lim x sen(x) Apellidos: Nombre: Curso: 2º Grupo: A Día: 23-II-2015 CURSO Instrucciones:
|
|
- Inmaculada Contreras Poblete
- hace 4 años
- Vistas:
Transcripción
1 EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: II5 CURSO 5 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios de la Opción A o bien únicamente los cuatro ejercicios de la Opción B c) Contesta de forma razonada, escribe ordenadamente y con letra clara. d) Puedes usar calculadora (puede ser programable o tener pantalla gráfica). Opción A Ejercicio. [,5 puntos] Sabiendo que es cos() e a sen() finito, calcula a y el valor del límite. Ejercicio. Sea f: R R la función definida por: a si f() b si > a) [,5 puntos] Halla a y b sabiendo que f es derivable en R. b) [ punto] Determina la recta tangente y la recta normal a la gráfica de f en el punto de abscisa. π Ejercicio. [,5 puntos] Calcula / d cos () (Sugerencia: integración por partes). Ejercicio. Sea f: R R la función definida por f() a) [ punto] Estudia la derivabilidad de f en. b) [,5 puntos] Esboza la gráfica de f. c) [ punto] Calcula el área del recinto itado por la gráfica de f y el eje de abscisas. Opción B Ejercicio. Sea f la función definida por f(), para. a) [.75 puntos] Halla, si eisten, los puntos de corte con los ejes y las asíntotas de la gráfica de f. b) [ punto] Calcula los intervalos de crecimiento y decrecimiento y los etremos relativos de f. c) [.75 puntos] Esboza la gráfica de f. Ejercicio. [,5 puntos] Determina dos números reales positivos sabiendo que su suma es y que el producto de sus cuadrados es máimo. Ejercicio. [,5 puntos] Determina una función f: R R sabiendo que su derivada viene dada por f'() 6 y que el valor que alcanza f en su punto de máimo (relativo) es el triple del valor que alcanza en su punto de mínimo (relativo). Ejercicio. Sea f: (, ) R la función definida por f() Ln( ) (Ln denota la función logaritmo neperiano). a) [ punto] Determina la ecuación de la recta tangente a la gráfica de f en el punto de abscisa. b) [,5 puntos] Calcula el área del recinto itado por la gráfica de f, la recta tangente obtenida en el apartado anterior y la recta.
2 SOLUCIÓN DE LA PRUEBA Opción A Ejercicio. [,5 puntos] Sabiendo que es Hallamos el límite de la epresión: cos() e a cos() e a. sen() sen() cos() e a sen() finito, calcula a y el valor del límite. Como ambas funciones f y g son continuas en el intervalo [a δ, a δ] y derivables en el intervalo (a δ, a f() δ), verificando que f(a) g(a) y tales que podemos aplicar la regla de L Hôpital, que a g() f() f'() dice que se verifica que. a g() a g'() cos() e a.sen() e a. e a a sen() sen() cos() Como según el enunciado el límite eiste y es finito el numerador ha de ser nulo, para obtener una indeterminación y poder volver a aplicar la regla de L Hôpital, por lo tanto a a. Volvemos a aplicar la regla de L Hôpital, con a, obteniendo el límite:.sen() e 9.cos() e 9.cos() e 9.cos() e sen() cos() cos() cos().sen() cos().sen() cos().sen() 9. e. 9 5 Ejercicio. Sea f: R R la función definida por: a si f() b si > a) [,5 puntos] Halla a y b sabiendo que f es derivable en R. b) [ punto] Determina la recta tangente y la recta normal a la gráfica de f en el punto de abscisa. a) Si la función es derivable ha de ser continua. Como la rama de la izquierda es una polinómica de segundo grado, es por lo tanto continua y derivable en todo R, en particular en <. La rama de la derecha es una polinómica de segundo grado, por lo tanto continua y derivable en todo R, en particular en > Obliguemos a que sea continua en : f() f() (a ) a6 lím lím lím f() ( b ) b lím Igualando ambas epresiones obtenemos la ecuación a 6 b [] Obliguemos a que sea derivable en : f ( f() f() (a ) (a 6) ) a( ) ( ) ( )[a( ) ]
