Divergencia. Teorema de Gauss Significado físico de la divergencia. Rotacional. Teorema de Stokes Significado físico del rotacional

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Divergencia. Teorema de Gauss Significado físico de la divergencia. Rotacional. Teorema de Stokes Significado físico del rotacional"

Transcripción

1 I. Fudametos mate 5. Divegecia i y otacioal Gómez, 2/ Dpto. Física Aplicada III (U. Sevilla Campos Electomagéticos Igeieo de Telecomuicació icos. Coodeadas cuvilíeas 2. Sistemas de coodeadas otogoales. Campos escalaes 4. Campos vectoiales 5. Divegecia y otacioal Divegecia. Teoema de Gauss Sigificado físico de la divegecia Fuetes escalaes de u campo vectoial Rotacioal. Teoema de Stokes Sigificado físico del otacioal Fuetes vectoiales de u campo vectoial 6. peadoes difeeciales 7. Teoemas itegales 2

2 Divegecia. Teoema de Gauss Divegecia de campo vectoial A( cotiuo y deivable (e geeal defiició itíseca: diva( es flujo de A po uidad de volume e too a d div A( = lim d A S d ( mide vaiació eta po uidad de logitud de A (A /=( A / expesió e coodeadas otogoales: hhh 2 div A ( A i A hhh 2 i q i h i Teoema de Gauss el flujo de A( a tavés de es igual a la itegal de div A( e el volume A (d S A d = i A i (q,q 2,q u i A A t (q,q 2,q A =d ( ( Itepetació física del flujo: caso paticula Ejemplo de flujo: U fluido icompesible (desidad m costate, se mueve segú ua distibució de velocidades v=v( (campo vectoial. Detemíese la masa de fluido que ataviesa la supeficie po uidad de tiempo. Solució: es igual al flujo del campo vec- toial A(= m v( a tavés de la supeficie. dm dt A( flujo eto e el setido de : (dm/dt > flujo eto cotaio a : (dm/dt < 4

3 Sigificado de la divegecia: fuetes escalaes (I Fuetes escalaes del campo vectoial petubacioes escalaes que actúa como causas del campo vectoial las líeas de campo divege o covege e los putos dode existe fuetes escalaes div A(= A( popocioa la distibució de las fuetes escalaes de A( desidad volumética de fuetes escalaes Caso a ausecia de fuetes escalaes agua fluyedo e too a u puto desidad dde masa costate: t m = g/cm e eta y sale la misma catidad de agua dm d ( A S d div A ( = dt d ( ( 5 Sigificado de la divegecia: fuetes escalaes (II Fuetes escalaes del campo vectoial A(= m v( Caso b pesecia de fuetes escalaes agua fluyedo e too a u puto F dode hay u eacto que actúa como maatial H H 2 (líquida las líeas de A( divege desde F H2 2 e sale más agua que eta ( m cte.: d ( A S ( dm dt ( div A(F idica pesecia de maatiales de campo e F: fuetes escalaes positivas d F div A ( F = d F 6

4 Sigificado de la divegecia: fuetes escalaes (III Fuetes escalaes del campo vectoial A(= m v( Caso c pesecia de fuetes egativas agua fluyedo e too a u puto S dode hay u sumideo : H 2 (líquida H H2 2 las líeas de A( covege e S e eta más agua que sale ( m cte. : d ( A S ( dm dt ( div A(F idica pesecia de sumideos de campo e S: fuetes escalaes egativas d div A ( S= S d S 7 Fuetes escalaes: ejemplos Fuetes de campo adial (..a, cte. A ( u 2 A( u (,, Fuetes de u vótice z v vu (,,z C v ( u v( u cil A ( 4 δ( fuetes escalaes e (desidad d ifiita it A A S4 d d cil vd v v ( o tiee fuetes escalaes

5 Rotacioal. Teoema de Stokes (I Rotacioal de campo vectoial A=A( cotiuo y deivable e defiició itíseca de otacioal: ot A( S A ot A( A( ( A( A ( lim d ( ( ot A( mide la vaiació eta po uidad de logitud de las compoetes (q,q 2,q de A( tageciales a (A t A=A t ; A /= A t / A div A( e coodeadas otogoales: A h u h2u2 hu = ( ota( q q q 2 hhh A A 2 ha h 2A h 2 A A t ot A( 9 Rotacioal.Teoema de Stokes (II Sigificado del otacioal: ciculació la ciculació po uidad de supeficie de A( alededo de S, es la poyecció de ot A( sobe la diecció d lim A ( d ot A ( S ( S S ota( d ot ta( A( Teoema de Stokes el flujo del ot A( a tavés de ua supeficie es igual a la ciculació de A( a lo lago de su peímeto d ( A S= A d

