Estructuras de acero: Problemas 1 Pandeo local

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estructuras de acero: Problemas 1 Pandeo local"

Transcripción

1 Esrucuras de acero: Problemas Pandeo local Se han unido or soldadura res chaas de acero que consiuyen una sección comuesa en Ι simérica sólo or el eje de la chaa del alma. La sección que reresena la figura se uede someer a esfuerzo axial o a flexión. El acero de odas las chaas que comonen la sección es de calidad S55. Se oma una resisencia a la fluencia de cálculo igual a la ensión mínima de fluencia, es decir, f y 55 N/. ε 5 fy 0,8 El roblema consise en hallar las roiedades de la sección efeciva que se vaya a escoger ara comrobar el esfuerzo axial y la flexión resecivamene. Figura. Sección ransversal brua Elemenos Esrucurales. Tomo 9. (999). Insiuo Técnico de la Esrucura en Acero. San Sebasián Esrucuras de acero. Problemas. Pandeo local.

2 Se hacen las siguienes hióesis: Figura. Soldadura en ángulo a. Las soldaduras de cordón que unen el alma a ambas alas se desrecian ara calcular las roiedades de la sección: área de la sección, segundo momeno de inercia, ec. b. Las soldaduras de cordón de la unión alma-alas se han reresenado con riángulos isósceles como se ve en la figura ; or ano, el cano neo del alma medido enre la soldadura suerior e inferior es de 790. c. Los límies de las relaciones b/ que se mencionan son los del CTE. d. El crierio de cálculo es la aarición de la ensión de fluencia de cálculo en el cenroide del ala más alargada, ero no en la fibra exrema más ensada; los módulos de la sección se calcularán consecuenemene. En rimer lugar se deermina la osición del cenro de gravedad (cdg) de la sección, y oseriormene el momeno de inercia (reseco al eje fuere y-y). Para ello (figura ), se denomina con G, G y G los cdg del ala suerior, ala inferior y alma, resecivamene, y con G T el cdg de la sección. Del mismo modo, A, A, A y A T reresenan las secciones del ala suerior, ala inferior, alma y de la sección comlea. Para deerminar la osición del cenroide de la sección, se oman momenos reseco a G. Denominando d a la disancia enre los cdg de las alas, d a la disancia enre el cdg del alma y del ala inferior, y d T a la disancia del cdg de la sección y el cdg del ala inferior, se iene: Esrucuras de acero. Problemas. Pandeo local.

3 G GT G d d dt G Figura. Deerminación del cenroide de la sección y momeno de inercia. A T d T A d + A d A A A T d d Con odos esos valores se deermina la osición del cdg de la sección, ues d A d + A A d T T 49 ). Por ano, el cdg se encuenra siuado a 444 de la fibra inferior (z g 444 El momeno de inercia de la sección reseco al eje y-y es: Ι 4000 ( ) ( 76 5) ( 444 5) ( ) cm 4 Esrucuras de acero. Problemas. Pandeo local.

4 Figura 4. Deerminación del cenroide. Los módulos resisenes de la sección son: Relaivo al cenroide del ala suerior: W u cm 7, Relaivo al cenroide del ala inferior: W u cm 4,9 Sección efeciva ara la comresión axial Deerminación de la clase de sección Relaciones b/ Ala suerior c 0, c 00 0 Ala inferior 0 c 0, Esrucuras de acero. Problemas. Pandeo local. 4

5 c Alma c c 790 6,7 Los valores límie de las relaciones b/ de las secciones de Clase son: c En alas, 4 ε, 4 lim c En alma, 4 ε 4, lim Todas las chaas rebasan el límie indicado. Por ano, la sección erenece a la Clase 4 y hay que reducir la sección de cada chaa. Deerminación de las anchuras efecivas La eficacia de la zona de comresión de cada chaa se halla or medio de: ρ 0, 88 ( ) donde la esbelez normalizada de la chaa viene dada or: f y cr b 8,4 ε - Para el ala suerior c 0 ψ 0,57 0, ψ + 0,07 ψ 0,4 0,578 0,578 0,4 ψ + 0,4,4 Esrucuras de acero. Problemas. Pandeo local. 5

6 0 8,4 0,8 0,4, ρ 0,88 ( ), 0,88, 0,650 b eff ρ b 0, Para el ala inferior c 5 ψ 0,57 0, ψ + 0,07 ψ 0,4 0,578 0,578 0,4 ψ + 0,4,4 5 8,4 0,8 0,4 0,99 ρ 0,88 ( ) 0,99 0,88 0,99 0,88 b eff ρ b 0, ,4 - Para el alma c,7 ψ 4,7 8,4 0,8 4,84 ρ 0,88 ( ),84 0,88,84 0,9 h eff ρ h 0, , Esa magniud se asigna a ares iguales (5 ) a ambos exremos. Esrucuras de acero. Problemas. Pandeo local. 6

7 Proiedades de la sección G ,4 00 Figura 5. Sección ransversal efeciva or comresión axial. Área de la sección A eff,n A , eff,n Posición del cenroide z, N g 49 Deslazamieno del cenroide en zg zg, n Ese deslazamieno genera un momeno de flexión secundario que se suerone a M Ed, de valor M N Ed e N Sección efeciva ara la flexión Deerminación de la clase de sección Las relaciones b/ de las chaas han sido calculadas en el aarado anerior. Esrucuras de acero. Problemas. Pandeo local. 7