3 [a( ) ] a f ( ) f() f() Utilizando la epresión []: ( b ) (a 6) f ( ( ) b ) b ( ) b( ) Igualando ambas epresiones obtenemos la ecuación a b [] ( )[( ) b] [( ) b] b Como f ( ) f ( ), f() no es derivable en, por lo cual es derivable en R{} a 6 b Resolviendo el sistema, obtenemos a y b 7, por tanto la función pedida es a b si f() 7 si > b) Como nos piden la recta tangente y normal en, tomamos la rama de la función con >, es decir f() 7 La recta tangente en es: yf() f ()() La recta normal en es: y f() (/f ()).() Tomaos valores: () 7 f() 9 6 f () 7 f () 6 7 La recta tangente en es: y 6 ( ) La recta normal en es: y 6 (/).( ) Ejercicio. [,5 puntos] Calcula π/ d (Sugerencia: integración por partes). cos () Resolvemos primero la integral indefinida I d que realizamos por partes siendo: cos () u du d d dv v tg cos () sen I.tg tg.d.tg.d. tg [ln(cos )]. tg ln(cos ) cos Luego aplicamos la regla de Barrow: π / π d [. tg ln(cos ) ] / cos () π ln π [ ln( ) ] ln π π π. tg ln cos [. tg( ) ln( cos ) ]
4 Ejercicio. Sea f: R R la función definida por f() a) [ punto] Estudia la derivabilidad de f en. b) [,5 puntos] Esboza la gráfica de f. c) [ punto] Calcula el área del recinto itado por la gráfica de f y el eje de abscisas. Solución a) Para estudiar la derivabilidad de f en, antes debemos considerar la continuidad de la función en dicho punto. Para ello redefinimos la función como función a trozos. si < si La rama de la izquierda es una polinómica de segundo grado, por lo tanto continua y derivable en todo R, en particular en < La rama de la derecha es una polinómica de segundo grado, por lo tanto continua y derivable en todo R, en particular en > Veamos la continuidad de f() en : lím f() lím ( ) f() lím f() ( ) lím Al ser dichos valores iguales, la función f() es continua en, y por tanto en todo R. Estudiemos la derivabilidad en, es decir si son iguales las derivadas laterales: f ( f() f() ( ) ) ( ) f ( ) f() f() ( ) Como f ( ) f ( ), f() no es derivable en, por lo cual es derivable en R{} b) Para calcular el área del recinto itado por la gráfica de f y el eje de abscisas representamos dicha gráfica teniendo en cuenta que la rama de la izquierda es una parábola cóncava cuyo vértice es la solución de f () : f () f () cuya ordenada es: () es decir V (, ) La rama de la derecha es una parábola convea cuyo vértice es la solución de f () : f () f () cuya ordenada es: () es decir V (, ) que no pertenece al dominio. Obtenemos la gráfica de la figura adjunta. c) El área que nos piden es A ( )d 8 u
5 Opción B Ejercicio. Sea f la función definida por f(), para. (a) [,75 puntos] Halla los puntos de corte con los ejes y las asíntotas de la gráfica de f. (b) [ punto] Calcula los intervalos de crecimiento y decrecimiento y los etremos relativos de f. (c) [,75 puntos] Esboza la gráfica de f. Solución a) Cortes con los ejes. Corte con el eje OY: No tiene porque no está definida la función para. Corte con el eje OX: que no tiene Solución real. Luego la función no tiene cortes con los ejes. a) Asíntotas. Asíntota vertical: puesto que: Asíntota horizontal: No tiene puesto que Asíntota oblicua: No tiene puesto que ( )/ Por lo tanto presenta una rama parabólica. b) Intervalos de crecimiento y decrecimiento y los etremos relativos Para calcularlos hallamos la primera derivada de la función.. ( ) ( ) f () que se anula en: ( ) con soluciones y Luego se establecen las regiones: (, ), (,), (, ) y (, ). Tomando valores en la derivada en cada una de las regiones obtenemos que: f es creciente en (, ) (, ). f es decreciente en (,) (, ) Por lo tanto deducimos que la función tiene: Un máimo relativo en (, ) Un mínimo relativo en (, ). c) Un esbozo de la gráfica es el de la figura adjunta: 5