6 Sigificado físico del otacioal: fuetes vectoiales (I Fuetes vectoiales de campo vectoial petubacioes vectoiales que actúa como causas del campo vectoial las líeas de campo gia e too a los putos dode existe fuetes vectoiales ot A(=A( popocioa la distibució de B( I las fuetes vectoiales de A( desidad volumética de fuetes vectoiales Ejemplo : u hilo de coiete eléctica es Q fuete vectoial de u campo magético B( las líeas del campo so cicufeecias cocéticas alededo del hilo de coiete I e u puto dode hay coiete ( ot B( SS e u puto dode o hay coiete (Q ot B ( Q Sigificado físico del otacioal: fuetes vectoiales (II Fuetes vectoiales de campo vectoial Ejemplo 2: fluido de desidad costate y movieto ectilíeo a la lago de ua tubeía distibució de velocidades: o uifome A(= m v( simética especto del eje logitudial ausecia de fuetes vectoiales distibució simética de A( e too a : el moliillo e o es movido po el fluido las líeas de A( ( o gia e too a ciculació ula de A( e too a : (poyecció del otacioal ulo Ad ( S S d ot A( = eje de simetía 2

7 Sigificado físico del otacioal: fuetes vectoiales (III Fuetes vectoiales de campo vectoial Ejemplo 2: fluido de desidad costate y movieto ectilíeo a la lago de ua tubeía fuetes vectoiales positivas A( o es simético especto de : el moliillo e gia e setido atihoaio las líeas del campo A( gia e too a e setido positivo (especto de ciculació de A( e too a : Ad ( S ot A( idica pesecia de fuete vectoial positiva (co el setido de S d ot A( = eje de simetía Sigificado físico del otacioal: fuetes vectoiales (IV Fuetes vectoiales de campo vectoial Ejemplo 2: fluido de desidad costate y movieto ectilíeo a la lago de ua tubeía fuetes vectoiales egativas A( o es simético especto de Q: el moliillo e Q gia e setido hoaio las líeas del campo A( gia e too a Q e setido egativo (especto de ciculació de A( e too a Q: d Q A ( S Q Q ot A(Q idica pesecia de fuete vectoial egativa (co setido opuesto a d ot A( Q = Q eje de simetía S Q Q 4

8 Fuetes vectoiales: ejemplos Fuetes de campo adial (..a z d A ( u A u 2 ( (,,, cte. v v u z, cte. (,,z Fuetes de u vótice C v ( u v( u z d, cte. z, cte. o tiee fuetes vectoiales v S= v ( 2 d d C A ( A = A( d v ( 2CC δ(ρ u z fuetes vectoiales e (desidad d ifiita it fuetes vectoiales e 5 Fuetes escalaes y vectoiales: ejemplos Fuetes de campo adial (..a A ( u 2 A( u (,, C v ( u v ( u Fuetes de u vótice (,,z A ( 4 δ( A ( A(, geeado po petubació esca- la putual e v(, poducido po petubació vectoial e v ( 2 C δ(ρ u z v ( 6

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. 5. Divergencia y rotacional. Ingeniero de Telecomunicación

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. 5. Divergencia y rotacional. Ingeniero de Telecomunicación I. Fundamentos matemá 5. Divergencia y rotacional Gabriel Cano Gómez, G 2009/10 Dpto. Física F Aplicada III (U. Sevilla Campos Electromagné Ingeniero de Telecomunicación I. Fundamentos matemá 1. Coordenadas

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 27 de Enero de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 27 de Enero de 2003 CÁLCULO Pime cuso de Igeieo de Telecomuicació Pime Exame Pacial. 7 de Eeo de 3 Ejecicio. Deducilafómuladeláeadeusegmetopaabólico e fució de su base y su altua. Se cosidea u coo cicula ecto co adio de la

Más detalles

ALGUNAS CUESTIONES DE ELECTROMAGNETISMO LECCIONES 1 A 10 ( )

ALGUNAS CUESTIONES DE ELECTROMAGNETISMO LECCIONES 1 A 10 ( ) ALGUNAS CUESTIONES DE ELECTROMAGNETISMO LECCIONES 1 A 1 (24-25) 1. E ua esfea de adio a teemos ua caga Q distibuida de modo que cea u campo eléctico adial de itesidad: k E, < < a 2 siedo k ua costate.

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ. CINEMÁTICA DEL MOVIMIENTO EN EL PLANO: dos dimensiones, horizontal y vertical.

