C HA : M C A- : M pka: 4.50

Tamaño: px
Comenzar la demostración a partir de la página:

Download "C HA : M C A- : M pka: 4.50"

Transcripción

1 QUÍIA ÁIDO - BASE ANFOLITOS EZLAS: ezcls de ácidos o de ses: Ácidos fuertes; Bses fuertes; Ácidos déiles; Bses déiles; Ácido fuerte + ácido déil; Bse fuerte + se déil. ezcls de ácidos y de ses: Ácido déil + se fuerte Bse déil + ácido fuerte - AD en exceso: d uffer - BF en exceso - BD en exceso: d uffer - AF en exceso Ácido déil + se déil Ácido fuerte + se fuerte A : A- : p:.50 A p p log.50 Si L de solución mortigudor se greg mmol de NO A NO N + + O - A + O A - + O + O - + O + O A O A

2 O - + A - = N + + O + A - N + = 0.00 A = Totl A - = 9.00 x 0 - A O p =.59 A mmol NO en L de este uffer p = 0.09 mmol NO en L de O p p =.00 mmol NO en 0. L de l 0.00 p = 0.05 mmol NO en 0. L de l p = 5.00 álculo teórico: BF p Ecución generl pr un ácido monoprótico: Totl O.0 ( O ) w O AF p Efecto uffer de l cupl ácido-se conjugd.0 w O O Efecto uffer del gu (desprecile lt Totl ) Totl 0 O Permite clculr Totl necesri pr y p

3 Demostrción: Ddo L de un solución que contiene moles de NO, moles de l y moles totles de un ácido déil A, por BQ: + + N + = A - + O - + l - con N + = y l - = = A - + O = constnte y derivndo: omo p log d.0 dp p w ln ln0 dp d.0 dp w.0 d BF 0,5 0, (Eq L - ) 0, 0, 0, p Ac - = Ac pcidd reguldor de un solución de ácido cético y cetto de sodio 0,5, en función del p p:,75 BF p 0, p

4 Totl = A + A- = A + A - Si totl 0 - : Totl O.0 ( O ) Puede verse que l umentr totl ument l cpcidd reguldor, siempre que se mnteng constnte ( A- / A ) y por lo tnto O + A A Dilución del sistem ácido-se conjugd: Afect l molridd totl Afect l cpcidd reguldor No modific el p, dentro de ciertos límites Si A- = A p = p y A A pcidd reguldor ÁXIA Totl O.0 ( O ) Totl.0 + = p = p A pcidd reguldor ADEUADA 0 A 0 Elegir un sistem cuyo p se suficientemente próximo l p desedo

5 , Eq/L 0,6 0,5 0, 0, 0, 0, A 0,5 ; p =,7; p = 8,00 A 0,5 ; p =7, p 0,6 0,5 ácido utnodioico 0,5 ; p =,; p = 5,6 A 0,5 ; p =,, Eq q/l 0, 0 0, 0, 0, p ANFOLITOS: lculr el p de un solución de N PO 0.00 :. x 0 - : 7.5 x 0-8 :.8 x 0 - NPO N N + + PO - PO - + O PO - + O + PO O PO PO - + O PO + O - : 9, x 0 - < p ácido PO O PO PO - + O PO - + O + PO O O + O O - + O + PO w w =.0 x 0 - = O - x O + 5

6 B: =N + = PO + PO - + PO - + PO - BQ: O + + N + = PO - + PO - + PO - + O - BP: O + + PO = PO - + x PO - + O - Anfolito w 5 O,70 p =,56 Resultdo excto Verificción de desprecios: O,9 0 p ( p p) 5,5 Resultdo proximdo A O A O A A O A A O A O A O A O A O A p p p p p Si considermos que evolucion de mner similr hci ls dos especies, si es precid 6