8 El valor límie del ala en comresión de las secciones de Clase es: c lim 4 ε,4 Ese valor resula suerado. Por ano, la sección erenece a la Clase 4. Como las alas aoran más a la rigidez a flexión que el alma, se recomienda reducir el ala en comresión anes de calcular el rearo de ensiones en el cano de la sección, en esecial la relación de ensiones en el alma de la que deende su valor límie (d/) lim. La anchura efeciva del ala en comresión se ha calculado en el aarado anerior, y vale b eff 60. Figura 6. Sección ransversal brua uilizada ara valorar el radio de ensión del alma (sección sujea a flexión). La sección que se va a esudiar en cuano a la relación de ensiones en el ala es la de la figura 6. Área de la sección A eff,m A eff,m Posición del cenroide z, M g 94 Esrucuras de acero. Problemas. Pandeo local. 8

9 La relación de ensiones Ψ es como sigue, eniendo en cuena que reresena el cociene enre la máxima ensión y la máxima comresión: ψ ,9 El valor límie del alma (c/) lim de la Clase (abla 5.) ara ese valor de Ψ es: 4 ε 0,67 + 0, ψ 9 Ese valor es inferior a,7. Por ano, la sección erenece a la Clase 4, or lo que ambién hay que reducir el alma. Deerminación de las anchuras efecivas La anchura efeciva del ala en comresión ya se ha calculado en el aarado anerior. El ala en racción es oalmene efeciva. El alma, someida a comresión y flexión, viene caracerizada en rimera aroximación or Ψ-0,9. El coeficiene de andeo de la chaa del alma es (abla 5.6): 7,8 6,9 ψ + 9,78 ψ,7 de donde la esbelez normalizada del alma,7 8,4 0,8 y la eficacia del alma,7, ρ 0,88 ( ), 0,88, 0,69 Esa eficacia corresonde a la are del cano c c que exerimena ensiones de comresión. Por consiguiene, la zona de comresión es efeciva en un cano: ( c ) 0, c eff Esrucuras de acero. Problemas. Pandeo local. 9

10 La zona que se ierde en el alma comrimida es: La zona más comrimida es: 0,4 88 5, medida a arir del reborde del cordón de soldadura suerior. La zona menos comrimida es: 0, Proiedades de la sección G 9 00 Figura 7. Sección ransversal efeciva ara flexión. Área de la sección A eff,m A (800 8) eff,m Posición del cenroide z, M g 9 Momeno de inercia en el eje y-y Ι ( ) Los módulos resisenes de la sección son: cm Esrucuras de acero. Problemas. Pandeo local. 0

11 Relaivo al cenroide del ala suerior: W u cm 4. Relaivo al cenroide del ala inferior: W u 94 9cm 8.8 Esrucuras de acero. Problemas. Pandeo local.

Elementos de acero 3 PROPIEDADES GEOMÉTRICAS. 2.1 Áreas de las secciones transversales

Elementos de acero 3 PROPIEDADES GEOMÉTRICAS. 2.1 Áreas de las secciones transversales Elemenos de acero 3 PROPIEDADES GEOMÉTRICAS 2.1 Áreas de las secciones ransversales Área oal de un miembro (A ) Es el área complea de su sección ransversal. El área oal A es igual a la suma de los producos

Más detalles

APÉNDICE G. VIGAS ARMADAS DE ALMA ESBELTA

APÉNDICE G. VIGAS ARMADAS DE ALMA ESBELTA APÉNDIC G. VIGAS ARMADAS D ALMA SBLTA se Apéndice es aplicable a igas armadas de alma esbela de sección ransersal "doble Te", oros ipos de igas de alma esbela esán excluidos del campo de alidez de ese

Más detalles

FLEXION EN CHAPA DOBLADA

FLEXION EN CHAPA DOBLADA UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL MENDOZA DEPARTAMENTO INGENIERÍA CIVIL CONSTRUCCIONES METÁLICAS Y DE MADERA EJEMPLO 8.1 FLEXION EN CHAPA DOBLADA - Esados límies úlimos - Aplicación de

Más detalles

Ejercicio N 2 A Esquema del entrepiso Detalle de los Montantes. Estructuras Metálicas Facultad de Ingeniería

Ejercicio N 2 A Esquema del entrepiso Detalle de los Montantes. Estructuras Metálicas Facultad de Ingeniería Ejercicio N A. Verificar la apiud de un perfil de chapa plegada (PGC 100x0.89mm) para soporar la carga de un enrepiso desinado a oficinas. Considerar que el perfil se confeccionó con chapa de calidad IRAM-IAS

Más detalles

Estructuras de acero: Problemas 1 Clasificación de secciones

Estructuras de acero: Problemas 1 Clasificación de secciones Esruuras de aero: Problemas 1 Clasiiaión de seiones 1. Seión someida a ompresión: IPE 600 S-355 Daos 355 /mm ε 35 h 600 mm b 0 mm 19 mm mm r 4 mm Clasiiaión del ala 0,81 0,5 b 110 mm 110 19 5,8 < 10 ε

Más detalles

La torsión pura puede ser de tres tipos dependiendo de la forma de la sección transversal y del tipo de vinculación que presente la pieza:

La torsión pura puede ser de tres tipos dependiendo de la forma de la sección transversal y del tipo de vinculación que presente la pieza: CAPULO X PEZAS A ORSÓN CAPÍULO X: PEZAS A ORSÓN 10.1. NRODUCCÓN Una sección de una pieza rabaja a orsión cuando sobre ella acúa un momeno orsor inerno E. Cuando el momeno orsor es el único esfuerzo sobre

Más detalles

APÉNDICE F. VIGAS Y OTRAS BARRAS EN FLEXIÓN

APÉNDICE F. VIGAS Y OTRAS BARRAS EN FLEXIÓN APÉNDIC F. VIGAS Y OTRAS BARRAS N FLXIÓN La Sección A-F.1. del Apéndice F especifica la resisencia de diseño a flexión de vigas y vigas armadas. La Sección A-F.. del Apéndice F especifica la resisencia

Más detalles

PROPIEDADES TORSIONALES PARA DIFERENTES SECCIONES DE ACERO

PROPIEDADES TORSIONALES PARA DIFERENTES SECCIONES DE ACERO Aneo A PROPIEDADES TORSIONALES PARA DIFERENTES SEIONES DE AERO Los ingenieros esrucurales ocasionalmene necesian deerminar cieras propiedades del acero que no se encuenran con acilidad en la lieraura.