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ. CINEMÁTICA DEL MOVIMIENTO EN EL PLANO: dos dimensiones, horizontal y vertical. MCOSPB CIENCIS NTULES FÍSIC -- 10 -- 013. N.S.Q INSTITUCIÓN EDUCTIV ESCUEL NOML SUPEIO DE QUIBDÓ CINEMÁTIC DEL MOVIMIENTO EN EL PLNO: dos dimesioes, hoizotal y vetical. O sea: Esfea: cayedo de ua mesa

Más detalles

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Flujo, divergencia y teorema de Gauss

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Flujo, divergencia y teorema de Gauss Tema 1: Fundamentos Matemáticos 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Flujo, divegencia y teoema de Gauss Concepto

Más detalles

Polarización. Propagación de la luz en medios anisótropos

Polarización. Propagación de la luz en medios anisótropos Polaizació Popagació de la luz e medios aisótopos Polaizació de ua oda Popiedad de las odas tasvesales: La vibació es pepedicula a la diecció de popagació Se defie la diecció de polaizació como la diecció

Más detalles

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática Tema : Pincipios de la electostática 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Leyes de la electostática Leyes de la electostática:

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES Espacios Vectoiales Heamietas ifomáticas paa el igeieo e el estudio del algeba lieal. ESPACIOS VECTORIALES.. ESTRUCTURA DE ESPACIO VECTORIAL... Defiició..2. Ejemplos de espacios vectoiales..3. Popiedades

Más detalles

8.- LÍMITES DE FUNCIONES

8.- LÍMITES DE FUNCIONES 8.- LÍMITES DE FUNCIONES.- DOMINIO DE DEFINICIÓN. Halla el domiio de defiició de f() = + 5+6 Solució: El domiio es -{,}. Halla el domiio de defiició de f() = 6 Solució: El domiio es (-,-] [, ).. Halla

Más detalles

Tema 6. Apéndice. Operadores vectoriales.

Tema 6. Apéndice. Operadores vectoriales. 6.A.. Campos. Tema 6. Apéndice. Opeadoes vectoiales. 6.A.. Campos. 6.A.. Gadiente. 6.A.3. Divegencia. 6.A.4. Rotacional. 6.A.. Campos. Intoducción. Concepto de campo. Campo:función que depende de la posición.

Más detalles

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 5-. Ejemplo 1º. Aplicando el teoema de Gauss halla el campo eléctico ceado po una distibución esféica de

Más detalles

Coeficientes de Influencia

Coeficientes de Influencia Coeficietes de Ifluecia 5 Cetémoos ahoa e la maea de obtee los coeficietes de ifluecia. E uesto caso esto se educe al cálculo de las itegales d k ik elemeto _ k d ik σ, σ σ sobe elemeto _ k k elemeto _

Más detalles

Figura 1.63: letra i superpuesta con los símbolos = e. Figura 2.1: donde dice δc debe decir δs.

Figura 1.63: letra i superpuesta con los símbolos = e. Figura 2.1: donde dice δc debe decir δs. Fe de eatas Debido a poblemas técicos duate la impesió de esta pimea edició de lectomagetismo elemetal, vaias iguas peseta eoes ue o existía e el mauscito oigial pesetado po el auto. uellas e las cuales

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

************************************************************************ *

************************************************************************ * 1.- Ua barra de secció circular, de 5 mm de diámetro, está sometida a ua fuerza de tracció de 5 kg, que se supoe distribuida uiformemete e la secció. partir de la defiició de vector tesió, determiar sus

Más detalles

Física 2º Bachillerato

Física 2º Bachillerato Física º Bachilleato Tema.- Odas.- Defiioes Ua oda es ua petubació que se popaga e el espacio. Taspota eegía y catidad de movimieto si que haya u desplazamieto de la mateia. Pulso: es ua úica oscilació:

Más detalles

Ecuaciones del movimiento de un fluido

Ecuaciones del movimiento de un fluido Ecuaciones del movimiento de un fluido 1 Foma fundamental El tenso de tensiones Relación constitutiva paa un fluido Newtoniano La ecuación de Navie-Stokes El tenso de tensiones paa flujos incompesibles

Más detalles

Electrostática. Campo electrostático y potencial

Electrostática. Campo electrostático y potencial Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE. a máx a=0 a máx. x aceleración en m/s 2. ω = k = ω m. múltiplo par de π π múltiplo impar de π. múltiplo impar de π/2

MOVIMIENTO ARMÓNICO SIMPLE. a máx a=0 a máx. x aceleración en m/s 2. ω = k = ω m. múltiplo par de π π múltiplo impar de π. múltiplo impar de π/2 MVMEN RMÓNC SMPLE x se( ω t + φ0 ) x elogació, aplitud (elogació áxia), ω pulsació agula (fecuecia agula), ad/s φ 0 fase iicial, ad dx ω cos( ωt + φ0 dt ) elocidad e /s a áx a0 a áx V0 V áx V0 + d a ω

Más detalles

Teoremas Integrales. V(x j ) ds

Teoremas Integrales. V(x j ) ds Semana 2 - Clase 5 24/03/09 Tema : Algeba ectoial Teoemas Integales. Teoema de la Divegencia o de Gauss Sea = x j ) un campo vectoial definido sobe un volumen cuya fontea es la supeficie y ˆn el vecto

Más detalles

UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE INGENIERIA

UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE INGENIERIA UNIERSIDAD NACIONAL DE LA PLATA FACULTAD DE INGENIERIA IITREE - Istituto de Ivestigacioes Tecológicas paa Redes y Equipos Elécticos Cáteda de Campos y Odas Notas sobe Electostática e el vacío Po los Igs.

