrí 1) Vetores Mgnitudes eslres y mgnitudes vetoriles Reordemos que un mgnitud es ulquier propiedd de un sistem mteril que se puede medir. Ls mgnitudes ls podemos
TRIGONOMETRÍA CONTENIDO TRIGONOMETRÍA
CONTENIDO TRIGONOMETRÍA Tem. Pág. Coneptos y definiiones. Ángulos. Grdos. Aros. Rdines 4 Polígonos y irunfereni. 5 4 Sistems oordendos. Retngulres. Polres. 6 5 Triángulos. Definiión. Clsifiión. 7 6 Círulo
4 Trigonometría UNIDAD
UNIDAD 4 Trigonometrí ÍNDICE DE CONTENIDOS 1. Ángulos............................................ 77 1.1. Sistem sexgesiml................................. 77 1.2. Rdines........................................
Distancia de un punto del espacio a un punto en el plano de un triángulo
Distni de un unto del esio un unto en el lno de un triángulo onstnti Rusu RESUEN En este rtíulo dmos fórmuls r l distni de un unto del esio S l unto del interior del triángulo Tmién lulmos es distni en
VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010
UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio --- UDB Físi Cátedr VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo de su
MATEMÁTICA Proporcionalidad de segmentos Guía Nº: 3
MATEMÁTICA Proporionlidd de segentos Guí Nº: 3 APELLIDO: Prof. Krin G. Rizzo 1. TEOREMA DE THALES Trzr ls rets perfetente prlels y edir on uh preisión los segentos indidos ontinuión A B P Q e f C g D d
11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO
SLUINRI 95 11. Triángulos 1. NSTRUIÓN DE TRIÁNULS PIENS Y LUL Justific si se pueden dibujr los siguientes triángulos conociendo los dtos: ) Tres ldos cuys longitudes son 1 cm, 2 cm y 3 cm b) Un ldo de
Razones trigonométricas de un ángulo agudo en un triángulo rectángulo
pág.1 Medids de ángulos Ángulo es l porción del plno limitd por dos semirrects de origen común. Los ángulos se pueden medir en grdos sexgesimles o en rdines. Medids en grdos (uniddes sexgesimles): El grdo
Razones trigonométricas de un ángulo agudo. Denominación Definición Propiedad básica. cos α = c a. tg α = tan α = b c. Propiedad fundamental
Trigonometrí 1 Trigonometrí Rzones trigonométris de un ángulo gudo Denominión Definiión Propiedd ási Seno sen = 0 sen 1 Coseno Tngente os = tg = tn = Propiedd fundmentl sen + os = 1 Rzones trigonométris