Más detalles

CAPITULO 5 BIS. TORSION

CAPITULO 5 BIS. TORSION Cáedra de ngeniería Rural Escuela Universiaria de ngeniería Técnica Agrícola de Ciudad Real CAPTULO 5 BS. TORSON Torsión en iezas de sección circular. Teoría de Coulomb. Las secciones ransversales circulares

Más detalles

Dimensionamiento a flexión y corte de vigas con secciones compactas, no compactas y esbeltas. Aplicación Capítulos A, B, F, K, y Apéndices F y G.

Dimensionamiento a flexión y corte de vigas con secciones compactas, no compactas y esbeltas. Aplicación Capítulos A, B, F, K, y Apéndices F y G. 79 EJEPLO N 14 Dimensionamieno a flexión core de vigas con secciones compacas, no compacas esbelas. Aplicación Capíulos A, B,, K, Apéndices G. Enunciado: En el enrepiso de la figura dimensionar las vigas

Más detalles

Universidad Politécnica de Madrid. Escuela de Ingeniería Aeronáutica y del Espacio Resistencia de Materiales y Elasticidad

Universidad Politécnica de Madrid. Escuela de Ingeniería Aeronáutica y del Espacio Resistencia de Materiales y Elasticidad Universidad Poliécnica de adrid Escuela de Ingeniería Aeronáuica y del Espacio 4005 - Resisencia de aeriales y Elasicidad Examen Parcial - 08/05/1 Cuadernillo versión 1 Insrucciones: Cada preguna iene

Más detalles

Clasificar en base al Eurocódigo 3 Parte 1-1, las secciones transversales propuestas:

Clasificar en base al Eurocódigo 3 Parte 1-1, las secciones transversales propuestas: PROBLEMA Nº Clasiicar en base al Eurocóigo Pare -, las secciones ransversales propuesas: º) Peril IPE00 someio a lexión simple, a lexión compuesa o a compresión simple y para los res ipos e acero: S5,

Más detalles

DERIVACION DE LA ECUACION DE BERNOULLI

DERIVACION DE LA ECUACION DE BERNOULLI DERIACION DE LA ECUACION DE BERNOULLI Prearado or: Ing. Eseban L. Ibarrola Cáedra de Mecánica de los Fluidos- FCEFyN- UNC Exisen varios formas alernaivas ara derivar la ecuación de Bernoulli, ero odas

Más detalles

PANDEO LOCAL EN SECCIONES DE PAREDES DELGADAS

PANDEO LOCAL EN SECCIONES DE PAREDES DELGADAS Faculad de Ingeniería Universidad Nacional de La Plaa ESTRUCTURAS IV PANDEO LOCAL EN SECCIONES DE PAREDES DELGADAS Auores: Ing. Julián J. Rimoli Ing. Marcos D. Acis Ing. Alejandro J. Paanella 1 TENSIONES

Más detalles

ICNC: Torsión. Índice. Esta ICNC ofrece directrices para la verificación de un elemento sujeto a torsión. 1. Generalidades

ICNC: Torsión. Índice. Esta ICNC ofrece directrices para la verificación de un elemento sujeto a torsión. 1. Generalidades CNC: Torsión Esa CNC ofrece direcrices para la verificación de un elemeno sujeo a orsión Índice 1. Generalidades. Análisis de un elemeno someido a orsión. Secciones cerradas someidas a orsión 5 4. Secciones

Más detalles

Cálculo matricial de pórticos biempotrados a dos aguas

Cálculo matricial de pórticos biempotrados a dos aguas Desplaamienos y soliciaciones de una barra 1 Cálculo maricial de póricos biemporados a dos aguas 1. Hipóesis de cálculo. Se verifica la ley de Hooke, lo que significa que en las esrucuras los desplaamienos

Más detalles

Ejercicio 1: Dada la ménsula de la figura sometida a una fuerza horizontal H, determinar para

Ejercicio 1: Dada la ménsula de la figura sometida a una fuerza horizontal H, determinar para Trabajo Pracico Nº 9: Torsión en Secciones Generales Ejercicio : Dada la énsula de la figura soeida a una fuerza horizonal H, deerinar para las alernaivas de secciones propuesas: a Perfil PNU00 de Acero,

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

TEMA 2: CINETICA DE LA TRASLACIÓN

TEMA 2: CINETICA DE LA TRASLACIÓN TEMA 2: CINETICA DE LA TRASLACIÓN 1.1. Inroducción. Para ener caracerizado un movimieno mecánico cualquiera, hay que esablecer primero respeco a que cuerpo (s) se va a considerar dicho movimieno. Ese cuerpo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio 4, Opción

Más detalles

TEMA 2 MAGNITUDES FINANCIERAS

TEMA 2 MAGNITUDES FINANCIERAS Faculad de CC.EE. Do. de Economía Financiera I Maemáica Financiera Diaosiiva TEMA MAGNITUDES FINANCIERAS. Magniudes fundamenales y derivadas. Facores y rédios. Significado financiero y roiedades 3. Tanos

Más detalles

CAPITULO I FUNDAMENTOS TEORICOS

CAPITULO I FUNDAMENTOS TEORICOS CAPITULO I FUNDAMENTOS TEORICOS 1.1 INTRODUCCION: La uilización de esrucuras de lámina delgada de acero doblada en frío, se ha acrecenado en los úlimos años. En nuesro país, la lámina delgada iene un amplio