Más detalles

Transporte de portadores. Corriente en los semiconductores

Transporte de portadores. Corriente en los semiconductores Trasporte de portadores Corriete e los semicoductores Movimieto térmico de los portadores Detro del semicoductor los portadores de corriete está sometidos a u movimieto de agitació térmica (movimieto browiao).

Más detalles

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

Topografía 1. II semestre, José Francisco Valverde Calderón   Sitio web: II semestre, 2013 José Fracisco Valverde Calderó Email: geo2fra@gmail.com Sitio web: www.jfvc.wordpress.com José Fracisco Valverde C Cualquier actividad técica dode se requiera recopilar iformació espacial,

Más detalles

Sobre la divergencia, el rotacional y el teorema de Stokes generalizado en términos de las k-formas en R n

Sobre la divergencia, el rotacional y el teorema de Stokes generalizado en términos de las k-formas en R n Sobre la divergecia, el rotacioal y el teorema de Stokes geeralizado e térmios de las k-formas e R Pablo Esquer Castillo. iciembre del 2016. Qué es la divergecia? El operador abla, como vector, se defie

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

el blog de mate de aida MATEMÁTICAS I. Números complejos. Pág. 1 Diofanto, un adelantado a su época.

el blog de mate de aida MATEMÁTICAS I. Números complejos. Pág. 1 Diofanto, un adelantado a su época. el blog de mate de aida MATEMÁTICAS I. Númeos complejos. Pág. 1 AMPLIACIÓN DEL CAMPO NUMÉRICO Diofato, u adelatado a su época. Este tiágulo está costuido co ua cueda e la que se ha ealizado doce udos a

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL Cuado u objeto real gira alrededor de algú eje, su movimieto o se puede aalizar como si fuera ua partícula,

Más detalles

Introducción * Capítulo 2 UNI - FIEE ANTENAS de antenas: Parámetros

Introducción * Capítulo 2 UNI - FIEE ANTENAS de antenas: Parámetros UNI - FIEE NTENS 1-3 Capítulo Teoía a básica b de ateas: Paámetos Ig. Macial toio Lópe Tafu mlope@ui.edu.pe 1-3 Itoducció * Bieveidos al maavilloso mudo de las ateas, su leguaje cultua; de la familia de

Más detalles

TEMA 4: Dinamica III Capitulo 2: fuerzas de inercia

TEMA 4: Dinamica III Capitulo 2: fuerzas de inercia TEMA 4: Diamica III Capitulo : fuerzas de iercia Sistemas Ierciales y No-ierciales Sistema iercial v = cte. Sistema o-iercial Aparece las fuerzas de iercia Co aceleració Problema: su peso e u ascesor (sistema

Más detalles

Tema 1: Electrostática en el vacío

Tema 1: Electrostática en el vacío Tema : lectostática en el vacío. Caga eléctica Le de Coulomb. Campo eléctico.3 Campo ceado po distibuciones continuas de caga.4 Le de Gauss.5 Potencial electostático.6 negía potencial electostática Masolle

Más detalles

GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN

GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN FACTOR COMUN 1. FACTOR COMUN MONOMIO: Factor comú moomio: es el factor que está presete e cada térmio del poliomio: Ejemplo N 1: cuál es el factor

Más detalles

Lección 2. Integrales y aplicaciones. 1. Integral definida: área comprendida entre dos curvas.

Lección 2. Integrales y aplicaciones. 1. Integral definida: área comprendida entre dos curvas. 1. Itegral defiida: área compredida etre dos curvas. Uo de los grades logros de la geometría clásica fue el cálculo de áreas y volúmees de figuras como triágulos, esferas o coos mediate ua fórmula. E esta

Más detalles

XIII.- TEOREMA DEL IMPULSO

XIII.- TEOREMA DEL IMPULSO XIII.- TEOREMA DEL IMPULSO http://libos.edsauce.net/ XIII.1.- REACCIÓN DE UN FLUIDO EN MOVIMIENTO SOBRE UN CANAL GUÍA El cálculo de la fueza ejecida po un fluido en movimiento sobe el canal que foman los

Más detalles

Cálculo con vectores

Cálculo con vectores Uidd didáctic 1 Cálculo co vectoes 1.- Mgitudes escles vectoiles. So mgitudes escles quells, como l ms, l tempetu, l eegí, etc., cuo vlo qued fijdo po u úmeo (co su uidd coespodiete). Gáficmete se epeset

Más detalles

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo.

