C alculo Octubre 2010
|
|
- Juan Luis Ramírez Villanueva
- hace 4 años
- Vistas:
Transcripción
1 Cálculo Octubre 2010
2 c Dpto. de Mtemátics UDC
3 c Dpto. de Mtemátics UDC L integrl indefinid Sen I R un intervlo bierto y f : I IR Definición Diremos que F es primitiv de f en I si F (x) = f (x), x I Teorem Si F y G son dos primitivs de un mism función f en un intervlo I, entonces, k IR tl que F(x) = G(x) + k, x I
4 c Dpto. de Mtemátics UDC L integrl indefinid Definición Dd un función f : I IR, llmremos integrl indefinid de f l conjunto de tods sus primitivs, y escribiremos: f (x)dx = { F / F (x) = f (x), x I } En consecuenci, si conocemos un primitiv F de f, conocemos tods: f (x)dx = {F + k, k IR} Propiedd (linelidd de l integrl) [f (x) + g(x)] dx = f (x)dx + g(x) dx α f (x)dx = α f (x)dx, α IR
5 c Dpto. de Mtemátics UDC Integrles inmedits f (x) m f (x)dx = 1 m + 1 f (x)m+1 + C, m 1 f (x) dx = ln f (x) + C f (x) e f (x) f (x)dx = e f (x) + C f (x) f (x)dx = f (x) + C, > 0, 1 ln [sinf (x)]f (x)dx = cosf (x) + C [cosf (x)]f (x)dx = sinf (x) + C
6 c Dpto. de Mtemátics UDC Integrles inmedits f (x) 1 + f 2 (x) dx = rctnf (x) + C f (x) dx = rcsinf (x) + C 1 f 2 (x) f (x) sin 2 dx = cotf (x) + C f (x) f (x) cos 2 dx = tnf (x) + C f (x) [tnf (x)]f (x)dx = ln cosf (x) + C [cotf (x)]f (x)dx = ln sinf (x) + C
7 c Dpto. de Mtemátics UDC Integrción por prtes u(x)v (x)dx = (uv)(x) v(x)u (x)dx o bien, udv = uv vdu Es conveniente cundo el integrndo es un producto de: polinomio y exponencil polinomio y seno o coseno exponencil y seno o coseno
8 c Dpto. de Mtemátics UDC Integrción por cmbio de vrible Sen: f : [,b] IR integrble, ϕ : [α,β] IR inyectiv, con derivd continu y tl que: ϕ ([α,β]) [,b] Entonces f (x)dx = f [ϕ(t)]ϕ (t)dt
9 c Dpto. de Mtemátics UDC Sums de Riemnn Se un intervlo [,b] IR y f : [,b] IR un función cotd. Definición Llmmos prtición P de [,b] un conjunto de puntos {x 0,x 1,...,x n } que verific: = x 0 x 1 x 2... x n 1 x n = b Definición Dd un prtición P, definimos M i = sup f (x) m i = ínf f (x) x i 1 x x i x i 1 x x i Definición Llmmos sum superior de Riemnn y sum inferior de Riemnn de l función f reltivs l prtición P : U(P,f ) = n i=1 M i (x i x i 1 ) L(P,f ) = n i=1 m i (x i x i 1 )
10 c Dpto. de Mtemátics UDC Integrl de Riemnn Definición Dd un función f cotd, diremos que es integrble en [,b] en el sentido de Riemnn si y sólo si: ε > 0, P prtición de [,b] tl que U(P,f ) L(P,f ) < ε. Escribiremos f R[, b]. Interpretción gráfic Dd un función positiv en un intervlo [,b], su integrl de Riemnn represent el áre encerrd por l curv y = f (x) y el eje y = 0, entre ls bsciss x = y x = b
11 c Dpto. de Mtemátics UDC
12 c Dpto. de Mtemátics UDC
13 c Dpto. de Mtemátics UDC Teorem (de integrbilidd) Tod función continu en [,b] es integrble en dicho intervlo = Tod función derivble es continu, y por lo tnto integrble Tod función monóton y cotd en [,b] es integrble en dicho intervlo Tod función cotd en [,b] que present en dicho intervlo un número finito de puntos de discontinuidd, es integrble en [,b] Se f un función integrble en [,b] en el sentido de Riemnn, y tl que: m f (x) M, x [,b] Si g es continu en [m,m], entonces l función compuest (g f ) es integrble en [,b]