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 GEOMETRÍA (Selecividad 15) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 15 1 Andalucía, junio 15 Sean los punos A(, 1, 1), B(, 1, ), C( 1,, ) y D(, 1, m) a) [,75 punos]

Más detalles

Soluciones hoja de matrices y sistemas

Soluciones hoja de matrices y sistemas Soluciones hoja de marices y sisemas 8 9 - iscuir, en función del arámero a, el siguiene sisema de x y z x y z - ecuaciones lineales x - y ( a ) z - a - x y ( a ) z - a 8 La mariz de los coeficienes es

Más detalles

GEOMETRÍA. Matemática - EL MAESTRO EN CASA PIRÁMIDE. Pirámide cuadrangular: su base es un cuadrado (4 lados), al igual que sus caras

GEOMETRÍA. Matemática - EL MAESTRO EN CASA PIRÁMIDE. Pirámide cuadrangular: su base es un cuadrado (4 lados), al igual que sus caras Maemáica - EL MAESTRO EN CASA PIRÁMIDE Una pirámide es un poliedro cuya superficie esá formada por una base que es un polígono cualquiera y caras laerales riangulares que confluyen en un vérice que se

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

Instituto Tecnológico y de Estudios Superiores de Monterrey. Perfiles y Herrajes L.M. S.A. de C.V.

Instituto Tecnológico y de Estudios Superiores de Monterrey. Perfiles y Herrajes L.M. S.A. de C.V. Insiuo Tecnológico y de Esudios Superiores de Monerrey. Desarrollo de Tablas de las Caracerísicas Esrucurales de Perfiles LM Perfiles y errajes L.M. S.A. de C.V. Ing. José Mojica González Dr. Juan Oscar

Más detalles

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO. Cátedra: ESTRUCTURAS NIVEL 1 Taller: VERTICAL III DELALOYE - NICO - CLIVIO

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO. Cátedra: ESTRUCTURAS NIVEL 1 Taller: VERTICAL III DELALOYE - NICO - CLIVIO UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO DNC TP3 Cáedra: ESTRUCTURAS NIVEL 1 Taller: VERTICAL III DELALOYE - NICO - CLIVIO Trabajo Prácico Nº 3: Esfuerzos inernos Diagramas

Más detalles

UNIDAD 1: CINEMÁTICA Y DINÁMICA PROBLEMAS RESUELTOS

UNIDAD 1: CINEMÁTICA Y DINÁMICA PROBLEMAS RESUELTOS FÍSICA º BACHILLERATO ROBLEMAS RESUELTOS 1 ROBLEMAS RESUELTOS 1.- Un jugador de béisbol uiliza una maquina lanzadora para ayudarse a mejorar su promedio de baeo. Coloca la máquina de 50 kg sobre un esanque

Más detalles

Elección 0 Altivar 71

Elección 0 Altivar 71 Elección de velocidad Alivar 7 Opciones: módulos y resisencias de frenado Deerminación del módulo y de la resisencia de frenado El cálculo de las diferenes poencias de frenado permie deerminar el módulo

Más detalles

Nudos Longitud (m) Inercia respecto al eje indicado. Longitud de pandeo (m) (3) Coeficiente de momentos

Nudos Longitud (m) Inercia respecto al eje indicado. Longitud de pandeo (m) (3) Coeficiente de momentos Barra N3/N4 Perfil: IPE 300, Perfil simple Material: Acero (S275) Z Y Inicial Nudos Final Longitud (m) Área (cm²) Características mecánicas I y I z I t N3 N4 5.000 53.80 8356.00 603.80 20.12 Notas: Inercia

Más detalles

CAPÍTULO 9. UNIONES, JUNTAS Y MEDIOS DE UNIÓN

CAPÍTULO 9. UNIONES, JUNTAS Y MEDIOS DE UNIÓN CAPÍTULO 9. UNIONES, JUNTAS Y MEDIOS DE UNIÓN Se aplicarán las disposiciones generales del Reglameno CIRSOC 301-005 indicadas en la Sección J.1 (Secciones J.1.1. a Sección J.1.11.) y oda ora especificación

Más detalles

DINÁMICA II. F = m a. F = m. F Δt = m (v f v i ) Momentum Lineal o Cantidad de Movimiento se define mediante la siguiente expresión: p = m v

DINÁMICA II. F = m a. F = m. F Δt = m (v f v i ) Momentum Lineal o Cantidad de Movimiento se define mediante la siguiente expresión: p = m v C U R S O: ÍSICA COMÚN MATERIAL: C-07 DINÁMICA II Cuando se golea una eloa de golf en el camo de juego, una gran fuerza acúa sobre la eloa durane un coro inervalo de iemo Δ, haciendo que ésa se acelere

Más detalles

ALCANCE DIGITAL Nº 94 PODER EJECUTIVO DECRETOS Nº 37070-MIVAH-MICIT-MOPT CÓDIGO SÍSMICO DE COSTA RICA 2010 (CONSTA DE VEINTE TOMOS) TOMO IX

ALCANCE DIGITAL Nº 94 PODER EJECUTIVO DECRETOS Nº 37070-MIVAH-MICIT-MOPT CÓDIGO SÍSMICO DE COSTA RICA 2010 (CONSTA DE VEINTE TOMOS) TOMO IX ALCANCE DIGITAL Nº 94 JORGE LUIS VARGAS ESPINOZA (FIRMA) Año CXXXIV San José, Cosa Rica, viernes 13 de julio del 2012 Nº 136 PODER EJECUTIVO DECRETOS Nº 37070-MIVAH-MICIT-MOPT CÓDIGO SÍSMICO DE COSTA RICA

Más detalles

NORMAS TÉCNICAS COMPLEMENTARIAS PARA DISEÑO Y CONSTRUCCIÓN DE ESTRUCTURAS DE MAMPOSTERÍA

NORMAS TÉCNICAS COMPLEMENTARIAS PARA DISEÑO Y CONSTRUCCIÓN DE ESTRUCTURAS DE MAMPOSTERÍA NORMAS TÉCNICAS COMPLEMENTARIAS PARA DISEÑO Y CONSTRUCCIÓN DE ESTRUCTURAS DE MAMPOSTERÍA ÍNDICE Normas Técnicas Complemenarias para Diseño y Consrucción de Esrucuras de Mamposería... NOTACIÓN... 1. CONSIDERACIONES

Más detalles

TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO.

TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO. UNIVERSIDAD AUTONOMA SAN FRANCISCO CURSO DE DINÁMICA Docene: Álvarez Solís María del Carmen. Fecha: 10 Oc - 2017 TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO. La cinemáica de cuerpos rígidos esudia las

Más detalles

ANEXO Las instituciones calcularán mensualmente los puntos en riesgo utilizando el procedimiento que a continuación se detalla:

ANEXO Las instituciones calcularán mensualmente los puntos en riesgo utilizando el procedimiento que a continuación se detalla: ANEXO 5 METODOLOGIA A SEGUIR PARA DETERMINAR EL MONTO MÍNIMO DEL FIDEICOMISO, ASÍ COMO EL IMPORTE DE LAS CUOTAS SOBRE LAS CUALES SE CALCULARÁN LAS APORTACIONES A QUE SE REFIERE EL ARTÍCULO 55 BIS DE LA

Más detalles

ESTRUCTURAS II Tema 15 Estructuras de acero

ESTRUCTURAS II Tema 15 Estructuras de acero DEARTAENTO DE ESTRUCTURAS Y CONSTRUCCIÓN CARLOS JOSÉ ARRA COSTA, Dr. Arquieco DEARTAENTO DE ESTRUCTURAS Y CONSTRUCCIÓN CARLOS JOSÉ ARRA COSTA, Dr. Arquieco ESTRUCTURAS II Tema 15 Esrucuras de acero curso

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales. T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. La velocidad de una parícula viene dada por v( ) 6 +, con en segundos y v en m/s. a) Hacer un gráfico de v() y hallar el área limiada por

Más detalles

0. Angulares 3-6 Empleados para correas de cubierta, fachadas, etc. Allí donde se requiera soportar cargas ligeras. 1. Perfiles conformado en frío

0. Angulares 3-6 Empleados para correas de cubierta, fachadas, etc. Allí donde se requiera soportar cargas ligeras. 1. Perfiles conformado en frío CAPÍTULO VIII: 8.1. INTRODUCCIÓN Las vigas son al vez los elemenos esrucurales más básicos. Es posible uilizar una gran variedad de ormas de sección para las vigas dependiendo de la magniud de las cargas

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1:

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1: EXAMEN COMPLETO Baremo: Se elegirá el o el EJERCICIO B, del que SOLO se harán TRES de los cuaro problemas. LOS TRES PROBLEMAS PUNTÚAN POR IGUAL. Cada esudiane podrá disponer de una calculadora cienífica

Más detalles

TEMA 5 TRABAJO Y ENERÍA MECÁNICA. En el presente tema trataremos exclusivamente de la energía mecánica.

TEMA 5 TRABAJO Y ENERÍA MECÁNICA. En el presente tema trataremos exclusivamente de la energía mecánica. TEMA 5 TRABAJO Y ENERÍA MECÁNICA ENERGÍA Se denomina energía a la capacidad que ienen los cuerpos para producir ransformaciones, como, por ejemplo, realizar un rabajo. Hay múliples formas de energía: Energía

Más detalles

SUAVIZAMIENTO EXPONENCIAL AJUSTADO A LA TENDENCIA Y A LA VARIACIÓN ESTACIONAL: MÉTODO DE WINTERS

SUAVIZAMIENTO EXPONENCIAL AJUSTADO A LA TENDENCIA Y A LA VARIACIÓN ESTACIONAL: MÉTODO DE WINTERS Pronósicos II Un maemáico, como un inor o un oea, es un fabricane de modelos. i sus modelos son más duraderos que los de esos úlimos, es debido a que esán hechos de ideas. Los modelos del maemáico, como

Más detalles

Ejemplo: Losa de forjado mixta

Ejemplo: Losa de forjado mixta Documento Ref SX009a-ES-EU Hoja 1 de 1 Eurocódigo Ref, EN 199-1-, EN 199-1-1 y EN 199-1-1 Hecho or Jonas Gozzi Fecha arzo 005 Revisado or Bernt Johansson Fecha Abril 005 Este ejemlo muestra el diseño de

Más detalles

1. DESARROLLO EN SERIE TRIGONOMÉTRICA DE FOURIER...2 Ejemplos de series de Fourier...3 Onda cuadrada CÁLCULO DE ARMÓNICOS

1. DESARROLLO EN SERIE TRIGONOMÉTRICA DE FOURIER...2 Ejemplos de series de Fourier...3 Onda cuadrada CÁLCULO DE ARMÓNICOS AUNES DE ELERÓNA DE OENA. DESARROLLO EN SERE RGONOMÉRA DE FOURER.... Ejemlos de series de Fourier... Onda cuadrada..... ÁLULO DE ARMÓNOS....5.. Disorsión armónica...7... Disorsión de un armónico...7...