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo. LY D GAU La ley de Gauss es un enunciado ue es deivable de las popiedades matemáticas ue tiene el Vecto de intensidad de Campo léctico con especto a las supeficies en el espacio. ste enunciado constituye

Más detalles

COMPORTAMIENTO DE LOS CRISTALES EN RELACIÓN CON EL CAMPO ELÉCTRICO LOCAL, LA POLARIZACIÓN Y EL CAMPO ELÉCTRICO DE LA LUZ INCIDENTE

COMPORTAMIENTO DE LOS CRISTALES EN RELACIÓN CON EL CAMPO ELÉCTRICO LOCAL, LA POLARIZACIÓN Y EL CAMPO ELÉCTRICO DE LA LUZ INCIDENTE COMPORTAMIENTO DE LOS CRISTALES EN RELACIÓN CON EL CAMPO ELÉCTRICO LOCAL, LA POLARIZACIÓN Y EL CAMPO ELÉCTRICO DE LA LUZ INCIDENTE Paa que la luz viaje con la misma velocidad a tavés de cualquie diección

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

Tema 8. Derivabilidad y reglas de derivación. 8.1 Derivada de una función

Tema 8. Derivabilidad y reglas de derivación. 8.1 Derivada de una función Tema 8 Derivabilidad y reglas de derivació 8. Derivada de ua fució f : I R es derivable e a I si eiste el límite que llamaremos f 0 (a) f() f(a) lim a a Ejercicio 8.. Si f() 3 calcular f 0 () f(a + ) f(a)

Más detalles

9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS

9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS 9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS OBJETIVO El objetivo de la práctica es determiar la desidad de líquidos utilizado la balaza de Möhr y su aplicació a la determiació de la desidad de disolucioes co

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

VECTORES. A partir de la representación de, como una recta numérica, los elementos

VECTORES. A partir de la representación de, como una recta numérica, los elementos VECTORES VECTORES Los ectores, que era utilizados e mecáica e la composició de fuerzas y elocidades ya desde fies del siglo XVII, o tuiero repercusió etre los matemáticos hasta el siglo XIX cuado Gauss

Más detalles

Lím f(x) Lím f(x) = f(a).

Lím f(x) Lím f(x) = f(a). CÁLCULO DE LÍMITES Y CONTINUIDAD 1. TEOREMA SOBRE LÍMITES Defiició: El límite de ua fució f(), cuado tiede a o es L si y sólo si para todo ε > 0 eiste u δ(ε) > 0 tal que para todo úmero real que perteece

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 8 CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO LINEAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 8 CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO LINEAL INISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIENTAL POLITÉCNICA DE LA FUERZA ARADA NACIONAL UNEFA NUCLEO ERIDA APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 8 CONSERVACIÓN

Más detalles

T2. Visión Estereoscópica. T2. Visión Estereoscópica. Índice. Índice. Introducción. Técnicas Avanzadas de Visión por Computador

T2. Visión Estereoscópica. T2. Visión Estereoscópica. Índice. Índice. Introducción. Técnicas Avanzadas de Visión por Computador Ídice Técicas Aaadas de Visió po Coptado Sisteas Ifoáticos Aaados Itodcció Qé es la isió esteeoscópica? Geoetía de sistea biocla Geoetía biocla. Mati fdaetal Rectificació El poblea de la coespodecia Resticcioes

Más detalles

Ecuaciones fundamentales en Física general. Cinemática de una partícula

Ecuaciones fundamentales en Física general. Cinemática de una partícula Ecuacies fudametales de la Física Ecuacies fudametales e Física geeal Ciemática de ua patícula v d a dv.r.u. v cte a 0 s s + v.t.r.u.a. a cte s s + v.t + ½.a.t v v + a.t v v +.a.s vimiet cicula s φ.r dϕ

Más detalles

B.2: Propagación de la luz en un medio

B.2: Propagación de la luz en un medio B.: Popagació e u medio B.. Itoducció Pocesado ifomació co compoetes fotóicos es geeació, popagació modució ifomació co haces. > Cómo popaga po u medio? Veemos popagació e u medio uifome s fómus Fes paa

Más detalles

DESCARGA DE UN CONDENSADOR

DESCARGA DE UN CONDENSADOR DEAGA DE UN ONDENADO Objetivo: 1. Apede que e u cicuito de coiete diecta la descaga de u capacito tiee u compotamieto expoecial. INTODUIÓN U cicuito eléctico que se compoe de u codesado y ua esistecia

