MOMENTO RESPECTO A UN EJE
|
|
|
- Juana Soler Cano
- hace 7 años
- Vistas:
Transcripción
1 MOMENTO RESPECTO A UN EJE Objetivos del día de hoy: Los estudiantes serán capaces de determinar el momento de una fuerza alrededor de un eje usando: Actividades en clase: a) Análisis escalar, y, Revisión de la tarea b) Análisis vectorial. Prueba de lectura Aplicaciones Análisis Escalar Análisis Vectorial Prueba conceptual Solución grupal de problemas Prueba de atención
2 PRUEBA DE LECTURA 1. Al determinar el momento de una fuerza con respecto a un eje específico, el eje debe estar a lo largo. A) del eje X B) del eje Y C) del eje Z D) de cualquier línea en el espacio 3-D E) de cualquier línea en el plano XY 2. El producto escalar triple u (r F) resulta en: A) una cantidad escalar (+ ó -) B) una cantidad vectorial C) cero D) un vector unitario E) un número imaginario
3 APLICACIONES Con la fuerza P, una persona crea un momento M A usando esta llave de mango flexible. La totalidad de M A actúa para voltear al objeto? Cómo calcularía la respuesta para esta pregunta?
4 APLICACIONES (continuada) La camisa A de este soporte puede proveer un momento máximo resistente de 125 N m con respecto al eje X. Cómo determinaría usted la magnitud máxima de F antes de que el giro respecto al eje X ocurriera?
5 ANÁLISIS ESCALAR Recuerde que el momento de una fuerza escalar con respecto a cualquier punto O es M O = F d O donde d O es la distancia perpendicular (o más corta) a partir del punto hasta la línea de acción de la fuerza. Este concepto se puede extender para encontrar el momento de una fuerza respecto a un eje. Hallar el momento de una fuerza con respecto a un eje, puede ayudar a resolver lo tipos de preguntas que acabamos de considerar.
6 ANÁLISIS ESCALAR (continuada) En la figura de arriba, el momento respecto al eje Y sería M y = F z (d x ) = F (r cos θ). Sin embargo, a menos que la fuerza se pueda fácilmente descomponer, y d x sea encontrada rápidamente, dichos cálculos no son siempre triviales, y el análisis vectorial puede resultar mucho más fácil (y menos proclive a ocasionar errores).
7 ANÁLISIS VECTORIAL Nuestra meta es encontrar el momento de F (la tendencia a rotar el cuerpo) respecto al eje a. Primero calcule el momento de F respecto a cualquier punto arbitrario O que yazca en el eje a usando el producto cruz. M O = r F Ahora, encuentre la componente de M O a lo largo del eje a usando el producto punto. M a = u a M O
8 ANÁLISIS VECTORIAL (continuado) M a también se puede obtener como: La ecuación de encima también se conoce como el producto triple escalar. En esta ecuación, u a representa al vector unitario dirigido a lo largo del eje a, r es el vector de posición desde cualquier punto en el eje a hasta cualquier punto A en la línea de acción de la fuerza, y F es el vector de fuerza.
9 A B EJEMPLO Dado: Una fuerza se aplica a la herramienta como se muestra. Hallar: La magnitud del momento de esta fuerza respecto al eje X del valor. Plan: 1) Use M x = u (r F). 2) Primero, encuentre F en su forma vectorial cartesiana. 3) Note en este caso que u = 1 i. 4) El vector r es el vector de posición desde O hacia A.
10 EJEMPLO (continuado) Solución: u = 1 i r OA = {0 i j k} m F = 200 (cos 120 i + cos 60 j + cos 45 k) N = {-100 i j k} N Ahora encuentre M x = u (r OA F ) M x = = 1{0.3 (141.4) 0.25 (100) } N m M x = 17.4 N m CR
11 PRUEBA CONCEPTUAL 1. La operación vectorial (P Q) R es igual a: A) P (Q R). B) R (P Q). C) (P R) (Q R). D) (P R) (Q R ).