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

CAPITULO 2 TABLAS DE PROPIEDADES DE PERFILES

CAPITULO 2 TABLAS DE PROPIEDADES DE PERFILES CAPITULO 2 TABLAS E POPIEAES E PEFILES TABLAS E PEFILES CAPITULO 2 TABLAS E PEFILES I N I C E Pág. 2.0 GENEALIAES... 2-1 2.1 TABLAS E PEFILES NACIONALES... 2-6 2.2 TABLAS E PEFILES AISC... 2-76 2.3 TABLAS

Más detalles

Unidad Temática IX. Cinemática del Cuerpo Rígido

Unidad Temática IX. Cinemática del Cuerpo Rígido 0//06 Unidad Temáica IX Cinemáica del Cuerpo ígido Conenido: Traslación y roación de un cuerpo rígido. Medidas angulares. Coordenadas angulares, velocidad y aceleración angulares. Cinemáica de la roación

Más detalles

: Factor de carga de maniobra positiva límite del avión. : Factor de carga de maniobra negativo límite del avión.

: Factor de carga de maniobra positiva límite del avión. : Factor de carga de maniobra negativo límite del avión. Descripción de los conenidos de los Apéndice A DNAR Pare 3 Cáedra Diseño y Consrucción de esrucuras aeronáuicas APÉNDICE A DE DNAR PARTE 3 CRITERIO SIMPLIFICADO DE CARGAS DE DISEÑO PARA AVIONES CONVENCIONALES,

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese

Más detalles

HIDROGRAMA UNITARIO SINTÉTICO

HIDROGRAMA UNITARIO SINTÉTICO Guía del Trabajo rácico N 7 HIDROGRAMA UNITARIO SINTÉTICO Calcular y graficar en escala aroiada el Hidrograma Sinéico roducido or la ormena que se resena como dao ara la cuenca en esudio, alicando los

Más detalles

3.4. Regulación de Farmacias. Matilde Machado

3.4. Regulación de Farmacias. Matilde Machado Mailde Machado rículo: Regulación de las Oficinas de Farmacia: Precios y Liberad de Enrada de Waler García-Fones y Massimo Moa comendio de lecuras En Esaña hay varias cuesiones relevanes: 1. cceso de los

Más detalles

MOVIMIENTO RECTILÍNEO

MOVIMIENTO RECTILÍNEO Transparencia Nº 1. CINEMÁTICA. MOVIMIENTO QUÉ ES EL MOVIMIENTO? Cambio de posición de un móvil con el iempo. TIPOS DE MOVIMIENTO Según su rayecoria Todo movimieno es RELATIVO Lo rápido del cambio lo indoca

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

CI52R: ESTRUCTURAS DE ACERO. Programa CI52R

CI52R: ESTRUCTURAS DE ACERO. Programa CI52R CI5R: ESTRUCTURAS DE ACERO Prof.: Ricardo Herrera. Aux.: Phillio Correa. Programa CI5R NÚERO NOBRE DE LA UNIDAD OBJETIVOS 5 DURACIÓN 4 semaas Diseño ara flexió Ideificar modos de falla de elemeos e flexió.

Más detalles

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Modelo de eamen Junio MODELO JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II OPCIÓN. (Punuación máima: punos) Se dice que una mari cuadrada es orogonal si T I: Noa: La noación T significa mari ranspuesa de.

Más detalles

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia

Más detalles

Circuitos eléctricos paralelos RLC en Corriente Alterna

Circuitos eléctricos paralelos RLC en Corriente Alterna Circuios elécricos paralelos RLC en Corriene Alerna Beelu Gonzalo Esudiane de Ingeniería en Sisemas de Compuación Universidad Nacional del Sur, Avda. Alem 253, B8000CPB Bahía Blanca, Argenina beelugonzalo@gmail.com

Más detalles

Análisis de generador de onda triangular

Análisis de generador de onda triangular Análisis de generador de onda riangular J.I.Huircan Universidad de La Fronera April 25, 2 Absrac Se presena el análisis de un generador de función para señal cuadrada y riangular alimenado con una fuene.

Más detalles

DEDUCCIÓN DE LAS ECUACIONES DE NAVIER STOKES

DEDUCCIÓN DE LAS ECUACIONES DE NAVIER STOKES DEDUCCIÓN DE LAS ECUACIONES DE NAIER STOKES Inroducción Uno de los camos de la física más comlicados de esudiar son los fluidos, el comoramieno de ases líquidos en moimieno Comrender, or ejemlo, los flujos

Más detalles

FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO CUADERNO DE EJERCICIOS DE ECUACIONES DIFERENCIALES

FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO CUADERNO DE EJERCICIOS DE ECUACIONES DIFERENCIALES FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO CUADERNO DE EJERCICIOS DE ECUACIONES DIFERENCIALES MARGARITA RAMÍREZ GALINDO ENRIQUE ARENAS SÁNCHEZ DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN

Más detalles

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables.

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables. ASAS DE VARIACIÓN ( véase Inroducción a la Esadísica Económica y Empresarial. eoría y Pácica. Pág. 513-551. Marín Pliego, F. J. Ed. homson. Madrid. 2004) Un aspeco del mundo económico que es de gran inerés

Más detalles

Ejercicio N 5. Estructuras Metálicas Facultad de Ingeniería. Estructuras de Acero Liviano Curso 2002

Ejercicio N 5. Estructuras Metálicas Facultad de Ingeniería. Estructuras de Acero Liviano Curso 2002 Ejercicio N 5. Verificar la aptitud de las correas de un sistema de cubiertas que se ajusta al siguiente esquema. Las correas se confeccionaron con perfiles C 00x50x5x.0mm de chapa plegada en calidad IRAM-IAS