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. 6. SUCESIONES Y SERIES NUMÉRICAS 6... Sucesioes de úmeros reales 6.. SUCESIONES NUMÉRICAS Se llama sucesió de úmeros reales a cualquier

Más detalles

FUNCIONES VECTORIALES DE VARIABLE ESCALAR

FUNCIONES VECTORIALES DE VARIABLE ESCALAR CAPITULO II CALCULO II Competecia FUNCIONES VECTORIALES DE VARIABLE ESCALAR Recooce y aplica satisfactoriamete las operacioes, procedimietos, reglas y métodos del cálculo itegral y diferecial e las fucioes

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FÍSICA GENERAL II GUÍA - Campo eléctico: Ley de Gauss Objetivos de apendizaje Esta guía es una heamienta que usted debe usa paa loga los siguientes objetivos: Defini el concepto de Flujo de Campo Eléctico.

Más detalles

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones

Más detalles

TEMA 1: INTERACCIÓN GRAVITATORIA GENERALIZACIÓN DEL CONCEPTO DE TRABAJO A UNA FUERZA VARIABLE PARTE 1

TEMA 1: INTERACCIÓN GRAVITATORIA GENERALIZACIÓN DEL CONCEPTO DE TRABAJO A UNA FUERZA VARIABLE PARTE 1 EM : INERCCIÓN GRVIORI PRE Geealizació del cocepto de tabajo a ua fueza vaiable. eoema del tabajo y la eegía ciética. Fuezas cosevativas. Eegía potecial asociada a ua fueza cosevativa. abajo y difeecia

Más detalles

Mecánica de Materiales II: Análisis de Esfuerzos

Mecánica de Materiales II: Análisis de Esfuerzos Mecáica de Materiales II: Aálisis de Adrés G. Clavijo V., Coteido Itroducció Fueras de volume Coveció de sigos de cauch Estado Triaial Circulo de Mohr Método gráfico Estado plao de Circulo de Mohr - Reglas

Más detalles

Destilación. Columna de destilación

Destilación. Columna de destilación estilació Columa de destilació Plato Reboiler estilació mezclas biarias a separació requiere Ua seguda fase debe ser formada tal que las fases de liquido vapor está presetes pueda estar e cotacto e cada

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

Tema 3. Series de Fourier. Análisis de Espectros

Tema 3. Series de Fourier. Análisis de Espectros Idice: Señales periódicas. Aálisis de Simetría Simetría Par Simetría Impar Simetría de Media Oda Simetría de Cuarto de Oda Señales Ortogoales Prof. Raquel Frías Aálisis de Señales 1 1. Señales Periódicas

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA ESTÁTICA

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA ESTÁTICA UNIVESIDD NCINL DEL CLL CULTD DE INGENIEÍ ELÉCTIC Y ELECTÓNIC ESCUEL PESINL DE INGENIEÍ ELÉCTIC ESTÁTIC * Equilibio de cuepos ígidos ING. JGE MNTÑ PISIL CLL, 2010 EQUILIBI DE CUEPS ÍGIDS CNCEPTS PEVIS

Más detalles

El producto de convolución de la derivada de la delta de Dirac en 1-x 2*

El producto de convolución de la derivada de la delta de Dirac en 1-x 2* ISSN 88-67 Impeso e Nicaagua. www.ui.edu.i/neo Vo. No. pp.66-7/diciembe 9 E poducto de covoució de a deivada de a deta de Diac e - * M. Gacía y M. Aguie Núceo Cosoidado Matemática Pua y Apicada-NUCOMPA

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

TEMA 3: EL PLANO MÉTRICO

TEMA 3: EL PLANO MÉTRICO Matemática º achilleato. Geometía alítica TEM : EL PLNO MÉTRIO. DETERMINIÓN NORML DE UN RET. ÁNGULO QUE FORMN DOS RETS. FORM NORML DE LEUIÓN DE UN RET. DISTNI ENTRE DOS PUNTOS Popiedade de la ditacia mética.

Más detalles

CP; q v B m ; R R qb

CP; q v B m ; R R qb Campo Magnético Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos (N y S). Si acecamos

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

Práctica 3: Convolución

Práctica 3: Convolución Práctica 3: Covolució Apellidos, ombre Apellidos, ombre Grupo Puesto Fecha El objetivo de esta práctica es familiarizar al alumo co la suma de covolució, fudametal e el estudio de los sistemas lieales,

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Electrostática Clase 2 Vector Desplazamiento o densidad de flujo eléctrico. Ley de Gauss..