14 c Dpto. de Mtemátics UDC Propiedd Sen f,g R[,b] (f ± g) R[,b] y (cf ) R[,b], c IR, y se cumple: (f ± g)dx = f dx ± gdx cf dx = c f dx Si f (x) g(x) en [,b], entonces f dx gdx Si < c < b, entonces f R[,c] y f R[c,b], y se verific: c f dx = f dx + f dx c Si f (x) M, x [,b], entonces f dx M(b ) fg R[,b] f R[,b], y se cumple: f dx dx f
15 c Dpto. de Mtemátics UDC Teorem (fundmentl del cálculo) Se f R[,b]. Pr x b, llmemos: x F(x) = f (t)dt. Entonces, F C [,b]. Además, si f es continu en [,b], F entonces es derivble en [,b], y F (x) = f (x), x [,b]. Tmbién puede enuncirse de l siguiente mner: Si f : I IR es continu en I, entonces tiene primitivs en I; un de ells es l integrl definid F dd por: donde I es culquier. x F(x) = f (t)dt
16 c Dpto. de Mtemátics UDC Regl de Brrow Si f R[,b] y existe un función F derivble en [,b] tl que F = f, entonces: b f (x)dx = F(x) = F(b) F() Teorem (Integrción por prtes) Si F y G son dos funciones derivbles en [,b], y se tiene: { F = f G en [,b] = g siendo f y g integrbles en [,b], entonces, F(x)g(x)dx = F(b)G(b) F()G() f (x)g(x)dx
17 c Dpto. de Mtemátics UDC Teorem Se l función F dd por l integrl definid: (x) F(x) = f (t)dt (x) L derivd de F con respecto x viene dd por: F (x) = f (b(x))b (x) f ((x)) (x)
18 c Dpto. de Mtemátics UDC Integrción numéric L integrl de un función no se clcul de form exct cundo sólo conocemos sus vlores en un número finito de puntos su primitiv no se expres en términos de funciones elementles ejemplos: f (x) = sinx x ; f (x) = e x2 su primitiv es muy costos de clculr o de evlur 1 ejemplo: f (x) = (x 8) x 2 4x 7
19 c Dpto. de Mtemátics UDC Integrción numéric. Fórmuls simples Fórmul del rectángulo: f (x)dx (b )f (x 0 ), x 0 [,b]; en prticulr, si x 0 = +b 2, se conoce como fórmul del punto medio o fórmul de Poncelet Fórmul del trpecio: f (x)dx b ( ) f () + f (b) 2 Fórmul de Simpson: f (x)dx b ( f () + 4f ( + b ) 6 2 ) + f (b)
20 c Dpto. de Mtemátics UDC Integrción numéric. Fórmuls compuests 1. Dividimos el intervlo de integrción en subintervlos más pequeños x i = + ih (i = 0,1,...,n) con h = b n 2. Aproximmos l integrl medinte un fórmul simple en cd subintervlo n 1 xi+1 f (x)dx = f (x)dx i=0 x i Fórmul del punto medio compuest: n 1 f (x)dx h Fórmul del trpecio compuest: f (x)dx h 2 i=0 ( n 1 f (x 0 ) + 2 f ( x i + x i+1 ) 2 i=1 ) f (x i ) + f (x n )
21 c Dpto. de Mtemátics UDC Integrción impropi Definición L integrl condiciones siguientes: f (x)dx se denomin impropi si cumple l menos un de ls el intervlo (,b) no es cotdo f no está cotd en (,b) Clsificmos ls integrles impropis en 3 tipos.
22 c Dpto. de Mtemátics UDC Integrles impropis de primer especie Se f : (, b] IR integrble en [m, b], m b. Definimos: f (x)dx = lím m m f (x)dx si existe el límite, en cuyo cso l integrl se denomin convergente.
23 c Dpto. de Mtemátics UDC Integrles impropis de primer especie De igul form se define: + f (x)dx = Tmbién definimos + f (x)dx = lím M + M f (x)dx + f (x)dx + f (x)dx si mbs integrles convergen, en cuyo cso l definición no depende de IR
24 c Dpto. de Mtemátics UDC Integrles impropis de segund especie Considermos l función f : [,b] IR no cotd en uno de los extremos del intervlo, por ejemplo en. Si f es integrble en [t,b] pr todo t tl que t b, entonces definimos: f (x)dx = lím t + t f (x)dx si existe el límite, en cuyo cso l integrl se denomin convergente. Si l función pierde el crácter cotdo en un punto c (,b), definimos: f (x)dx = c f (x)dx + f (x)dx donde ls dos últims integrles se hn descrito nteriormente. c
25 Integrles impropis de segund especie c Dpto. de Mtemátics UDC
26 c Dpto. de Mtemátics UDC Integrles impropis de tercer especie Corresponden un intervlo no cotdo y un función no cotd en un número finito de puntos del intervlo. Ejemplo L integrl 0 1 x dx se reduce los csos nteriores de l siguiente form: x dx = 1 0 x dx + }{{} 2 especie 1 1 x dx }{{} 1 especie
27 c Dpto. de Mtemátics UDC Áre de superficies plns Sen ls funciones f,g : [,b] IR integrbles. Entonces el áre A limitd por los grfos de mbs, ls rects x = y x = b viene dd por: A = f (x) g(x) dx Cso prticulr: g(x) = 0, luego A = f (x) dx
28 c Dpto. de Mtemátics UDC Longitud de un rco de curv Se f C 1 ([,b],ir). L longitud l del grfo de f que une los puntos (,f ()) y (b,f (b)) es: l = 1 + f (x) 2 dx
29 c Dpto. de Mtemátics UDC Volumen de un sólido Supongmos un sólido que, l ser cortdo por un plno perpendiculr l eje OX, pr cd x [,b] produce un sección de áre A(x). El volumen de dicho cuerpo comprendido entre x = y x = b es: V = A(x) dx De igul form, se obtendrí el volumen del cuerpo prtir de ls áres de ls secciones producids por plnos perpendiculres l eje OY en el intervlo [,b].
30 c Dpto. de Mtemátics UDC Volumen de un sólido Cso prticulr: volumen de revolución. Si girmos el grfo de f : [,b] IR lrededor del eje OX, se construye un figur cuyo volumen es: V = π f (x) 2 dx
31 c Dpto. de Mtemátics UDC Superficie lterl de revolución El áre lterl del sólido construido l girr el grfo de f : [,b] IR lrededor del eje OX, donde f es un función de clse C 1, se clcul medinte: A L = 2π f (x) 1 + f (x) 2 dx
LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.
Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función
La Integral de Riemann
Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función
Cálculo integral de funciones de una variable
Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del
Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida
Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de
El Teorema Fundamental del Cálculo
del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid
6.1 Sumas de Riemann e integral definida
Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el
Integral de Riemann. Introducción a la integración numérica.
Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se
7.1. Definición de la Integral de Riemann
Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo
Integrales impropias
Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección
7.1. Definición de integral impropia y primeras propiedades
Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,
int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.
Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,
TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo
TEMA 6. INTEGRAL DE RIEMANN 6.1 INTEGRAL DE RIEMANN 6.1.1 Prtición de un intervlo Se f :, y fx K x,. Definición: Un prtición de, es un conjunto ordendo y finito de números reles y distintos P x 0,...,x
Integración en una variable. Aplicaciones
Tem 4 Integrción en un vrible. Aplicciones Ls integrles formlizn un concepto bstnte sencillo e intuitivo, el de áre. Los orígenes del cálculo de áres los podemos encontrr en el método de exhución desrrolldo
5. Integral y Aplicaciones
Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción
Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.
Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción
Grado en Biología Tema 3 Integración. La regla del trapecio.
Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con
Notas de Integral de Riemann-Stieltjes
Nots de Integrl de Riemnn-Stieltjes 1. Definición y propieddes Dds funciones g, F : [, b] R que cumpln ciertos requisitos, definiremos l expresión g(x)df(x) de tl mner que cundo consideremos el cso prticulr
LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES
LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites
Aplicaciones del cálculo integral
Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:
1. INTEGRALES DEFINIDAS E IMPROPIAS
. INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m
TEMA 3. Integración de funciones reales de variable real.
TEMA 3 Integrción de funciones reles de vrible rel. Ls integrles formlizn un concepto bstnte sencillo e intuitivo, el de áre. Los orígenes del cálculo de áres los podemos encontrr en el método de exhución
CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.
CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel
Curvas en el espacio.
Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos
Aplicaciones de la integral
5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle
1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)
Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv
Cálculo integral. Beatriz Campos Sancho Cristina Chiralt Monleon. Departament de matemàtiques. Codi d assignatura 305. Cálculo integral - UJI
Cálculo integrl Betriz Cmpos Sncho Cristin Chirlt Monleon Deprtment de mtemàtiques Codi d ssigntur 35 Betriz Cmpos / Cristin Chirlt - ISBN: 978-84-694-64- Edit: Publiccions de l Universitt Jume I. Servei
Aplicaciones de la integral indefinida
Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos
Integración Numérica. 18 Regla del Trapecio
Integrción Numéric L integrl resuelve el problem de clculr el áre bjo l gráfic de un función positiv definid sobre un intervlo cerrdo. El cálculo elementl de funciones de un vrible rel proporcion un método
Integración. Capítulo 1. Problema 1.1 Sea f : [ 3, 6] IR denida por: e x 2 2 x 6. (i) Estudiar la continuidad y derivabilidad de f.
Cpítulo Integrción Problem. Se f : [, 6] IR denid por: + +
Tema 4: Integrales Impropias
Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem
ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39
Índice generl. L Integrl Indenid.. Antiderivd e Integrl Indenid...................... Integrles inmedits........................... 3.3. Regl de l Cden............................ 4.4. Sustitución o Cmbio
INTEGRACIÓN. CÁLCULO DE
Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo
Tema 4. Integración de Funciones de Variable Compleja
Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores
E.T.S. Minas: Métodos Matemáticos
E... Mins: Métodos Mtemáticos Resumen y ejemplos em 6: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Octubre 8, Versión.5 Contenido.
2. Cálculo de primitivas
5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv
5.5 Integración numérica
88 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.5 Integrción numéric Métodos de Newton-Côtes De cr clculr l integrl definid: f(x) dx se llmn Métodos de Newton-Côtes los que se bsn en integrr, en lugr de l
Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple
Integrl de un función rel Tem 08: Integrles Múltiples Jun Igncio Del Vlle Gmbo Sede de Guncste Universidd de Cost ic Ciclo I - 2014 Ls integrles definids clculn el áre bjo un curv y = f (x) pr un región
CAPÍTULO XII. INTEGRALES IMPROPIAS
CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9
CURSO DE MATEMÁTICA 1. Facultad de Ciencias
CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl
La Geometría de las Normas del Espacio de las Funciones Continuas
Divulgciones Mtemátics Vol. 11 No. 1(2003), pp. 71 82 L Geometrí de ls Norms del Espcio de ls Funciones Continus The Geometry of the Norms of the Spce of Continuous Functions Arístides Arellán (ristide@ciens.ul.ve)
Curvas en el plano y en el espacio
Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que
Integral Definida. Aplicaciones
Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució
Aplicaciones de la integral.
Tem 1 Aplicciones de l integrl. 1.1 Áres de superficies plns. 1.1.1 Funciones dds de form explícit. A l vist del estudio de l integrl definid relizdo en el Tem 1, prece rzonble l siguiente definición:
Introducción a la integración numérica
Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno
Integración Numérica. La regla del trapecio.
Integrción Numéric. L regl del trpecio. Curso: Métodos Numéricos en Ingenierí Profesor: Dr. José A. Otero Hernández Correo: j..otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidd: ITESM
Resumen Segundo Parcial, MM-502
Resumen Segundo Prcil, MM-502 Jose Alvreng 18 de febrero de 2015 1. Integrles de líne ) Definición Se r(t) = f(t)i + g(t)j un función vectoril con dominio D, y L un vector. Decimos que r tiene limite L
10.1 Funciones integrables Teorema fundamental del Cálculo Ejercicios
Integrción Funciones integrbles Integrción. Funciones integrbles 49. Teorem fundmentl del Cálculo 55.3 Ejercicios 58 El áre de un recinto, l longitud de un cble que cuelg entre dos postes, el volumen o
TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL
TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde
Integración de Funciones
Cpítulo 9 Integrción de Funciones Hemos visto que l derivd represent l ts de vrición de un función. De hí que luego podmos interpretr l derivd de diferentes mner como l velocidd de vrición de cierto fenómeno
UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo
IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b
2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual
MsMtes.com Integrles Selectividd CCNN. [ANDA] [JUN-A] De l función f:(-,+ ) se se que f (x ) = y que f() =. (x+) () Determinr f. () Hllr l primitiv de f cuy gráfic ps por el punto (,).. [ANDA] [JUN-B]
Segunda Versión. Integración y Series. Tomo II
UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA Deprtmento de Mtemátic y Cienci de l Computción CÁLCULO Segund Versión Integrción y Series Tomo II Gldys Bobdill A. y Rfel Lbrc B. Sntigo de Chile 4
TRABAJOS DE MATEMATICA
UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA SERIE C TRABAJOS DE MATEMATICA Nº 36/07 Un segundo curso de Cálculo Crin Boyllin, Elid Ferreyr, Mrt Urciuolo, Cynthi Will Editores:
Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.
LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.
Apuntes de Integración de funciones de una variable
Apuntes de Integrción de funciones de un vrible Miguel Mrtín Suárez Deprtmento de Análisis Mtemático Universidd de Grnd INTEGRACIÓN DE FUNCIONES DE UNA VARIABLE Sums de Riemnn. Definición de áre y de integrl.
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida
Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus
INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS
INTEGRAL DEFINIDA APLICACIÓN l CÁLCULO de ÁREAS Isc Brrow (60-677), teólogo y mtemático inglés, mestro de Newton y precursor de l regl que llev su nomre. MATEMÁTICAS II º Bchillerto Alfonso González IES
1. Introducción: longitud de una curva
1. Introducción: longitud de un curv Integrles de L ide pr clculr l longitud de un curv contenid en el plno o en el espcio consiste en dividirl en segmentos pequeños, escogiendo un fmili finit de puntos
CAPÍTULO 3 CÁLCULO INTEGRAL
CAPÍTULO 3 CÁLCULO INTEGRAL. INTERROGANTES CENTRALES DEL CAPÍTULO Concepto de áre Sums de Riemnn Integrl definid Propieddes de l integrl definid Integrl indefinid Propieddes de l integrl indefinid Teorem
La integral de Riemann
Cpítulo 6 L integrl de Riemnn Vmos dr un definición precis de l integrl de un función definid en un intervlo. Este tiene que ser un intervlo cotdo y cerrdo, es decir [, b] con < b R, y l definición que
Curvas en el plano y en el espacio
Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que
TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD
Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,
2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.
. Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )
Integración Numérica. Las reglas de Simpson.
Integrción Numéric. Ls regls de Simpson. Curso: Métodos Numéricos en Ingenierí Profesor: Dr. José A. Otero Hernández Correo: j..otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidd: ITESM
INTEGRALES IMPROPIAS
NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES IMPROPIAS Ing. Jun Scerdoti Deprtmento de Mtemátic Fcultd de Ingenierí Universidd de Buenos Aires V INDICE INTEGRALES IMPROPIAS.- PUNTOS SINGULARES
4.1. El problema del cálculo de áreas
Cpítulo 4 Integrción 4.. El problem del cálculo de áres Unidd de medid: áre del cudrdo. Áre de un rectángulo, de un triángulo, de un prlelogrmo, de un rombo, de un trpecio, de un polígono regulr. Exhución
1. La derivada del producto de funciones derivables
Cátedr de Mtemátic Mtemátic Fcultd de Arquitectur Universidd de l Repúblic 3 Segundo semestre Hoj 5 Derivd del producto e integrción por prtes Ddo que l derivción y l integrción pueden verse como operciones
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte
CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje
Sucesiones de Funciones
Cpítulo 9 Sucesiones de Funciones 9.1. Sucesiones de Funciones. En los cpítulos 3 y 4 vimos que un sucesión de números reles es, simplemente, un colección numerble y ordend de números reles. De mner similr,
TRANSFORMADA DE LAPLACE
HUGO BARRANTES TRANSFORMADA DE LAPLACE Mteril complementrio ii Revisión filológic Mrí Benvides González Digrmción Hugo Brrntes Cmpos Encrgdo de cátedr Eugenio Rojs Mor Producción cdémic y sesorí metodológic
Práctico 9 - Cálculo de integrales. 1. Teorema fundamental y regla de Barrow
Universidd de l Repúblic Cálculo Fcultd de Ingenierí - IMERL Segundo semestre 6 Práctico 9 - Cálculo de integrles. Teorem fundmentl y regl de Brrow. Utilizndo los resultdos del ejercicio 9 del práctico
Relación entre el cálculo integral y el cálculo diferencial.
Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd
Integración de Funciones de Varias variables
Cpítulo 1 Integrción de Funciones de Vris vribles 1. L σ-álgebr de orel 2. L medid de Lebesgue 3. Funciones medibles Un vez estudid l medid de Lebesgue en R n, vmos desrrollr hor l integrción de funciones
CÁLCULO INTEGRAL EN VARIAS VARIABLES
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS CÁLCULO INTEGRAL EN VARIAS VARIABLES Rmón Bruzul Mrisel Domínguez Crcs, Venezuel Julio 25 Rmón
Tema 9 Cálculo integral de funciones reales de variable real
Tem 9 Cálculo integrl de funciones reles de vrile rel Ojetivos: 1. Clculr funciones primitivs con wxmxim. 2. Prcticr con el concepto de función integrle y l integrl de un función. 3. Trjr con funciones
Aplicaciones de la derivada (II)
UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre
6. Variable aleatoria continua
6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo
LÍMITES CONCEPTO INTUITIVO DE LÍMITE
Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos
Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.
LA DERIVADA Tem 6: LA DERIVADA Índice: 1. Derivd de un unción. 1.1. Derivd de un unción en un punto. 1.. Interpretción geométric 1.3. Derivds lterles. 1.4. Función derivd. Derivds sucesivs.. Derivbilidd
Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).
TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver
Integración en el plano complejo
Integrción en el plno complejo 4.1. Funciones complejs de vrible rel Un función complej de vrible rel es un función w : [, b] C, donde b. L prte rel y l prte imginri de w son dos funciones reles de vrible
CAPÍTULO 3. PROCEDIMIENTOS DE INTEGRACIÓN 3.1. Integración por cambio de variable 3.2. Integración por partes 3.2.1. Producto de un polinomio por una
CAPÍTULO. PROCEDIMIENTOS DE INTEGRACIÓN.. Integrción por cmbio de vrible.. Integrción por prtes... Producto de un polinomio por un eponencil... Producto de un polinomio por un seno o un coseno... Producto
INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.
INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)
O(0, 0) verifican que. Por tanto,
Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O
Tema 5. Trigonometría y geometría del plano
1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene
4. Integral de Riemann
Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Ingenierí Mtemátic Universidd de Chile SEMANA 7: INTEGRAL DE RIEMANN 4. Integrl de Riemnn
3.- Derivada e integral de funciones de variable compleja.
3.- Derivd e integrl de funciones de vrile complej. ) Derivds, funciones nlítics e interpretción geométric. ) Regls de diferencición. c) Ecuciones de uch-riemnn. d) Funciones rmónics. e) Integrción complej.
APUNTES DE VARIABLE COMPLEJA PARA INGENIEROS DE TELECOMUNICACION Elaborados por José Manuel Rodríguez Versión abreviada de Dmitry Yakubovich (2011)
APUNTES DE VARIABLE COMPLEJA PARA INGENIEROS DE TELECOMUNICACION Elbordos por José Mnuel Rodríguez Versión brevid de Dmitry Ykubovich (20). INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Se define el conjunto de
MOMENTOS Y CENTROS DE MASA
MOMENTOS Y CENTROS DE MASA El objetivo de ests línes es explicr brevemente otr de ls numeross plicciones que posee el Cálculo Integrl. En este cso, considermos un plc pln y delgd con form culquier, y nos
Definición de la función logaritmo natural.
L función logritmo Definición de l función logritmo nturl. Se sbe que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo
PROBLEMAS DE OPTIMIZACIÓN
PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito
Funciones ortogonales y series de Fourier
Funciones ortogonles y series de Fourier Ls series e integrles de Fourier constituyen un tem clásico del Análisis Mtemático. Desde su prición en el siglo XVIII en el estudio de ls vibrciones de un cuerd,
Teorema de la Función Inversa
Teorem de l Función Invers Pr el cso de un funcion F : U R R se tiene Nuestro problem es, dds ls funciones x f(u, v) y y g(u, v) que describen x, y como funciones de u, v, cundo es posible estblecer funciones
5. INTEGRAL DE LÍNEA. 5.1 Introducción. 5.2 Curvas
5. INTEGRAL DE LÍNEA 5.1 Introducción Nos proponemos mplir l noción de integrl, que y conocemos pr el cso de funciones de un vrile rel, cmpos de vris vriles. Cundo se definí l integrl definid pr un función
Apuntes de cálculo en una variable real. Eduardo Liz Marzán
Apuntes de cálculo en un vrible rel Edurdo Liz Mrzán Vigo, Diciembre de 2006 Índice Generl Preinres. Introducción........................................2 L relción de orden en el conjunto de los números
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS
Aproximación e interpolación mediante polinomios
LA GACETA DE LA RSME, Vol. 5.3 (2002), Págs. 621 627 621 Aproximción e interpolción medinte polinomios por Miguel Mrno y Mrt Mrcolini En este trbjo se muestr un relción entre los conceptos de interpolción