Más detalles

Sistemas de coordenadas en movimiento relativo

Sistemas de coordenadas en movimiento relativo Capíulo 4 Sisemas de coordenadas en movimieno relaivo 4.1 Sisemas de coordenadas acelerados y Principio de Equivalencia Para complear la descripción de los sisemas de coordenadas no inerciales, consideremos

Más detalles

2º de Bachillerato Movimiento Ondulatorio

2º de Bachillerato Movimiento Ondulatorio Física TEMA 3 º de Bachillerao Movimieno Ondulaorio.- La velocidad del sonido en el agua es de 5 m/s. Calcular el módulo de compresibilidad del agua. Solución: 9 N/m.- Hallar la velocidad de propagación

Más detalles

SECCIÓN TRANSFORMADA DE ALAS RIGIDIZADAS

SECCIÓN TRANSFORMADA DE ALAS RIGIDIZADAS SECCIÓN TRANSFORMADA DE ALAS RIGIDIZADAS LONGITUDINALMENTE SECCIÓN TRANSFORMADA DE ALAS RIGIDIZADAS LONGITUDINALMENTE Abolladura LOCAL del panel comprimido con rigidización longitudinal De acuerdo con

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal Física General I Paralelos 5 y. Profesor Rodrigoergara R ) Movimieno Recilíneo Horizonal ) Concepos basicos Definir disancia recorrida, posición y cambio de posición. Definir vecores posicion, velocidad

Más detalles

Propagación de crecidas en ríos y embalses

Propagación de crecidas en ríos y embalses GUÍA DEL TRABAJO PRACTICO N 8 Propagación de crecidas en ríos y embalses 1 Pare: Propagación de crecidas en río. Méodo de Muskingum Conocidos los hidrogramas de enrada y salida de un ramo del río Tapenagá

Más detalles

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración CONTENIDO Sisemas de coordenadas Ecuación de la rayecoria Vecores posición, velocidad y aceleración Componenes inrínsecas de la aceleración Movimieno circular Sisemas de referencia Movimieno relaivo: ransformaciones

Más detalles

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I INSTRUCTIVO PRÁCTICA Nº 5. MOVIMIENTO RECTILINEO Preparado por. Ing. Ronny J. Chirinos S., MSc prácica

Más detalles

4. UNIONES SOLDADAS. Las uniones soldadas se pueden clasificar según la posición relativa de las chapas soldadas:

4. UNIONES SOLDADAS. Las uniones soldadas se pueden clasificar según la posición relativa de las chapas soldadas: 4. UNIONES SOLDADAS 4.. COMPROBACIÓN DE LA UNIÓN 4... Tipos de uniones soldadas. Las uniones soldadas se pueden clasificar según la posición relaiva de las chapas soldadas: uniones a ope (en prolongación)

Más detalles

2. Información Utilizada Para la calibración y validación

2. Información Utilizada Para la calibración y validación ANEXO 4. FORMACIÓN DEL PRECIO DE BOLSA (DESPACHO REAL E IDEAL) (MODELO DE SIMULACIÓN). Definiciones El precio de bolsa corresponde al precio de ofera del recurso que genera el MW marginal no flexible que

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

Práctica 4: Sistemas telescópicos. Objeto próximo.

Práctica 4: Sistemas telescópicos. Objeto próximo. LABORATORO D ÓPTCA (ÓPTCA NSTRUMNTAL) CURSO 2009/10 Prácica 4: Sisemas elescópicos. Objeo próximo. 1 Objeivo de la prácica n esa prácica se comprueba que cuando el aneojo rabaja con jeos próximos, es necesario

Más detalles

ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1

ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1 ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1 A) Hallar la pendiene de la reca secane a la parábola y + 8,cuyas abscisas de los punos de inersección son 1 y 4 f ( ) f ( a) B) Dada la siguiene epresión

Más detalles

a) Dar la definición de dominio y rango de una función. b) Explicar cada una de las siguientes funciones y dar tres ejemplos de cada una.

a) Dar la definición de dominio y rango de una función. b) Explicar cada una de las siguientes funciones y dar tres ejemplos de cada una. UNIVERSIDAD DE LONDRES PREPARATORIA GUIA DE MATEMÁTICAS VI Áreas I-II Plan : 9 Clave maeria : 00 Clave UNAM : Unidad I. Funciones Objeivos Que el alumno idenifique disinos ipos de funciones, esablezca

Más detalles

Mecánica de Fluidos B 67.18

Mecánica de Fluidos B 67.18 Mecánica de Fluidos B 67.8 Exresiones útiles c v Ma c v h 0 h + 0 T ( ) + Ma ρ T 0 ρ 0 0 ρ ρ 0 ( ) + Ma 0 ( ) + Ma Ma : R T α asin T Ma velocidad del sonido ara gas ideal número de Mach ángulo del cono

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

E D U A R D O L O R A & S E R G I O I. P R A D A

E D U A R D O L O R A & S E R G I O I. P R A D A E D U A R D O L O R A & S E R G I O I. P R A D A CAPÍTULO XVII C O N T A B I L I D A D D E L A S F I N A N Z A S P Ú B L I C A S Y E L D É F I C I T F I S C A L 1 LA ESTRUCTURA DEL SECTOR PÚBLICO C O N

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica Cálculo Vectorial. Tarea 3. Funciones de Varias Variables

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica Cálculo Vectorial. Tarea 3. Funciones de Varias Variables Insiuo Poliécnico Nacional Cálculo Vecorial Tarea. Funciones de Varias Variables. Calcule las derivadas parciales de primer orden f f. x Resulados. Calcule las derivadas parciales: af xx b f c f x d f