Electrostática Clase 2 Vector Desplazamiento o densidad de flujo eléctrico. Ley de Gauss.. Electostática Clase 2 Vecto Desplazamiento o densidad de flujo eléctico. Ley de Gauss.. Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA En cietos casos que se analizan

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

TEMA 2 CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE

TEMA 2 CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE TEMA CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE Derivada de ua ució e u puto Sea : D y u puto iterior de Se dice que es derivable e eiste lim Dicho límite recibe el ombre de derivada de e Notas ) Notaremos

Más detalles

SEMICONDUCTORES fuera del EQUILIBRIO

SEMICONDUCTORES fuera del EQUILIBRIO SEMICONDUCTORES fuera del EQUILIBRIO Dr. Adrés Ozols Facultad de Igeiería UBA 007 Dr. A. Ozols 1 FENÓMENOS de TRANSPORTE de CARGA ARRASTRE de PORTADORES La desidad de carga moviédose a ua velocidad romedio

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43 TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a a 8 + ( ); Y fialmete: a 7 8 + (7 ) 86 0 7 + 0. S 0 Págia 7 [ ( 7 + 9 5) ] 95. a) 6 : pero 0 : 6,6 o es PG b) 6 : ( ) : 6 :

Más detalles

EJERCICIO S DE FUNCIO NES. i)f(x)= 3 2. k)f(x)= )

EJERCICIO S DE FUNCIO NES. i)f(x)= 3 2. k)f(x)= ) Dadas las guiet ucio: 6 a e b EJERCICIO S DE FUNCIO NES g c 9 d h i 9 j log k log l L9 Hallar su domiio. Hallar los putos de corte co los ej. Comprobar las ucio b, c,, g, y h so par o impar. E las ucio

Más detalles

CAMPO MAGNÉTICO (II) Fuentes de Campo Magnético

CAMPO MAGNÉTICO (II) Fuentes de Campo Magnético CAMPO MAGNÉTICO (II) Fuentes de Campo Magnético Campo magnético Intoducción Campo ceado po cagas puntuales en movimiento Campo ceado po coientes elécticas: Ley de iot y Savat Ley de Ampee Magnetismo en

Más detalles

DESARROLLO de Unidad VIII: Movimiento Potencial Bidimensional

DESARROLLO de Unidad VIII: Movimiento Potencial Bidimensional Depatamento de Aeonáutica : Mecánica de los Fluidos IA 7 DESARROLLO de Unidad VIII: Movimiento Potencial Bidimensional Poblema 6 : Una fuente bidimensional de intensidad q está ubicada en una esquina ectangula

Más detalles

LA RUEDA PELTON (Shames)

LA RUEDA PELTON (Shames) LA RUEDA PELTON (Shames) Es una tubina de impulsión. Uno o más choos de agua, que sale(n) de una tobea a velocidad alta, incide sobe un sistema de cuchaas unidas a una ueda. El odete (cuchaas y ueda) tiene

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS º BCT DPTO DE MATEMÁTICAS T4: NÚMEROS COMPLEJOS - LOS NÚMEROS COMPLEJOS.- INTRODUCCIÓN: LAS ECUACIONES DE º GRADO CON SOLUCIONES IMPOSIBLES Desde el siglo XVI al XVIII llamaro la ateció, por la forma de

Más detalles

Intensidad de campo eléctrico Se define como la fuerza que actúa por unidad de carga. Es una magnitud vectorial. F q E k q d se mide en N C

Intensidad de campo eléctrico Se define como la fuerza que actúa por unidad de carga. Es una magnitud vectorial. F q E k q d se mide en N C Campo eléctico Campo eléctico es la pate el espacio en la ue apaecen fuezas e atacción o e epulsión ebio a la pesencia e una caga. Caacteísticas e las cagas: Hay os tipos e cagas: positivas y negativas.

Más detalles

ARITMÉTICA MODULAR. CONGRUENCIAS ENTERAS Carl Friedrich Gauss ( )

ARITMÉTICA MODULAR. CONGRUENCIAS ENTERAS Carl Friedrich Gauss ( ) CONGRUENCIAS ENTERAS Carl Friedrich Gauss (1777 1855) ARITMÉTICA MODULAR Defiició Sea m, a, b. a es cogruete co b módulo m si y sólo si ma b. a b (mód m) La relació de cogruecia es ua relació de equivalecia:

Más detalles

Graficación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación

Graficación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación Modelos de ilumiació Graficació Modelos de Ilumiació E busca de realismo... Modelos de ilumiació Modelos de ilumiació 3 El color o basta... Y la suavidad... Modelos de ilumiació Modelos de ilumiació 5

Más detalles

TEMA 6: DISOLUCIONES. Sistema material. Mezcla. Mezcla. coloidal

TEMA 6: DISOLUCIONES. Sistema material. Mezcla. Mezcla. coloidal TEMA : DISOLUCIONES Sistema material Sustacias puras Elemeto Compuesto Homogéea Heterogéea coloidal Suspesió 1.- DISOLUCIÓN (CONCEPTO) Es ua mezcla homogéea de dos o mas sustacias químicas tal que el tamaño