6 Ejercicio. [,5 puntos] Determina dos números reales positivos sabiendo que su suma es y que el producto de sus cuadrados es máimo. Es un problema de optimización. Consideramos que e y son los dos números pedidos. Por el enunciado del problema debemos optimizar: P(, y).y [] Sujeta a la relación: y y Sustituyendo en []: P().().( ). Para maimizarlo hallamos su primera derivada P (): P () 6. y resolvemos P () que serán los posibles máimos o mínimos. P () 6 ( 6) con solución con soluciones y 5. Luego los posibles máimos o mínimos son, 5 y. 6 Hallemos P () y comprobemos dichos valores para averiguar si es máimo o mínimo: P () Como P () >, es un mínimo relativo. Como P () >, es un mínimo relativo. Como P (5) <, 5 es un máimo relativo. Ejercicio. [,5 puntos] Determina una función f: R R sabiendo que su derivada viene dada por f'() 6 y que el valor que alcanza f en su punto de máimo (relativo) es el triple del valor que alcanza en su punto de mínimo (relativo). Vamos a determinar en primer la integral de f () que es f(): f() f' () d ( 6) d 6 C Los etremos, máimos o mínimos relativos se alcanzan en los valores que anulan la derivada: ± ± 5 6 con soluciones y Para comprobar si son máimos o mínimos hallamos la ª derivada y comprobamos su valor: f '() Como f () y f () 5 <, es un máimo relativo Como f () y f () 5 >, es un mínimo relativo Sustituimos los valores en la integral f(): () () f() 6() C 9 C 9 7 C 8 f() 6. C C C 6
7 Aplicamos el enunciado del problema de que el valor que alcanza f en su punto de máimo relativo es el triple del valor que alcanza en su punto de mínimo relativo: 7 f() f() C 7. C C 7 C 7C 6C 7 C C Luego la función pedida es: 7 f() 6 Ejercicio. Sea f: (, ) R la función definida por f() Ln( ) (Ln denota la función logaritmo neperiano). a) [ punto] Determina la ecuación de la recta tangente a la gráfica de f en el punto de abscisa. b) [,5 puntos] Calcula el área del recinto itado por la gráfica de f, la recta tangente obtenida en el apartado anterior y la recta. Solución a) La recta tangente en en forma puntopendiente es: yf() f ()() Tomamos valores en la función y la derivada: f() Ln() f() Ln() f () f () Sustituyendo valores: y () y que es la bisectriz del I y III cuadrante. b) La gráfica de Ln( ) es eactamente igual que la de Ln() pero desplazada una unidad a la izquierda en el eje de abscisas OX. Un esbozo del recinto pedido es el de la figura adjunta donde observamos la recta tangente está por encima de la gráfica de la función: Vamos ya a calcular el área que nos piden A [ Ln( )]d d Ln( )d La primera es una integral inmediata y la segunda es una por partes, de la cual hallaremos una primitiva I Ln( )d d u Ln() du dv d v I d Ln( ) d Como la integral obtenida es racional donde numerador y denominador tiene el mismo grado sumamos y restamos en el numerador: I d d d d Ln( ) Ln( ) d Ln( ) d.ln()ln() Luego el valor del área es: A.Ln( ) Ln( ).Ln() Ln().Ln() Ln().Ln() u 7
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
EXAMEN DE MATEMATICAS II 2ª ENSAYO (1) Apellidos: Nombre:
EXAMEN DE MATEMATICAS II ª ENSAYO () Apellidos: Nombre: Curso: º Grupo: A Día: CURSO 05 Instrucciones: a) Duración: HORA y 0 MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios de
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
Profesor: Fernando Ureña Portero
MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:
RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
COL LECCIÓ DE PROBLEMES RESOLTS
DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo
IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Septiembre de 0 (Septiembre Modelo ) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 00-0. MATEMÁTICAS II Opción A Ejercicio opción A,
REPRESENTACIÓN DE FUNCIONES
8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES
Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA
EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después
IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]
= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x
Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas
REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x
1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
x = 0, la recta tangente a la gráfica de f (x)
CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas
Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10
página 1/20 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 Hoja 2. Problema 2 Resuelto por Carmen Jiménez Cejudo (diciembre 2014)
FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =
Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.
Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales
Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A
IES Francisco Ayala Modelo (Septiembre) de 7 Germán Jesús Rubio Luna Opción A Ejercicio n de la opción A de septiembre, modelo de 7 3x+ Sea f: (,+ ) R la función definida por f(x)= x. [ 5 puntos] Determina
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento
Las superficies serán: Tapa y superficie lateral S 1 = ( x 2 +4xy ) cm 2 Superficie de la base: S 2 = x 2 cm 2
MATEMÁTICAS II, º BACHILLERATO F.- Se desea construir una caja cerrada de base cuadrada con una capacidad de 8 cm. Para la tapa y la superficie lateral se usa un material que cuesta /cm y para la base
Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x
Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que
IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala de Granada Septiembre de 01 (Modelo ) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Septiembre 01 ['5 puntos] Un alambre de 10 metros de longitud se divide en dos trozos.
UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS
Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo
IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide
1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.
ejerciciosyeamenes.com EXAMEN DERIVADAS. Estudia la derivabilidad de la función si f ()= si > 3. )En qué punto del intervalo (0,ð) la recta tangente a y=tg() tiene pendiente?. 4. Ecuación de la recta tangente
x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4
CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2
Aplicaciones de la integral definida al cálculo de áreas
Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano
Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x.
Derivadas Definición Reglas de derivación jercicio Calcula la tangente de las siguientes curvas en los puntos dados: a) y = en el origen + b) y = cos() en ( c) y = + en (3, 0) π, 0) d) y = en (, ) Solución
DERIVADAS LECCIÓN 22. Índice: Representación gráfica de funciones. Problemas. 1.- Representación gráfica de funciones
DERIVADAS LECCIÓN Índice: Representación gráfica de funciones. Problemas.. Representación gráfica de funciones Antes de la representación de la gráfica de una función se realiza el siguiente estudio: º)
Tema 7: Aplicaciones de la derivada, Representación de Funciones
Tema 7: Aplicaciones de la derivada, Representación de Funciones 0.- Introducción 1.- Crecimiento y Decrecimiento de una función. Monotonía..- Máimos y mínimos de una función.1.- Etremos relativos...-
Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos
Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím
Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca
Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo
f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).
TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio
PROBLEMAS DE INTEGRALES INDEFINIDAS
PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su
INTEGRAL DEFINIDA. APLICACIONES
COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del
Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León
Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo
Si se pueden obtener las imágenes de x por simple sustitución.
TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,
APLICACIONES DE LAS DERIVADAS
UNIDAD APLICACIONES DE LAS DERIVADAS Página 98 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f
Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.
Derivadas. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.. Función derivable en un punto, derivada de una función en
PROBLEMAS DE OPTIMIZACIÓN
1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello
Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)
Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del
IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica
Tema 13 La integral definida. Aplicaciones
Tema La integral definida. Aplicaciones. Integral definida. Calcula la integral. ( ) d 4 Calculamos una primitiva de la función f ( ) : G( ) ( ) d Según la regla de Barrow: 4 4 ( ) d G(4) G() 4 8 4 Ahora
IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre
IES Fco Ayala de Granada Septiembre de 015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 Septiembre 015 ax + b [ 5 puntos] Halla los valores a, b y c sabiendo que
IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular
Demuestra que el punto de tangencia, T, es el lugar de la recta r desde el que se ve el segmento AB con ángulo máximo.
Matemáticas aplicadas a las Ciencias Sociales II Resuelve Página 7 Optimización Una persona se acerca a una estatua de m de altura. Los ojos de la persona están m por debajo de los pies de la escultura.
4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE
Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES
7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Página 75 REFLEIONA RESUELVE Tomar un autobús en marca En la gráfica siguiente, la línea roja representa el movimiento de un autobús que arranca de la
Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos
página /9 Problemas Tema Solución a problemas de Repaso de ºBachillerato - Hoja 02 - Todos resueltos Hoja 2. Problema. Sea f x )=a x 3 +b x 2 +c x+d un polinomio que cumple f )=0, f ' 0)=2, y tiene dos
Matemáticas de 2º de bachillerato página 1 Integral indefinida. Integral indefinida
Matemáticas de º de bachillerato página Integral indefinida Integral indefinida.introducción.- La integración es el proceso recíproco de la derivación, es decir, en la derivación se trata de hallar la
La concentración de ozono contaminante, en microgramos por metro cúbico, en una
ANÁLISIS MATEMÁTICO. PAU CASTILLA Y LEÓN A) EJERCICIOS DE APLICACIÓN A LAS CCSS La concentración de ozono contaminante, en microgramos por metro cúbico, en una ciudad viene dada por la función C ( ) 90
Ejercicios de Análisis propuestos en Selectividad
Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa
Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página
Derivadas 6 ACTIVIDADES 1. Página 140 Función f(x) x 2 1: Función g(x) x 3 7: 2. Página 140 3. Página 141 4. Página 141 5. Página 142 211 Derivadas 6. Página 142 Las derivadas laterales no existen, por
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bac TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación
IES Fco Ayala de Granada Septiembre de 2013 (Modelo 4 Especifico 2) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala de Granada Septiembre de 013 (Modelo 4 Especifico ) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 Septiembre 013 específico [ 5 puntos] Un rectángulo está inscrito en un
Aplicaciones de la derivada Ecuación de la recta tangente
Aplicaciones de la derivada Ecuación de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. La recta tangente a una curva en un punto
JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.
Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones
ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN
ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN Teoría Práctica Los pasos a seguir para el estudio completo y representación de una Función son los siguientes: ) Hallar el Dominio de la función. En dicho
IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción
DERIVADAS. es: = + = es: = +
DERIVADAS. La derivada de la función f ( ) es: A) f ( ) f ( ) + B) f ( ) D) f ( ) ( ) f ( ). La derivada de la función f ( ) e es: A) f ( ) e f ( ) e B) f ( ) ( ) e D) f ( ) + e ( ) f e + e e e e ( ).
UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro)
(temas 6 del libro). EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera ila o columna iguran los valores
IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio opción A, modelo de año 200 [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función a maximizar A (/2)(x)(y)
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en
1. INTEGRALES DEFINIDAS E IMPROPIAS
. INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El
6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría
6 Funciones 1. Estudio gráfico de una función Piensa y calcula Indica cuál de las siguientes funciones es polinómica y cuál racional: 2 + 5 f() = f() = 3 5 2 + 6 4 2 4 Racional. Polinómica. Aplica la teoría
Tema 7.0. Repaso de números reales y de funciones
Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
ACTIVIDADES INICIALES b EJERCICIOS PROPUESTOS
6 Derivadas ACTIVIDADES INICIALES 6I Escribe la ecuación de las siguientes rectas: a) Horizontal y que pase por el punto A(, ) b) Decreciente y que pase por el punto A(, ) c) Creciente y que pase por el
Estudio Gráfico de Funciones
Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función
TEMA 3. Funciones. Cálculo diferencial
TEMA 3. Funciones. Cálculo diferencial En este tema vamos a hacer un estudio preliminar de las funciones de una variable real y el importante concepto de derivada. Comenzaremos recordando las funciones
Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos
PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.
PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE
TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]
Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o
DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =
3. y = (2x+1)2 2x+3. x, x < 2 x+1, x 2
Derivadas. Dada la siguiente función, calcular, por la definición, la derivada que se indica:. f() = - ; f (-). f() = ; f (0). f() = ln ; f () 4. f() = - ; f (0) 5. f() = +, < 0, 0 ; f (0) 6. f() = sen,
GUÍA DE LA UNIDAD FUNCIONES : DERIVADAS
Funciones Límites Derivadas Aplicaciones Gráficas C ontenidos Idea de Función. Elementos notables de la gráfica de una función. Funciones lineales. Función definida por intervalos. Función Valor Absoluto.
CBC. Matemática (51) universoexacto.com 1
CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta
La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.
Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio
DERIVADAS. TÉCNICAS DE DERIVACIÓN
DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 5 REFLEXIONA Y RESUELVE Tangentes a una curva y f () 5 5 9 4 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(4). f'() 0; f'(9) ; f'(4) 4 Di otros
Problemas de selectividad. Análisis
Departamento de Matemáticas Página 1 Problemas de selectividad. Anális 14.01.- De entre todos los triángulos rectángulos de área 8 cm, determina las dimenones del que tiene la hipotenusa de menor longitud.
dada por c(x) = donde x indica el tamaño de los pedidos para renovar existencias
FUNCIONES +, si
Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A
Eámenes de Matemáticas de Selectividad ndalucía resueltos http://qui-mi.com/ Eamen de Selectividad Matemáticas JUNIO 5 - ndalucía OPCIÓN.- [,5 puntos] Se quiere construir un depósito abierto de base cuadrada