Más detalles

ESFUERZOS Y DEFORMACIONES EN VIGAS DEBIDAS A FUERZAS EN CABLES POSTENSADOS

ESFUERZOS Y DEFORMACIONES EN VIGAS DEBIDAS A FUERZAS EN CABLES POSTENSADOS Cátedra de Análisis Estructural Carrera de Ingeniería Civil ESFUERZOS Y DEFORMACIONES EN VIGAS DEBIDAS A FUERZAS EN CABLES POSENSADOS Marcelo A. Ceballos Carlos A. Prato Año 2003 ESFUERZOS Y DEFORMACIONES

Más detalles

INTEGRACIÓN POR CAMBIO DE VARIABLE

INTEGRACIÓN POR CAMBIO DE VARIABLE INTEGRCIÓN POR CMBIO DE VRIBLE Dada la inegral f( ) d, si consideramos como una función de ora variable, = g(), enonces d = g'() d, y susiuyendo en la inegral inicial se obiene f( g( )) g'( ) d. En el

Más detalles

Matemáticas I. Escuela Politécnica Superior de Sevilla, curso Grados en Ingeniería Eléctrica, Electrónica Industrial y Mecánica.

Matemáticas I. Escuela Politécnica Superior de Sevilla, curso Grados en Ingeniería Eléctrica, Electrónica Industrial y Mecánica. Matemáticas I. Escuela Politécnica Suerior de Sevilla, curso - Grados en Ingeniería Eléctrica, Electrónica Industrial Mecánica. Boletín n o. Curvas en forma cartesiana.. Determinar la derivada de las siguiente

Más detalles

División 2. Engranajes. Dimensionamiento y cálculo Aspectos de rendimiento y de dinámica

División 2. Engranajes. Dimensionamiento y cálculo Aspectos de rendimiento y de dinámica Versión 04 CAPITULO 9 TENES DE ENGANAJES, EDUCTOES PLANETAIOS Y DIFEENCIALES División Engranajes. Dimensionamieno y cálculo Aspecos de rendimieno y de dinámica Versión 04. Análisis de fuerzas Análisis

Más detalles

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales?

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales? Razón de cambio de una función cuadráica Ejemplo.5 Un puno se desplaza en el plano describiendo el lugar geomérico correspondiene a la función f ( x x 6x 3. Obén la razón promedio de cambio. Considera

Más detalles

Cuando la integral (1) converge, el resultado es una función de s. La transformada de Laplace se puede escribir también como F(s).

Cuando la integral (1) converge, el resultado es una función de s. La transformada de Laplace se puede escribir también como F(s). Unidad 5. a ransformada de aplace Inroducción. En nuesro curso de cálculo elemenal aprendimos que la derivación y la inegración son ransformadas, es decir, que esas operaciones ransforman una función en

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATMÁTICA

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATMÁTICA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATMÁTICA CURSO: Maemáica Inermedia 3 JORNADA: SEMESTRE: Mauina er. Semesre AÑO: 205 TIPO DE EXAMEN: NOMBRE DEL AUXILIAR: NOMBRE

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la

Más detalles

Sistemas lineales con ruido blanco

Sistemas lineales con ruido blanco Capíulo 3 Sisemas lineales con ruido blanco 3.1. Ruido Blanco En la prácica se encuenra procesos esocásicos escalares u con media cero y la propiedad de que w( 1 ) y w( 2 ) no esán correlacionados aún

Más detalles

Métodos de Previsión de la Demanda Pronóstico para Series Temporales Niveladas Representación Gráfica

Métodos de Previsión de la Demanda Pronóstico para Series Temporales Niveladas Representación Gráfica Méodos de Previsión de la Demanda Pronósico para Series Temporales Niveladas Represenación Gráfica REPRESENTACIÓN GRÁFICA DE LA SERIE DE DATOS Período i Demanda Di 25 2 2 3 225 4 24 5 22 Para resolver

Más detalles

Física 2º Bach. Tema: Ondas 27/11/09

Física 2º Bach. Tema: Ondas 27/11/09 Física º Bach. Tema: Ondas 7/11/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 PUNTOS: 1 / APARTADO] 1. Una onda ransversal se propaga en el senido negaivo de las X con una velocidad de 5,00

Más detalles

2.- Determinar las coordenadas del c. de g. de un tractor cuyas características dimensionales son las siguientes:

2.- Determinar las coordenadas del c. de g. de un tractor cuyas características dimensionales son las siguientes: .- Un racor iene las siguienes caracerísicas: aalla: 450 mm. Radio de las ruedas morices: 70 cm. Radio de las ruedas direcrices: 30 cm. eso oal del racor: 300 Kp. eso en el eje delanero cuando el racor

Más detalles

Tema 3. Circuitos capacitivos

Tema 3. Circuitos capacitivos Inroducción a la Teoría de ircuios Tema 3. ircuios capaciivos. Inroducción... 2. Inerrupores... 3. ondensadores... 2 3.. Asociación de capacidades.... 5 ondensadores en paralelo... 5 ondensadores en serie...

Más detalles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles CINEMÁTICA: MOVIMIENTO TRIDIMENSIONAL, DATOS EN FUNCIÓN DEL TIEMPO. Una cucaracha sobre una mesa se arrasra con una aceleración consane dada por: a (.3ˆ i. ˆ j ) cm / s. Esa sale desde un puno ( 4, ) cm

Más detalles

Por ejemplo, la línea que deberemos escribir para definir la forma de onda de la figura, para una frecuencia de 50Hz, es:

Por ejemplo, la línea que deberemos escribir para definir la forma de onda de la figura, para una frecuencia de 50Hz, es: Prácica S4: Especro de Fourier 1. Objeivos Los objeivos de la prácica son: 1.- Uilizar el simulador Pspice para el esudio de la respuesa en frecuencia de circuios elécricos pasivos, aplicando la serie

Más detalles