7 EZLAS : EZLA DE ÁIDOS DÉBILES A O A + O A - + O + A A + O A - + O + A O A O + O O - + O + w =.0 x 0 - = O - x O + Blnces de ms: = A - + A = A - + A Blnce de crgs: O + = A - + A - + O - O w lculr el p de un solución 0.00 de ácido cético y de ácido propiónico. Ac :.80 x 0-5 Pr :. x 0-5 O + = A - + A - + O - i = A i- + A i O i i A i O i i i Ai O w O + =.7 x 0 - p =.76 Verificción de desprecios: Ac.050 Pr < 0% de Ac:.00 x 0 - < 0% de Pr: 5.00 x 0-7

8 EZLA DE BASES DÉBILES O B B + O B + + O - B B + O B + + O - O B O + O O - + O + B w =.0 x 0 - = O - x O + Blnces de ms: = B + B + = B + B + Blnce de crgs: O - = B + + B + + O + O w ÁIDO FUERTE + ÁIDO DÉBIL lculr el p de un solución preprd con moles de l y moles de O en L. :.8 x 0 - l + O l - + O + O + O O - + O + O + O O - + O + O O.80 w = O O - x O + Blnces de ms: l = l - d = O - + O Blnce de crgs: O + = O - + l - + O - 8

9 O O O O O O d l ( ) (l ) d O 6. 0 l Blnce de crgs: O + = O - + l - + O - O + =.6 x = 0.0 p =.95 Verificción de desprecios: O << 0% de O + :. x 0 - BASE FUERTE + BASE DÉBIL lculr el p de un solución preprd con moles de NO y moles de N en L. :.8 x 0 - NO N + + O - B + O B + + O - B O B O + O O - + O + w = O - x O + Blnces de ms: NO = N + d = B + B + Blnce de crgs: O - = B + + N + + O + 9

10 B d B B NO B ( NO ) ( NO ) d B + =.88 x 0 - O - = 0.09 po =.89 p =. Los desprecios se verificn ÁIDO FUERTE + BASE DÉBIL lculr el p de un solución preprd con moles de l y moles de un se déil (B) en L. : 5 x 0-0 l + O l - + O + B + O + B + + O Ácido fuerte en exceso Blnces de ms: l = l - = 0,000 d = B + B + = 0,000 Blnce de crgs: O + + B + = l - + O - B B 5 B O d l,00 B B 0

11 B ( ) l d d l d l Entonces: Blnces de ms: l = l - = 0,000 d = B + B + = 0, ,0996 = 0,000 Blnce de crgs: O + = l - - B + O + = 0,000 0,0996 = 0,000 = 0,000 p=,00 Los desprecios se verificn En form proximd: O + = f - d BASE FUERTE + ÁIDO DÉBIL lculr el p de un solución de NO y de o-cresol (-metilfenol) : 7.9 x 0 - NO N + + O - A + O - A - + O Bse fuerte en exceso Blnces de ms: NO = N + = 0,000 d = A - + A = 0,000 Blnce de crgs: O + + N + = O - + A - A A A O d NO,70 A A

12 A d NO ( d NO ) NO d 0,09755 Entonces: Blnces de ms: NO = N + = 0,000 d = A + A - =,9 x ,09755 = 0,000 Blnce de crgs: O - = N + - A - O - = 0,000 0,09755 = 0,009 = 0,00 p=,0 Los desprecios se verificn En form proximd: O - = f d BASE DÉBIL + ÁIDO DÉBIL Pr ordr el cálculo de p de l mezcl hy que otener el vlor de O + A O + + A - A O A O B B O B O O + + O - O B A + B + O A - + B + + O O + + O - O + + O - w O O A O A O B O O B w Resumiendo: A + B B + + A - w

13 Si no es grnde, un cntidd de rectivos de prtid permnece en equilirio con los productos. lculr el p de un solución que se prepr prtir de cloruro de monio 0,000 y trimetilmin (R N) 0,060. monio : 5,70 x 0-0 ; TA : 6, x 0-5 ; :,60 N + + R N N + R N + oncentrción inicil () 0,000 0, oncentrción finl () 0,000 x 0,060 x x x N RN x N R N 0,000 x 0,060 x Se otuvieron dos uffers: N p p log N p p,60 x = 0, , , log 9,8 0,00 RN 0,008 log 9,800 log 9,8 R N 0,00788 Si es grnde, los compuestos de prtid reccionn pr generr productos hst que uno de los rectivos se consume. L rección es complet. lculr el p de un solución que se prepr prtir de 00 ml de ácido clorocético (A) 0, y 60 ml de metilmin (B) 0, A :,6 x 0 - ; A :, x 0 - ; : 6,0 x 0 7 A + B A - + B + n mmoles iniciles 5,00, n mmoles finles,0 ---,60,60 Se formó un uffer prtir del rectivo en exceso: A, 60 p p log, 87 log, 8 A, 0

14 Si se dispone de un mezcl equimolr de A y B, el sistem es similr un nfolito. A + B A - + B + ( ) ( w ) es l myor; es l menor es l concentrción nlític de A o de B (son igules) Si A Si A > B+ l neutrlizción se fvorece y es grnde < B+ es muy j lculr el p de un solución que se prepr mezclndo 00 ml de ácido clorocético 0,0500 con 00 ml de metilmin 0,0500. A :,6 x 0 - ; B+ :, x 0 - = 6 x 0 7 (grnde) = A =,6 x 0 - L del ácido déil es l myor = B+ =, x 0 - L del ácido conjugdo de l se déil es l menor (, 60, 0 0, 050 ) ( 6, 0 w ) 7 O 7, 0 6, 0 0, 050 p: 6,76

TEMA VI: ACIDOS Y BASES

TEMA VI: ACIDOS Y BASES www.selectividd-cgrnd.com TEMA VI: ACIDOS Y BASES 1.- El ácido clorocético (ClCH COOH) en concentrción 0,01M y 5 C se encuentr disocido en 1%. Clculr: ) L constnte de disocición de dicho ácido. b) El ph

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE Junio, Ejercicio 4, Opción B Junio, Ejercicio 6, Opción A Reserv 1, Ejercicio 4, Opción B Reserv 1, Ejercicio 5, Opción

Más detalles

7. Equilibrio ácido-base II

7. Equilibrio ácido-base II 7. Equilibrios ácido-bse II Químic (1S, Grdo Biologí) UAM 7. Equilibrio ácido-bse II Contenidos Equilibrios ácido-bse II Propieddes ácido-bse de ls sles: hidrólisis. Indicdores ácido-bse Recciones ácido-bse.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE Junio, Ejercicio 4, Opción B Junio, Ejercicio 6, Opción A Reserv 1, Ejercicio 4, Opción A Reserv 2, Ejercicio 4, Opción

Más detalles

TEMA 11: EQUILIBRIOS ACIDO BASE

TEMA 11: EQUILIBRIOS ACIDO BASE TEMA 11: EQUILIBRIOS AIDO BASE Ls recciones ácidobse, especilmente quells que ocurren en disolución cuos, son de trscendentl importnci pr l químic experimentl, l biologí, l geologí, y por lo tnto, pr numerosos

Más detalles

Volumetrías Acido-Base

Volumetrías Acido-Base olumetrís Acido-Bse Acido Bse Acido /Bse fuerte con se/ ácido fuerte H OH - H 2 O Acido /Bse déil con se/ ácido fuerte AHOH - A - H 2 O B - H BH Acido /Bse déil con se/ ácido déil AHB - A - BH Acido/se

Más detalles

1.6 Perímetros y áreas

1.6 Perímetros y áreas 3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente

Más detalles

TEMA 3: EQUILIBRIO DE TRANSFERENCIA DE PROTONES (ÁCIDO-BASE) 3.1 CARACTERÍSTICAS DE ÁCIDOS Y BASES. EVOLUCIÓN HISTÓRICA DE LAS TEORÍAS ÁCIDO-BASE

TEMA 3: EQUILIBRIO DE TRANSFERENCIA DE PROTONES (ÁCIDO-BASE) 3.1 CARACTERÍSTICAS DE ÁCIDOS Y BASES. EVOLUCIÓN HISTÓRICA DE LAS TEORÍAS ÁCIDO-BASE IES Al-Ándlus. Dpto. Físic y Químic. Químic 2º Bchillerto. Tem 3. Equilirio ácido-se. Pág - 1 - TEMA 3: EQUILIBRIO DE TRANSFERENCIA DE PROTONES (ÁCIDO-BASE) 3.1 CARACTERÍSTICAS DE ÁCIDOS Y BASES. EVOLUCIÓN

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015 Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd

Más detalles

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión

Más detalles

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS FUNCIONES EXPONENCIALES Y LOGARÍTMICAS LA FUNCIÓN EXPONENCIAL. Introducción Siempre que hy un proceso que evolucione de modo que el umento (o disminución) en un pequeño intervlo de tiempo, se proporcionl

Más detalles

SOLUCIONARIO Poliedros

SOLUCIONARIO Poliedros SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

3.- Derivada e integral de funciones de variable compleja.

3.- Derivada e integral de funciones de variable compleja. 3.- Derivd e integrl de funciones de vrile complej. ) Derivds, funciones nlítics e interpretción geométric. ) Regls de diferencición. c) Ecuciones de uch-riemnn. d) Funciones rmónics. e) Integrción complej.

Más detalles

Tipos de Catálisis. Hay dos tipos de catálisis:

Tipos de Catálisis. Hay dos tipos de catálisis: CATáLISIS Un ctlizdor es un sustnci que celer (ctlizdor positivo) o retrd (ctlizdor negtivo o inhibidor) l velocidd de un rección químic, permneciendo éste mismo inlterdo. Un ctlizdor bj l energí de ctivción

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES.

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES. TEM : PROPORCIONLIDD Y PORCENTJES.. Conceptos de Rzón y Proporción. Se define l RZÓN entre dos números como l frcción que se form con ellos. Es decir l rzón entre y es:, con 0. De quí que ls frcciones

Más detalles

AUTOMATAS FINITOS Traductores

AUTOMATAS FINITOS Traductores Universidd de Morón Lengujes Formles y Autómts AUTOMATAS FINITOS Trductores AUTOMATAS FINITOS Un utómt finito es un modelo mtemático que posee entrds y slids. Un utomát finito recie los elementos tester

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas MECNIC DE FLUIDOS Y MQUINS FLUIDODINMICS Guí Trbjos Prácticos N 4 Ecución de Bernoulli. Mediciones mnométrics. L presión mnométric en es -0, Kg/cm. Determinr el peso específico reltivo del líquido mnométrico.

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

ph = -log [H 3 O + ] ; ph = log 1/[H 3 O + ]

ph = -log [H 3 O + ] ; ph = log 1/[H 3 O + ] CONCEPTO DE ph Como es muy común en l práctic trtr vlores muy pequeños de [H 3 O ] y de [OH - ] result más conveniente el trtmiento de esos vlores en términos logrítmicos. En 1909, Sörensen propuso l notción

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal.

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal. Universidd de Jén Deprtmento de Mtemátics (Áre de Álgebr) Curso 2014/15 PRÁCTICA Nº 12 APICACIONES INEAES: Núcleo e Imgen de un plicción linel. Con est práctic se pretende revisr l definición de plicción

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

UNIDAD DIDÁCTICA 4: LOGARITMOS

UNIDAD DIDÁCTICA 4: LOGARITMOS Tem 4 UNIDAD DIDÁCTICA 4: LOGARITMOS 1. ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función rítmic ritmos 4. Ecuciones eponenciles rítmics 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES

Más detalles

I.3.1.3 Hidroformilación bifásica de 1-octeno con sistemas de Rh/fosfina perfluorada P(C 6 H 4 -p-och 2 C 7 F 15 ) 3

I.3.1.3 Hidroformilación bifásica de 1-octeno con sistemas de Rh/fosfina perfluorada P(C 6 H 4 -p-och 2 C 7 F 15 ) 3 I.3 Discusión de resultdos I.3.1.3 Hidroformilción ifásic de 1-octeno con sistems de Rh/fosfin perfluord P(C 6 H 4 -p-och 2 C 7 F 15 ) 3 Como y se h comentdo en l introducción l ctálisis ifásic en sistems

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

OPERACIONES CON FRACIONES

OPERACIONES CON FRACIONES LEY DE SIGNOS OPERACIONES CON FRACIONES SUMA Y RESTA: Si se sumn dos números con el mismo signo, se sumn los vlores solutos y se coloc el signo común (+) + (+) = + 8 (-) + (-) = - 8 Si se sumn dos números

Más detalles

Capítulo III AGUA EN EL SUELO

Capítulo III AGUA EN EL SUELO Cpítulo III AGUA EN EL SUELO Curso de Hidrologí e Hidráulic Aplicds Agu en el Suelo III. AGUA EN EL SUELO III.1 AGUA SUBSUPERFICIAL (Cp. 4 V.T.Chow) Entre l superficie del terreno y el nivel freático (del

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

Estabilidad de los sistemas en tiempo discreto

Estabilidad de los sistemas en tiempo discreto Estbilidd de los sistems en tiempo discreto En tiempo discreto tmbién se puede hblr de estbilidd de estdo y de estbilidd de entrd slid de form similr l empled pr los sistems en tiempo continuo. Podemos

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

Integración Numérica. 18 Regla del Trapecio

Integración Numérica. 18 Regla del Trapecio Integrción Numéric L integrl resuelve el problem de clculr el áre bjo l gráfic de un función positiv definid sobre un intervlo cerrdo. El cálculo elementl de funciones de un vrible rel proporcion un método

Más detalles

Determinización: Construcción de Safra

Determinización: Construcción de Safra Determinizción: Construcción de Sfr Ddo: Autómt de Büchi A = (Q,Σ,Q 0,δ,F) Supong que Q = {q 1,...,q n }. Vmos construir un utómt de Rin determinist B tl que L ω (A) = L ω (B), donde B está compuesto por:

Más detalles

(II)La contabilización del Impuesto sobre Sociedades

(II)La contabilización del Impuesto sobre Sociedades Cierre Contble y Fiscl I. SOCIEDADES (II)L contbilizción del Impuesto sobre Socieddes Luis Alfonso Rojí Chndro (Febrero 2012) L.A. Rojí Asesores Tributrios, S.L. - Inscrit en el Registro Mercntil de Mdrid,

Más detalles

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS Unitt d ccés ccés l universitt dels mjors de 25 ns Unidd de cceso cceso l universidd de los mores de 25 ños UNIDAD DIDÁCTICA 4: LOGARITMOS ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

Fuerzas distribuidas: centroides y centros de gravedad

Fuerzas distribuidas: centroides y centros de gravedad bee76985_ch05.qd 10/24/06 11:02 M Pge 219 PÍTUL 5 Fuers distribuids: centroides centros de grvedd En l fotogrfí se muestr l construcción de un trmo del viducto Skw, el cul cru l bhí que se encuentr entre

Más detalles

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8 POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P.

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P. Log P X Se llm ritmo en bse de P, y se escribe P, l eponente l que hy que elevr l bse pr obtener P. Log P P Ejemplo: 8 8 L l it b d 8 Leemos, ritmo en bse de 8 es porque elevdo es 8. Anámente podemos decir:

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES En l epresión n c, puede clculrse un de ests tres cntiddes si se conocen dos de ells resultndo de este odo, tres operciones diferentes: º Potenci º Rdicción º Logrito

Más detalles

UNIDAD 3 Números reales

UNIDAD 3 Números reales . Curiosiddes sobre lgunos Pág. 1 de 4 Hy tres números de grn importnci en mtemátics y que, prdójicmente, nombrmos con un letr: El número designdo con l letr grieg π = 3,14159 (pi) relcion l longitud de

Más detalles

Tema 3. DETERMINANTES

Tema 3. DETERMINANTES Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa.

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa. Qué es el movimiento rectilíneo uniformemente vrido? Es un movimiento mecánico que experiment un móvil donde l tryectori es rectilíne y l celerción es constnte. Qué es l celerción? Es un mgnitud vectoril

Más detalles

INVERSA DE UNA MATRIZ

INVERSA DE UNA MATRIZ NVES E UN TZ l igul que pr hllr determinntes, restringiremos nuestro estudio mtrices cudrds utiliremos l mtri identidd de orden n ( n ). Podemos demostrr que si es culquier mtri cudrd de orden n, entonces

Más detalles

La máquina de corriente continua

La máquina de corriente continua Cpítulo I L máquin de corriente continu L máquin de corriente continu.. Introducción. Ls máquins de corriente continu (cc) se crcterizn por su verstilidd. Medinte diverss combinciones de devndos en derivción

Más detalles

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ;

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ; RESOLUCIÓN DE LOS EJERCICIOS BÁSICOS DEFINICIÓN DE LOGARITMO.- Obtener, sin clculdor, el vlor de en ls siguientes epresiones: ) (/) = 7/; 7/= / =(/) =(/) -, por tnto =- b) = ; ( ) = = =, por tnto =-/ y

Más detalles

Volumen de cuerpos geométricos

Volumen de cuerpos geométricos 829485 _ 0369-0418.qxd /9/07 15:06 Págin 381 Volumen de cuerpos geométricos INTRODUCCIÓN RESUMEN DE LA UNIDAD Como complemento l estudio del Sistem Métrico Deciml, inicimos est unidd con el concepto de

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles

DINÁMICA Y LAS LEYES DE NEWTON

DINÁMICA Y LAS LEYES DE NEWTON DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.

Más detalles

Corriente eléctrica. 1. Corriente eléctrica: Intensidad y densidad de corriente. 2. Ley de Ohm. Resistencia. Conductividad eléctrica.

Corriente eléctrica. 1. Corriente eléctrica: Intensidad y densidad de corriente. 2. Ley de Ohm. Resistencia. Conductividad eléctrica. Corriente eléctric 1. Corriente eléctric: ntensidd y densidd de corriente. 2. Ley de Ohm. Resistenci. Conductividd eléctric. 3. Potenci disipd en un conductor. Ley de Joule. Fuerz electromotriz. BBLOGRAFÍA:.

Más detalles

I 5 dq. 5 n 0 q 0 v d A dt. r5 E J. r 1 T 2 5r 0 31 1a1 T 2 T 0 24 V 5 IR. R 5 rl A. V ab 5 E 2 Ir (fuente con resistencia interna)

I 5 dq. 5 n 0 q 0 v d A dt. r5 E J. r 1 T 2 5r 0 31 1a1 T 2 T 0 24 V 5 IR. R 5 rl A. V ab 5 E 2 Ir (fuente con resistencia interna) CPÍTULO 25 REUMEN Corriente y densidd de corriente: Corriente es l cntidd de crg que fluye trvés de un áre especificd, por unidd de tiempo. L unidd del pr l corriente es el mpere, que es igul un coulomb

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

QUIMICA ANALITICA-EQUILIBRIO DE PRECIPITACION

QUIMICA ANALITICA-EQUILIBRIO DE PRECIPITACION QUIMICA ANALITICA-EQUILIBRIO DE PRECIPITACION.- Clculr l olubilidd en g/l de l iguiente le: ) MgN.5 0 - b) AO 0 - c) Pb ( ) 0 -.- e tienen 50 ml de un diolución de NI, NBr, NCl 0.0 M en cd l. e ñde got

Más detalles

Presentación Axiomática de los Números Reales

Presentación Axiomática de los Números Reales Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos

Más detalles

Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano

Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano Cpítulo 4 Números Rcionles. Luego de construir los Números Nturles, se presentron ciertos problems como Cuál es el resultdo de 3 menos 5?, pr poder encontrr un solución se creó prtir de N el conjunto de

Más detalles

TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tem 5 Límites de funciones, continuidd y síntots Mtemátics CCSSII º Bch 1 TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 5.1 LÍMITE DE UNA FUNCIÓN 5.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de

Más detalles

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( )

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( ) Isbel Nóvo Arechg FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: El tnto i y el tiepo n, tienen que estr correlciondos, es decir, referidos l iso período de tiepo, generlente

Más detalles

1 q 1 U 5 1 1. (dos cargas puntuales) U 5 q 0. 1 q 2. 1 q 3. r 3 0 i r i. r 1. q 0 4pP a. (q 0 en presencia de otras cargas puntuales)

1 q 1 U 5 1 1. (dos cargas puntuales) U 5 q 0. 1 q 2. 1 q 3. r 3 0 i r i. r 1. q 0 4pP a. (q 0 en presencia de otras cargas puntuales) CAPÍTULO 23 RESUMEN Energí potencil eléctric: L fuerz eléctric cusd por culquier conjunto de crgs es un fuerz conservtiv. El trbjo W relizdo por l fuerz eléctric sobre un prtícul con crg que se mueve en

Más detalles

CAPÍTULO VI. CINÉTICA DE LA DIGESTIÓN ANAEROBIA. En capítulos anteriores se han estudiado los distintos microorganismos presentes

CAPÍTULO VI. CINÉTICA DE LA DIGESTIÓN ANAEROBIA. En capítulos anteriores se han estudiado los distintos microorganismos presentes CAPÍTULO VI. CINÉTICA DE LA DIGESTIÓN ANAEROBIA 6.. Introducción En cpítulos nteriores se hn estudido los distintos microorgnismos presentes en l digestión nerobi sus intercciones y sus respectivos metbolismos.

Más detalles

Taller de Matemáticas I

Taller de Matemáticas I Tller de Mtemátics I Semn y Tller de Mtemátics I Universidd CNCI de México Tller de Mtemátics I Semn y Temrio. Los números positivos.. Representción de números positivos... Frcciones... Decimles... Porcentjes..4.

Más detalles

CONSIDERACIONES SOBRE LAS COMPUERTAS

CONSIDERACIONES SOBRE LAS COMPUERTAS Abril de 006 CONSDERACONES SOBRE LAS COMPUERTAS Cátedr de Mecánic de los Fluidos Escuel de ngenierí Mecánic Autores: ngeniero Edgr Blbstro ngeniero Gstón Bourges e-mil: gbourges@fcei.unr.edu.r 1 Abril

Más detalles

PROPORCIONALIDAD DIRECTA E INVERSA

PROPORCIONALIDAD DIRECTA E INVERSA PROPORCIONALIDAD DIRECTA E INVERSA Rzón entre dos números Siempre que hblemos de Rzón entre dos números nos estremos refiriendo l cociente (el resultdo de dividirlos) entre ellos. Entonces: Rzón entre

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS RACIONALES. y b distinto de cero. El conjunto de los números racionales se representa por la letra.

UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS RACIONALES. y b distinto de cero. El conjunto de los números racionales se representa por la letra. C u r s o : Mtemátic Mteril N 03 GUÍA TEÓRICO PRÁCTICA Nº 3 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS RACIONALES NÚMEROS RACIONALES Los números rcionles son todos quellos números de l form b con y b números

Más detalles

DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE

DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE Lbortorio de Físic Generl rimer Curso (Termodinánic) DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE Fech: 07/0/05. Objetivo de l práctic Medir el coeficiente dibático del ire relizndo un expnsión rápid..

Más detalles

6. Rodamientos 6.1. DESCRIPCIÓN Y CLASIFICACIONES

6. Rodamientos 6.1. DESCRIPCIÓN Y CLASIFICACIONES TO. INGENIERÍ MECÁNIC, ENERGÉTIC Y E MTERIES 2004 V. IO 6. Rodmientos 6.1. ESCRICIÓN Y CSIICCIONES prición de los utomóviles, motores de lt velocidd y mquinri de producción utomátic fvorecieron l investigción

Más detalles

DIVERSIFICACIÓN CURRICULAR

DIVERSIFICACIÓN CURRICULAR ECUACIÓN DE PRIMER GRADO Se llmn ecuciones igulddes en ls que precen número y letrs (incógnits) relciondos medinte operciones mtemátics. Por ejemplo: - y = + Son ecuciones con un incógnit cundo prece un

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

AUTÓMATAS DE PILA. Dpto. de Informática (ATC, CCIA y LSI). Univiersidad de Valladolid.

AUTÓMATAS DE PILA. Dpto. de Informática (ATC, CCIA y LSI). Univiersidad de Valladolid. Dpto. de Informátic (ATC, CCIA y SI). Univiersidd de Vlldolid. TEORÍA DE AUTÓMATAS Y ENGUAJES FORMAES II Ingenierí Técnic en Informátic de Sistems. Curso 20-2 AUTÓMATAS DE PIA. Dd l siguiente grmátic independiente

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución MOV. CICULAES: Un prto de un prque de trcciones consiste en un grn cilindro verticl que gir lrededor de su eje lo suficientemente rápido pr que culquier person que se encuentre dentro de él se mnteng pegd

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

7. EXPONENCIALES Y LOGARITMOS

7. EXPONENCIALES Y LOGARITMOS Eponenciles y Logrítmos 7. EXPONENCIALES Y LOGARITMOS En est Unidd estudiremos y nlizremos ls funciones y ecuciones eponenciles y logrítmics. Comenzremos con ls funciones eponenciles pr luego continur

Más detalles

Unidad 2 Efectos Térmicos Carta de Humedad

Unidad 2 Efectos Térmicos Carta de Humedad Termodinámic 2 Versión 2009 Unidd 2 Efectos Térmicos Crt de Humedd Contenidos 2.15 Crt de Humedd Humedd bsolut y humedd reltiv Volumen específico Tempertur del bulbo seco y del bulbo húmedo Tempertur de

Más detalles

OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA

OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA . DOMINIO inio de o cmpo de eistenci de es el conjunto de vlores pr los que está deinid l unción, es decir, el conjunto de vlores que tom l vrible independiente. Se denot por. { R / y R con y } OBTENCIÓN

Más detalles

CAPÍTULO 3. PROCEDIMIENTOS DE INTEGRACIÓN 3.1. Integración por cambio de variable 3.2. Integración por partes 3.2.1. Producto de un polinomio por una

CAPÍTULO 3. PROCEDIMIENTOS DE INTEGRACIÓN 3.1. Integración por cambio de variable 3.2. Integración por partes 3.2.1. Producto de un polinomio por una CAPÍTULO. PROCEDIMIENTOS DE INTEGRACIÓN.. Integrción por cmbio de vrible.. Integrción por prtes... Producto de un polinomio por un eponencil... Producto de un polinomio por un seno o un coseno... Producto

Más detalles

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple Integrl de un función rel Tem 08: Integrles Múltiples Jun Igncio Del Vlle Gmbo Sede de Guncste Universidd de Cost ic Ciclo I - 2014 Ls integrles definids clculn el áre bjo un curv y = f (x) pr un región

Más detalles