12 PRUEBA CONCEPTUAL (continuada) 2. La fuerza F está actuando a lo largo de DC. Empleando el producto triple escalar para determinar el momento de F respecto a la barra BA, usted podría emplear cualquiera de los siguientes vectores de posición, excepto. A) r BC B) r AD C) r AC D) r DB E) r BD
13 SOLUCIÓN DE PROBLEMA GRUPAL Dado: La fuerza F = 30 N actúa en el soporte. = 60, = 60, = 45. A Hallar: El momento de F respecto al eje a-a. Plan: u a r OA O 1) Hallar u a y r OA 2) Encontrar F en su forma vectorial cartesiana. 3) Usar M a = u a (r OA F)
14 SOLUCIÓN DE PROBLEMA GRUPAL (continuado) Solución: u a = j r OA = { 0.1 i k} m A r OA F = 30 {cos 60 i + cos 60 j + cos 45 k} N F = { 15 i + 15 j k} N u a O
15 SOLUCIÓN DE PROBLEMA GRUPAL (continuado) Ahora encuentre el producto triple, M a = u a (r OA F) M a = N m M a = -1 {-0.1 (21.21) 0.15 (15)} = 4.37 N m A r OA Ma u a O
16 1. Para encontrar el momento de la fuerza F respecto al eje X, el vector de posición en el producto triple escalar debe ser. A) r AC B) r BA C) r AB D) r BC 2. Si r = {1 i + 2 j} m y F = {10 i + 20 j + 30 k} N, entonces el momento de F respecto al eje Y es N m. A) 10 B) -30 PRUEBA DE ATENCIÓN C) -40 D) Ninguna de las anteriores
SECCIÓN 7.3 INTRODUCCION A VECTORES. Capítulo 7
SECCIÓN 7.3 INTRODUCCION A VECTORES Capítulo 7 Introducción Cantidades tales como área, volumen, longitud, temperatura y tiempo se componen únicamente de una magnitud y se pueden describir completamente
GUÍA N 1 CUARTO AÑO MEDIO
Colegio Antil Mawida Departamento de Matemática Profesor: Nathalie Sepúlveda Delgado GUÍA N 1 CUARTO AÑO MEDIO Nombre del alumno/a: Fecha: Unidades de aprendizaje: Objetivo Contenidos: Nivel: Vectores
DEPARTAMENTO DE GEOMETRIA ANALITICA SEMESTRE 2016-1 SERIE ÁLGEBRA VECTORIAL
1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre los ejes coordenados X,
Determine la magnitud y dirección de los ángulos directores de. . Esboce cada fuerza en un sistema de referencia x, y, z.
Determine la magnitud y dirección de los ángulos directores de y. Esboce cada fuerza en un sistema de referencia x, y, z. Resolviendo para la fuerza Su magnitud es Sus ángulos directores son z y x Resolviendo
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
Si θ 60º y F 20 kn, determine la magnitud de la fuerza resultante y la dirección calculada en sentido de las agujas del reloj, desde el eje positivo
Si θ 60º y 20 kn, determine la magnitud de la fuerza resultante y la dirección calculada en sentido de las agujas del reloj, desde el eje positivo X. Rx ; x Rx 50 4 5 2 40 20 cos 60º 58.28 kn Ry ; y Ry
CÁLCULO VECTORIAL I. B, es un nuevo vector que se define del siguiente modo: Si A ybson (LI), entonces el vector A. B se caracteriza por:
PRODUCTO VECTORIAL DE DOS VECTORES El producto vectorial de dos vectores A y, y escribimos A, es un nuevo vector que se define del siguiente modo: Si A yson (LI), entonces el vector A se caracteriza por:
Geometría analítica. 3. Calcula u+ vy u v analítica y gráficamente en los siguientes. a) u (1, 3) y v(5,2) b) u (1, 3) y v(4,1) Solución:
5 Geometría analítica. Operaciones con vectores Piensa y calcula Dado el vector v (3, 4) del dibujo siguiente, calcula mentalmente su longitud y la pendiente. D A v(3, 4) C O Longitud = 5 Pendiente = 4/3
II. Vectores. En contraste, un vector solo está completamente definido cuando se especifica su magnitud y dirección.
Objetivos: 1. Diferenciar una cantidad escalar de una vectorial. 2. Recordar algunos principios trigonométricos básicos. 3. Manipular vectores de forma gráfica y analítica. 1. Introducción. El análisis
TALLER 4 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA
TALLER 4 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA 013- UNIVERSIDAD DE ANTIOQUIA Profesor: Jaime Andrés Jaramillo G jaimeaj@conceptocomputadorescom 1 Coloque para cada una de las siguientes
VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector
VECTORES Un vector (Vector posición) en el plano es un par ordenado de números reales A(a, b). Se representa geométricamente por un segmento de recta dirigido, cuyo punto inicial es el origen del sistema
34 35
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 1. Dos fuerzas se aplican a una armella sujeta a una viga. Determine gráficamente la magnitud y la dirección de su resultante usando: a) La ley
UNASAM FIC PRACTICA DIRIGIDA SOBRE MOMENTO TORQUE OLVG 2011
1. Determine el momento de la fuerza F con respecto al punto O: (a) usando la formulación vectorial, (b) la formulación vectorial. 6. Determine el momento de la fuerza con respecto al punto A. Exprese
ANALISIS VECTORIAL. Vectores concurrentes: cuando se interceptan en un mismo punto.
ANALISIS VECTORIAL Vector: Es un operador matemático que sirve para representar a las magnitudes vectoriales. Vectores concurrentes: cuando se interceptan en un mismo punto. Vectores iguales: cuando tienen
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
Estática. Resultantes de Sistemas de Fuerzas
Estática 4 Resultantes de Sistemas de Fuerzas Objetivos Concepto de momento de una fuerza en una y dos dimensiones. Método para encontrar el momento de una fuerza referido a un eje dado. Definir el momento
VECTORES Y SUS ELEMENTOS
VECTORES Y SUS ELEMENTOS Los conjuntos de números naturales, enteros y racionales estudiados, te han permitido expresar distintas situaciones y resolver muchos problemas. En este sentido, algunas cantidades
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,
EJERCICIOS DE VECTORES EN EL PLANO (TEMA 3) 4.- Dados los vectores de la figura, indica cuáles de las siguientes igualdades es cierta:
EJERCICIOS DE VECTORES EN EL PLANO (TEMA ) 1- Diuja los siguientes elementos en un diagrama de coordenadas: A = (5,), B = (, ) v = (4,), u i 4 j el vector w mide unidades, tiene dirección horizontal, sentido
Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago
Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo
MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos
Geometría del espacio: Vectores; producto escalar, vectorial y mixto Aplicaciones MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos Vectores Para a = (,, ) y b = (,, 4), halla: a) a + b
TEMA 4. Vectores en el espacio Problemas Resueltos
Matemáticas II (Bachillerato de Ciencias) Soluciones de los problemas propuestos Tema 4 5 Vectores TEMA 4 Vectores en el espacio Problemas Resueltos Para a = (,, ) y b = (,, 4), halla: a) a + b b) a b
Representación de un Vector
VECTORES Vectores Los vectores se caracterizan por tener una magnitud, expresable por un número real, una dirección y un sentido. Un ejemplo de vectores son los desplazamientos. Otro ejemplo de vectores
2- Sistemas de Fuerzas
2- Sistemas de uerzas Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil Contenido 2. Sistemas de uerzas 2.1 uerza. Definición y propiedades. 2.2 uerza en el plano. Resultante de dos fuerzas.
, radianes? Explique.
UNIVRSIA CNTROAMRICANA JOSÉ SIMÓN CAÑAS ALGBRA VCTORIAL Y MATRICS HOJA TRABAJO UNIA: VCTORS N TRS IMNSIONS Ciclo 0 de 01 Parte I Responda las preguntas siguientes: 1) Si A es un vector diferente del vector
VECTORES. BIDIMENSIONAL
VETORES. IDIMENSIONL 1. Dado los vectores,,, D, E, F y G que se muestran en la figura, determinar el modulo del vector resultante si = 5N y F = 4N. Rpta. R = 17,35N. 2. En el primer cuadrante de un sistema
Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99)
Capítulo 1 Vectores 26 Problemas de selección - página 13 (soluciones en la página 99) 21 Problemas de desarrollo - página 22 (soluciones en la página 100) 11 1.A PROBLEMAS DE SELECCIÓN Sección 1.A Problemas
1. Distancia entre puntos y rectas en el espacio. 3. Calcula la distancia existente entre las rectas: Solución: d(r, s) =
7 Espacio métrico. Distancia entre puntos y rectas en el espacio Piensa y calcula Dados los puntos A, 4, ) y B5,, 4), halla las coordenadas del vector: AB AB,5,) Aplica la teoría. Calcula la distancia
VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector.
VECTORES Según su naturaleza las cantidades físicas se clasifican en magnitudes escalares y magnitudes vectoriales Las magnitudes como el tiempo, la temperatura, la masa y otras, son magnitudes escalares
COMPOSICION DE FUERZAS
FUERZAS La fuerza es una magnitud vectorial que modifica la condición inicial de un cuerpo o sistema, variando su estado de reposo, aumentando ó disminuyendo su velocidad y/o variando su dirección. SISTEMAS
Problemas resueltos del libro de texto. Tema 8. Geometría Analítica.
Problemas resueltos del libro de texto Tema 8 Geometría Analítica Combinación lineal de vectores 9- Es evidente que sí es combinación lineal de estos dos vectores, ya que -4 y permiten escribir z como
Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99, 01, curso cero de física
VECTORES: TRIÁNGULOS Demostrar que en una semicircunferencia cualquier triángulo inscrito con el diámetro como uno de sus lados es un triángulo rectángulo. Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,
Magnitudes y Unidades. Cálculo Vectorial.
Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades
ESTÁTICA 3 3 VECTORES
ESTÁTICA Sesión 3 3 VECTORES 3.1. Componentes en dos dimensiones 3.1.1. Operación con vectores por sus componentes 3.1.2. Vectores de posición por sus componentes 3.2. Componentes en tres dimensiones 3.2.1.
Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría
6 Espacio afín 1. Rectas en el espacio Piensa y calcula Calcula las coordenadas de un vector que tenga la dirección de la recta que pasa por los puntos A2, 1, 5 y B3, 1, 4 AB 1, 2, 1 Aplica la teoría 1.
Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)
Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto
Ejercicios de Álgebra Lineal Parcial 1
Ejercicios de Álgebra Lineal Parcial 1 1. Ejercicios de respuesta corta ( ) 3 1 a) Si A = encuentre la entrada c 6 2 12 de la matriz A 2 { x 3y = 1 b) Si para k R el sistema tiene solución única, verique
El momento de torsión es un giro o vuelta que tiende a producir rotación. * * * Las aplicaciones se encuentran en muchas herramientas comunes en el
Momento de torsión El momento de torsión es un giro o vuelta que tiende a producir rotación. * * * Las aplicaciones se encuentran en muchas herramientas comunes en el hogar o la industria donde es necesario
CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean
REPASO DE VECTORES GRM Semestre
Basado en material de Serway-Jewett, Physics, Chapters 3, 6,10; Volume 1 REPASO DE VECTORES GRM Semestre 2012-2 Indice Sistemas de coordenadas 2 Vectores y escalares 8 Propiedades de vectores 11 Suma de
GEOMETRIA EUCLIDEA. 3.-Determinar m para que el producto escalar de u=(m,5) y v=(2,-3) sea la unidad.
PRODUCTO ESCALAR GEOMETRIA EUCLIDEA 1.-Dados los vectores u,v y w tales que u*v=7 y u*w=8, calcular: u*(v+w); u*(2v+w); u*(v+2w) 2.-Sea {a,b} una base de vectores unitarios que forman un ángulo de 60.
MECÁNICA II CURSO 2004/05
1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor
4º ESO opción B Ejercicios Geometría Analítica
Geometría Analítica 1) Las coordenadas de un punto A son (3,1) y las del vector AB son (3,4). Cuáles son las coordenadas de punto B? Determina otro punto C de modo que el vector AC tenga el mismo módulo
1 de 1 Manizales, 9 de Agosto de 01 1. (VALE POR UN PUNTO) El costo para producir un par de zapatos es de $5700 y depende de la materia prima y de la mano de obra. Si el costo de la materia prima es el
A.2. Notación y representación gráfica de vectores. Tipos de vectores.
Apéndice A: Vectores A.1. Magnitudes escalares y vectoriales Las magnitudes escalares son aquellas magnitudes físicas que quedan completamente definidas por un módulo (valor numérico) y la unidad de medida
Javier Junquera. Equilibrio estático
Javier Junquera Equilibrio estático Bibliografía Física, Volumen 1, 6 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 12 Definición de equilibrio El término equilibrio
Materia: Matemática de 5to Tema: Producto Punto. Marco Teórico
Materia: Matemática de 5to Tema: Producto Punto Marco Teórico En términos comunes, el producto punto de dos vectores es un número que describe la cantidad de fuerza que dos vectores diferentes contribuyen
Tema 4. Vectores en el espacio (Productos escalar, vectorial y mixto)
Matemáticas II (Bachillerato de Ciencias) Geometría del espacio: Vectores 75 Espacios vectoriales Tema 4 Vectores en el espacio (Productos escalar, vectorial y mixto) Definición de espacio vectorial Un
Para establecer la relación entre coordenadas cartesianas y polares es suficiente proyectar r sobre los ejes x e y. De la gráfica se sigue que:
COORDENADAS POLARES. Algunas veces conviene representar un punto P en el plano por medio de coordenadas polares planas (r, ), donde r se mide desde el origen y es el ángulo entre r y el eje x (ver figura).
GUÍA DE APRENDIZAJE Introducción al álgebra vectorial
Liceo Juan XXIII V.A Departamento de ciencias Física Prof. David Valenzuela GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.jimdo.com Tercero medio diferenciado Magnitudes escalares y vectoriales
EJERCICIOS DE GEOMETRÍA ANALÍTICA 4º ESO A
EJERCICIOS DE GEOMETRÍA ANALÍTICA 4º ESO A 1. Halla las ecuaciones de la recta r que pasa por los puntos A(1,4) y B(0,-1) en todas sus formas: vectorial, continua, punto-pendiente, explícita y general.
Geometría. 2 (el " " representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.
Geometría 1 (Junio-96 Dados los vectores a,b y c tales que a, b 1 y c 4 y a b c, calcular la siguiente suma de productos escalares: a b b c a c (Sol: -1 (Junio-96 Señalar si las siguientes afirmaciones
GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO DE GEOMETRÍA ANALÍTICA (ÁLGEBRA VECTORIAL - PRÁCTICA) AÑO 2014 ÁLGEBRA VECTORIAL - EJERCICIOS
1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.
1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial
Estática. Equilibrio de un cuerpo rígido
Estática 5 Equilibrio de un cuerpo rígido Objectivos Escribir las ecuaciones de equilibrio de un cuerpo rígido. Concepto de diagrama de cuerpo libre para un cuerpo rígido. Resolver problemas de equilibrio
Una Ecuación Escalar de Movimiento
Una Ecuación Escalar de Movimiento Antonio A. Blatter Licencia Creative Commons Atribución 3.0 (2015) Buenos Aires Argentina Este trabajo presenta una ecuación escalar de movimiento que es invariante bajo
Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?
Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a
ESTATICA DE LAS PARTICULAS ESTATICA. Jorge Enrique Meneses Flórez
2. DE LAS PARTICULAS 2. DE LAS PARTICULAS 2.1 Introducción Estudiar el efecto de las fuerzas sobre las partículas Sustituir dos o mas fuerzas por una RESULTANTE Relaciones necesarias para EQUILIBRIO de
El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos
El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos c Jana Rodriguez Hertz p. 1/1 Suma de matrices - definición Si dos matrices A,B M m n K tienen el mismo
Vectores equipolentes. Dos vectores son equipolentes cuando tienen igual módulo, dirección y sentido.
TEMA 9: GEOMETRIA ANALÍTICA VECTORES EN EL PLANO Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Si las coordenadas de A son (x1, y1) y las de B, (X, y), las
UNIDAD 8 Geometría analítica
Pág. 1 de 5 I. Sabes hallar puntos medios de segmentos, puntos simétricos de otros y ver si varios puntos están alineados? 1 Los puntos A( 1, 3), B(2, 6), C (7, 2) y D( 5, 3) son vértices de un cuadrilátero.
ALGEBRA LINEAL GUÍA No. 4 - VECTORES Profesor: Benjamín Sarmiento
ALGEBRA LINEAL GUÍA No. 4 - VECTORES Profesor: Benjamín Sarmiento VECTORES EN R n.. OPERACIONES CON VECTORES VECTORES EN R 2 : Un vector v en el plano R 2 = XY es un par ordenado de números reales .
Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales.
Cantidades vectoriales escalares Vectores Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Una cantidad escalar es la que está especificada completamente por
I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1
PRODUCTO ESCALAR INTRODUCCIÓN El espacio vectorial de los vectores libres del plano se caracteriza por tener definidas dos operaciones: una interna, suma de vectores, y otra externa, producto de un número
Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)
Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier
EJERCICIOS DE GEOMETRÍA
1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando
ESPACIO AFÍN REAL TRIDIMENSIONAL. Sistema de referencia (E3, V3, f). Coordenadas cartesianas.
1. Puntos y Vectores. ESPACIO AFÍN REAL TRIDIMENSIONAL Sistema de referencia (E3, V3, f). Coordenadas cartesianas. 2. Primeros resultados analíticos. Vector que une dos puntos. Punto medio de un segmento.
TEMAS SELECTOS DE FÍSICA I
TEMAS SELECTOS DE FÍSICA I Mtro. Pedro Sánchez Santiago TEMAS Origen de una fuerza Vectores Cuerpos en equilibrio Momentos de fuerzas Cómo describir la posición de un punto en el espacio: Sistemas de coordenadas
El espacio tridimensional. Tema 01: Álgebra lineal y geometría en R 3. Vectores. El producto punto o producto escalar. Teorema
El espacio tridimensional Tema 01: Álgebra lineal y geometría en R 3 Juan Ignacio Del Valle Gamboa Sede de Guanacaste Universidad de Costa Rica Ciclo I - 2014 Partimos de los conceptos de punto y vector.
(1,0)x(0,1) = (0,0) (1/ 2,1/ 2)x(-1/ 2,1/ 2) = (-1/2,1/2) (4/5,-3/5)x(3/5,4/5) = (12/25,-12/25)
El Producto Interno Ya que la suma de vectores puede hacerse algebraicamente (a,b) + (c,d) = (a+c,b+d) parece natural definir un producto de vectores como (a,b) x (c,d) = (ac,bd). Pero este producto no
Geometría Analítica Espacios Vectoriales VECTORES EN EL PLANO
VECTORES EN EL PLANO 1 ESPACIO VECTORIAL Un vector fijo es una pareja ordenada de puntos en el plano (origen y extremo) Si A y B son dichos puntos, representaremos el vector por AB Gráficamente, lo representamos
3.5 NÚMEROS COMPLEJOS
64 CAPÍTULO Funciones polinomiales y racionales.5 NÚMEROS COMPLEJOS Operaciones aritméticas con números complejos Raíces cuadradas de números negativos Soluciones complejas de ecuaciones cuadráticas Vea
NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA
UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS
RECTAS Y PLANOS EN EL ESPACIO
UNIDAD 6 RECTA Y PLANO EN EL EPACIO Página 1 1. Puntos alineados en el plano Comprueba que los puntos A (, ), B (8, ) y C (1, ) no están alineados. A (, ) B (8, ) C (1, ) AB = (, 1); BC = (, ) No tienen
ALGEBRA Y GEOMETRIA ANALITICA
Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 009 Profesora Mariana Suarez PRACTICA N 8: RECTA EN EL ESPACIO PLANO ALGEBRA Y GEOMETRIA ANALITICA - Segundo cuatrimestre
1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:
1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL
Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que
Números reales Conceptos básicos Algunas propiedades
Números reales Conceptos básicos Algunas propiedades En álgebra es esencial manejar símbolos con objeto de transformar o reducir expresiones algebraicas y resolver ecuaciones algebraicas. Debido a que
Las funciones son relaciones entre dos o más variables expresadas en una ecuación algebraica.
FUNCIONES Y GRÁFICAS Las funciones son relaciones entre dos o más variables epresadas en una ecuación algebraica. or ejemplo, la epresión relaciona la variable con la variable mediante una regla de correspondencia
VELOCIDAD Y ACELERACION. RECTA TANGENTE.
VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)
Mecánica Vectorial Cap. 3. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.
Mecánica Vectorial Cap. 3 Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Cómo tener éxito en Matemáticas? Paso 1: El trabajo duro triunfa sobre el talento natural. Paso 2: Mantenga una mente abierta.
es el lugar geométrico de los puntos p tales que ; R (1)
LA RECTA DEL PLANO ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS La recta en el plano como lugar geométrico Dados un punto p un vector no nulo u, la recta T paralela a u que pasa por p es el lugar geométrico
FACULTAD DE INGENIERIA Y NEGOCIOS TECATE
FACULTAD DE INGENIERIA Y NEGOCIOS TECATE 1. Realizar la conversión del momento dado en sistema ingles al sistema internacional. Si M 10 lb in convertirlo en N m a) b) c) d) 2. Identifique la fuerza resultante
Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.
Álgebra Geometría Analítica Prof. Gisela Saslavsk Vectores en R en R 3. Rectas planos en el espacio Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..
Ecuación de la Recta en el Espacio
PreUnAB Clase # 21 Octubre 2014 Definición Un sistema de coordenadas rectangulares en el espacio está determinado por tres planos mutuamente perpendiculares, Los ejes generalmente son identificados por
3. VECTOR UNITARIO DIRECCIONAL. Cada vector tiene su respectivo vector unitario. El vector unitario es paralelo a su respetivo vector de origen.
ANÁLISIS VECTORIAL Semana 01 1. VECTOR. Se representa mediante un segmento de recta orientado. En física sirve para representar a las magnitudes físicas vectoriales. Se representa por cualquier letra del
GEOMETRÍA DEL ESPACIO EUCLÍDEO
CAPÍTULO I. GEOMETRÍA DEL ESPACIO EUCLÍDEO SECCIONES 1. Vectores. Operaciones con vectores. 2. Rectas y planos en R 3. 3. Curvas y superficies en R 3. 4. Nociones de topología métrica. 1 1. VECTORES. OPERACIONES
VECTORES Y OPERACIONES CON VECTORES
BOLILLA 2 Sistema de Coordenadas VECTORES Y OPERACIONES CON VECTORES Un sistema de coordenadas permite ubicar cualquier punto en el espacio. Un sistema de coordenadas consta de: Un punto fijo de referencia
Vectores. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret
Vectores Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret Objetivos: Después de completar este capítulo, deberá: Describir la diferencia entre cantidades escalares
FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.
-PA-0 FACTORIZACION V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto de dos de sus divisores. Ejemplo: Factoriza 0 en dos de sus divisores :, es decir 0 = Y
Cinemática del sólido rígido, ejercicios comentados
Ejercicio 4, pag.1 Planteamiento Se sueldan tres varillas a una rótula para formar la pieza de la Figura 1. El extremo de la varilla OA se mueve sobre el plano inclinado perpendicular al plano xy mientras
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ESTÁTICA
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ESTÁTICA NIVEL : LICENCIATURA CRÉDITOS : 8 CLAVE : ICAC23002815 HORAS TEORÍA : 3 SEMESTRE : TERCERO HORAS PRÁCTICA : 2 REQUISITOS : GEOMETRÍA
3. que satisfacen los axiomas anteriores.
UVG-MM2002: Álgebra Lineal 1 Instructor: Héctor Villafuerte Espacios Vectoriales 26 de Enero, 2010 1 Espacios Vectoriales Denición 1 (Espacio Vectorial). Un espacio vectorial V es un conjunto de objetos
Ejercicio 1 de la Opción A del modelo 1 de Solución
Ejercicio 1 de la Opción A del modelo 1 de 2008 Sean f : R R y g : R R las funciones definidas por f(x) = x 2 -(x + 1) + ax + b y g(x) = ce Se sabe que las gráficas de f y g se cortan en el punto ( 1,
Problemas métricos. Ángulo entre rectas y planos
Problemas métricos Ángulo entre rectas y planos Ángulo entre dos rectas El ángulo que forman dos rectas es el ángulo agudo que determinan entre sí sus vectores directores. Dos rectas son perpendiculares
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,