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

10 Introducción al concepto de límite

10 Introducción al concepto de límite Itroducció al cocepto de límite PIENSA Y CONTESTA Segú Zeó de Elea, quié gaará la carrera: Aquiles o la tortuga? Segú Zeó de Elea la carrera la gaará la tortuga. Por qué o es correcto el razoamieto de

Más detalles

q d y se mide en N C

q d y se mide en N C Campo eléctico Campo eléctico es la zona el espacio en la ue apaecen fuezas e atacción o e epulsión ebio a la pesencia e una caga. Caacteísticas e las cagas: Hay os tipos e cagas: positivas y negativas.

Más detalles

5 Puntos, rectas y planos en el espacio

5 Puntos, rectas y planos en el espacio 5 Putos, ectas y paos e e espacio Págia 145 Geometía eíptica a) Sea R 1 y R ectas e a geometía eíptica, y S a supeficie esféica. R 1 = π 1 S; R = π S Como os dos paos pasa po e ceto, se cota, uego π 1

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD ZACATENCO SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD ZACATENCO SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD ZACATENCO SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN ANALISIS ASINTOTICO DE FIBRAS OPTICAS DEL INDICE GRADUAL

Más detalles

DISOLUCIONES. Sistema material. Mezcla. Mezcla. coloidal

DISOLUCIONES. Sistema material. Mezcla. Mezcla. coloidal DISOLUCIONES CONTENIDOS 1.- Sistemas materiales. 2.- Disolucioes. Compoetes. Clasificacioes. 3.- Cocetració de ua disolució 3.1. E g/l (repaso). 3.2. % e masa (repaso). 3.3. % e masa/volume. 3.4. Molaridad.

Más detalles

Sistemas de Partículas

Sistemas de Partículas Sistemas de Partículas. Sistemas de partículas. Fuerzas iteriores y exteriores.. Cetro de masas. a) Propiedades diámicas del C b) Pricipio de coservació del mometo lieal de u sistema de partículas. 3.

Más detalles

Estado Gaseoso. Prf. María Peiró

Estado Gaseoso. Prf. María Peiró Estado Gaseoso rf. María eiró Gas, es u estado de la materia formado por éculas que tiede a expadirse porque se mueve a a velocidad debido a su altísima eergía ciética, mateiedo a espacio etre ellas. ropiedades

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

X I OLIMPIADA NACIONAL DE FÍSICA

X I OLIMPIADA NACIONAL DE FÍSICA X I LIMPIADA NACINAL D FÍSICA FAS LCAL - UNIVSIDADS D GALICIA - 18 de Febeo de 2000 APLLIDS...NMB... CNT... PUBA BJTIVA 1) Al medi la masa de una esfea se obtuvieon los siguientes valoes (en gamos): 4,1

Más detalles

UNIDAD 10.- DERIVADAS

UNIDAD 10.- DERIVADAS UNIDAD.- DERIVADAS. DERIVADA DE UNA EN UN PUNTO. DERIVADAS LATERALES Defiici.- Se llama derivada de ua fuci f ( e u puto de abscisa al siguiete ite si eiste: f ( f '( sigifica lo mismo. f (. Se suele represetar

Más detalles

En el capítulo introductorio vimos las leyes básicas de la transferencia masa de una especie por vía molecular (difusión). Esta es la ley de Fick.

En el capítulo introductorio vimos las leyes básicas de la transferencia masa de una especie por vía molecular (difusión). Esta es la ley de Fick. La Cosevació de la Masa E el capíulo ioducoio vimos las lees básicas de la asfeecia masa de ua especie po vía molecula difusió. Esa es la le de Fick. Tambié se dio que la difusió se puede ee luga e pesecia

Más detalles

Ejercicios Matemáticas I Pendientes 1 BCT

Ejercicios Matemáticas I Pendientes 1 BCT Ejercicios Matemáticas I Pedietes BCT ª Parte Uidad 7 Álgebra. Dado el poliomio P( ) = + k 5, calcula el valor de k para que el valor umérico del poliomio e = sea.. Halla u poliomio de tercer grado cuyo

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

20/11/2011 ELECTROTECNIA

20/11/2011 ELECTROTECNIA 0//0 orriete cotíua EETROTENIA. Elemetos activos. Elemetos pasivos 3. riterio iteracioal de sigos 4. Asociació de elemetos activos 5. Asociació de elemetos pasivos Juaa Molia Elemetos capaces de aportar

Más detalles

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO Sea ua partícula de masa m costreñida a ua sola dimesió e el espacio y detro de u segmeto fiito e esa dimesió. Aplicamos tambié el

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles