Espacios de Búsqueda en un Árbol Binario para Resolver Problemas de Optimización Discreta

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Espacios de Búsqueda en un Árbol Binario para Resolver Problemas de Optimización Discreta"

Transcripción

1 Espacos de Búsueda en un Árbol Bnaro para Resolver Problemas de Optmzacón Dscreta María Elena Gómez-Torres J. Crspín Zavala-Díaz Marco Antono Cruz- Chávez 3 Insttuto Tecnológco de Zacatepec Calzada Insttuto Tecnológco 7 Centro 6780 Zacatepec Morelos Méxco FCAeI 3 CIICAp UAEM Av. Unversdad 00 Chamlpa 609 Cuernavaca Morelos Méxco {crspn_zavala Resumen. En el presente artículo mostramos la forma de cómo obtener un espaco de búsueda en un árbol bnaro para soluconar un problema de optmzacón dscreta. Para ejemplfcar el comportamento de cómo se va reducendo el espaco de búsueda para obtener la solucón óptma global utlzamos el planteamento del problema de la mochla 0-. La generacón del espaco de búsueda en el árbol bnaro esta dado por los subconjuntos de un conjunto potenca de los índces de la funcón objetvo. Dcho espaco de búsueda se va reducendo por medo de una prueba de optmaldad hasta llegar a encontrar la mejor solucón. Por los resultados obtendos se puede comprobar ue se logró reducr el espaco de búsueda efcentemente propcando con esto las bases para el desarrollo de un algortmo ue sea capaz de soluconar cualuer problema de búsueda de tpo dscreto.. Introduccón Para soluconar los problemas de optmzacón dscreta un factor muy mportante es el acotamento del espaco de búsueda donde sea factble determnar la solucón óptma. Entre más rápdo se determne o se reduzca el espaco de búsueda el algortmo será más efcente. La determnacón del espaco de búsueda donde se busca la solucón óptma depende drectamente del algortmo ue se utlce para defnr ésta []. En este trabajo presentamos la forma de acotar el espaco de búsueda a través de la defncón de reglas de acotamento para soluconar un problema de optmzacón dscreta.. Descrpcón de la generacón del espaco de búsueda Los índces de los elementos ue forman la funcón objetvo los podemos agrupar en el conjunto I = { m} donde m es el número de elementos de la funcón objetvo. El espaco de búsueda de este conjunto estará dado por todos los posbles sub- J. C. Zavala-Díaz y M. A. Cruz-Chávez (Eds.): AGECOMP 006 ISBN: pp Edtoral ACD 006.

2 Espacos de Búsueda en un Árbol Bnaro 07 conjuntos ue pueden ser parte de la solucón esto es el conjunto potenca del conjunto I denotado por P(I). A este conjunto potenca lo podemos representar como un cubo C(m) de dmensón m el cual esta defndo por C(m)=[ I] donde representa el vértce mínmo e I representa el vértce máxmo. Para ejemplfcar lo anteror consderemos el conjunto I = {34} donde el conjunto potenca esta dado por: P(I)={{ } {} {} {3} {4} {} {3} {4} {3} {4} {34} {3} {4} {34} {34} {34}} y lo representamos por medo del cubo de la fgura. Fg.. Cubo C(m) de dmensón 4 Para reducr el espaco de búsueda el cubo C(m) se parte en dos cubos de dmensón menor donde la nterseccón es el conjunto vacío y la unón de todos los cubos es gual a C(m) (fg. ). Los dos cubos dsjuntos: C (m-) y C (m-) de dmensón (m- ) cada uno se pueden hacer de m dstntas formas: Para el cubo C (m-) se consdera un ntervalo [{} I]. (fg. ) cuyos elementos son: {{} {} {3} {4} {3} {4} {34} {34}} Al cubo C (m-) le corresponde un ntervalo [ I\{}]. (fg. ) cuyos elementos son: {{ } {} {3} {4} {3} {4} {34} {34}}

3 08 M. E. Gómez-Torres J. C. Zavala-Díaz M. A. Cruz-Chávez Como se observa todos los subconjuntos del conjunto C (m-) tenen al elemento. Mentras ue en el conjunto C (m-) nngún subconjunto tene a ese elemento. Por tanto C (m-) C (m-) = Fg.. C (m-) es el de la zuerda y el cubo C (m-) es el de la derecha Posterormente se forman los nveles sguentes (m-) en cada cubo C (m-) y C (m-) se hacen las msmas operacones. Cada cubo se parte en dos cubos de una dmensón menor entonces en el nvel (m-) se forman cuatro cubos ue son una partcón del cubo C(m). (fg. 3) Fg. 3. Representacón del nvel (m-) de los cubos C (m-) y C (m-) Así sucesvamente hasta llegar al últmo nvel donde el número de cubos de dmensón cero es gual a m. Entonces es gual al número de vértces del cubo ncal C(m). (fg. 4)

4 Espacos de Búsueda en un Árbol Bnaro 09 Hjo zuerdo Hjo derecho vértces nvel Fg. 4.Representacón de los espacos de búsueda de dmensón 4 3. Utlzacón del espaco de búsueda para resolver problemas de optmzacón dscreta Con el objetvo de explcar la utlzacón del espaco de búsueda se hace uso del planteamento del problema de la mochla 0- (Knapsack Problem = KP). Dado un conjunto de n elementos y una mochla con una utldad del elemento p un volumen del elemento w y una capacdad de la mochla c. Selecconar un subconjunto de elementos tal ue:

5 0 M. E. Gómez-Torres J. C. Zavala-Díaz M. A. Cruz-Chávez Sujeto a: max z = p x n = () n = w x c () Donde x {0} { n} Para mostrar como se utlza la reduccón del espaco de búsueda resolvemos este problema para un conjunto de 5 elementos con sus respectvas utldades p ( y ) y volúmenes w (6 ) y una mochla con una capacdad de c=. Se determna la solucón entera de (4) como una solucón ncal con la fnaldad de encontrar la mejor solucón óptma ya ue al comparar la funcón objetvo con la solucón entera s ésta últma resulta ser mayor ue la funcón objetvo esta pasa a ser la solucón óptma. Por otra parte se calcula la funcón lneal con (5) la cual se utlza para acotar el árbol en caso de ue no se encuentre una solucón lneal mayor ue la funcón objetvo de no ser así aún es posble encontrar una mejor solucón óptma y se contnúa ramfcando el árbol. Ambas solucones se determnan por medo de un método algebraco ue consste en obtener los coefcentes y ordenarlos de mayor a menor [] con lo cual la expresón ueda como en la relacón (3). Cálculo del nodo raíz nvel 5 p w p w... p w m m (3) Índces de la poscón orgnal = 6 Se ordenan (3) p = = 7 Se suman las utldades w = + + = 5 Se suman los volúmenes de cada elemento ue cumplen con () x =0 x =x 3 =x 4 =0x 5 = Son los elementos ue entran como una solucón temporal La solucón entera esta dada por: C( I) = max p j j= (4)

6 Espacos de Búsueda en un Árbol Bnaro La solucón lneal por: C C L) C( I) + w w ( p ) j ( = = ( + ) ( + ) (5) Donde: (+) ndca la poscón del sguente elemento ue no entró como parte de la solucón temporal. Como el prmer cálculo es en la raíz la funcón entera se consdera la solucón óptma temporal. Por lo tanto la funcón entera pasa a ser la funcón objetvo [4] C(I) (4): = 7 5 C(L) (5): 7 + (6) = 0 Se contnúa ramfcando el sguente nvel del árbol bnaro. Cálculo del hjo zuerdo C (m-) nvel 4. Se consdera al prmer elemento fjo formando parte de la solucón. Elemento fjo : p =3 w =6 Elementos ordenados: 7 = 8 6 Se procede a calcular una nueva restrccón (c nueva ) así como la funcón entera de la sguente manera: c nueva = c = 6 = 5 (6) w Se procede a buscar los elementos ue cumplan con la restrccón sn tomar en cuenta el elemento p = = 7 Se suman las utldades w = + + = 5 Se suman los volúmenes de cada elemento ue cumplen con () Se determna la solucón entera: = 5 C ( I ) = p x + max p x = ( )=0 = (7)

7 M. E. Gómez-Torres J. C. Zavala-Díaz M. A. Cruz-Chávez (6 + 5) C(L) (5): 0 + (6) = 0 Como en estos casos ya se tene un nuevo resultado con ue compararse con el anteror (nodo raíz) se procede a realzar la prueba de optmaldad ue consste en valdar las sguentes condcones [4]: S F.O. NodoRaíz < F.L. HjoIzuerdo entonces (condcón ) S F.E. HjoIzuerdo > F.O. NodoRaíz entonces (condcón ) F.E. = F.O. Donde: F.O. = Funcón Objetvo F.L. = Funcón Lneal F.E. = Funcón Entera Como se observa en los resultados se obtene una mejor solucón la funcón objetvo será gual a 0 y los elementos ue forman parte de la solucón x = x =x 3 =x 4 =0x 5 =. Cálculo del hjo derecho C (m-) nvel 4. Se descarta el prmer elemento y se toman los elementos restantes y procede a ordenar los elementos: Se ordenan los elementos = c = Se encuentran los elementos ue cumplan con la restrccón () p = = 7 = + + = 5 w C(I) (7): = 7 5 C(L) (5): 7 + (6) = 0 Los elementos de la funcón son: x =0 x =x 3 =x 4 =0x 5 = Se compara con la solucón óptma temporal y se evalúa la prueba de optmaldad: S F.O. HjoIzuerdo < F.L. HjoDerecho (condcón 3) S F.E. HjoDerecho > F.O. HjoIzuerdo F.E. = F.O. (condcón 4) No cumple con la condcón por lo ue se corta esta rama.

8 Espacos de Búsueda en un Árbol Bnaro 3 Se sgue ramfcando a partr del hjo zuerdo con el objetvo de encontrar una solucón óptma global. Cálculo del hjo zuerdo nvel 3. Se toman como fjos los elementos y éstos forman parte de la solucón p = 3 w = 6 p = 8 w = Los elementos restantes se ordenan: 7 = 6 Se calcula c nueva : c nueva = c w + w ) = (6+) = 3 ( Se procede a buscar los elementos ue cumplan con la restrccón sn tomar en cuenta el elemento y. p = 7 + = 9 w = + = 3 C(I) = (3 + 8) + 7 +=0 (8 + 3) C(L) = 0 + (6) = 0 Los elementos ue forman parte de la solucón x = x =x 3 =x 4 =0x 5 = Se compara con la solucón óptma temporal de acuerdo a la prueba de optmaldad. No cumple por lo ue se corta esta rama Cálculo del hjo derecho nvel 3. Se toma como fjo el elemento ya ue forma parte de la solucón y se uta el elemento los demás se vuelven a ordenar. 7 6 = Se procede a buscar los elementos ue cumplan con la restrccón sn tomar en cuenta el elemento n el. p =7+=9 w = +=3 C(I) = (3 + 9) =

9 4 M. E. Gómez-Torres J. C. Zavala-Díaz M. A. Cruz-Chávez (6 + 3) C(L) = + (6) = 3 Los elementos ue son parte de la solucón: x = x =0 x 3 = x 4 =0 x 5 = Se compara con la solucón óptma temporal. En vsta de ue ya no es posble encontrar una mejor solucón optma global el proceso concluye hasta auí por lo ue la solucón óptma global se encuentra en el nvel 4. Para una mejor comprensón del ejemplo se muestra una representacón gráfca (Fg. 5) y una tabla (tabla ) de cómo se llegó al óptmo global. Nodo raíz F.O. = 7 F.L. = 0 Hjo zuerdo F.O. = 0 F.L. = 0 Solucón óptma global Hjo derecho F.E. = 7 F.L. = 0 Espaco acotado Hjo zuerdo F.E. = 0 F.L. = 0 Hjo derecho F.E. = F.L. = 3 Fg. 5. Resultado de la funcón entera lneal y objetvo para cada nodo del árbol La sguente fgura muestra todos los nodos del árbol bnaro de dmensón 5 para efectos del ejemplo anteror y se ndcan los elementos ue maxmzan la funcón objetvo (Fg.6).

10 Espacos de Búsueda en un Árbol Bnaro 5 Estos son los elementos ue forman la solucón óptma. Este es el espaco de búsueda reducdo donde se encuentra la solucón óptma. Fg. 6. Representacón del árbol bnaro de dmensón 5 y el espaco de búsueda donde se encuentran los elementos ue forman parte de la solucón óptma global

11 6 M. E. Gómez-Torres J. C. Zavala-Díaz M. A. Cruz-Chávez 4. Conclusones Se concluye ue al r reducendo el espaco de búsueda en un árbol bnaro es posble encontrar la solucón exacta en un espaco de búsueda reducdo y al no ser necesaro recorrer todo el árbol bnaro es posble encontrar la mejor solucón de manera más rápda. Cabe resaltar ue para efectos de explcar como utlzar el espaco de búsueda ue generamos con un árbol bnaro se utlzó el planteamento del problema de la mochla. No obstante los espacos de búsueda en árboles bnaros pueden ser utlzados para encontrar la solucón de cualuer otro problema de tpo dscreto. Por lo ue se pretende con nvestgacones futuras demostrar ue es posble desarrollar un algortmo ue sea capaz de resolver problemas dscretos aplcando las reglas de acotamento presentadas en este artículo explorando el espaco de búsueda efcentemente y reducendo el tamaño del espaco de búsueda. Referencas [] Adenso D. Fernández et al Optmzacón Heurístca y Redes Neuronales ed. Parannfo S.A Madrd España 996 ISBN [] Vladmr Khachaturov Jose Crspín Zavala-Díaz Método y algortmo del árbol de cubos y sus aplcacones para resolver dferentes problemas de optmzacón dscreta Research on computng scence Advances n computer scence n Mexco IPN ISSN pp -6 [3] Slvano Martello Paolo Toth Knapsack Problems Algorthms and Computer Implementatons ed. John Wley & Sons DEIS Unversty of Bologna 990 ISBN [4] Crspín Zavala-Díaz Marco Cruz-Chávez María Elena Gómez-Torres Algortmo híbrdo Branch and Bound para determnar la solucón exacta o aproxmada del 0/ knaspack problem con un parámetro En etapa de desarrollo.

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1. Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón

Más detalles

+ y 1 ; U 2 (x 2,y 2 ) = ax 2 (x 2) 2 2

+ y 1 ; U 2 (x 2,y 2 ) = ax 2 (x 2) 2 2 13. Consdere un mercado en el que hay dos consumdores con las sguentes funcones de utldad: U 1 (x 1,y 1 = 4x 1 (x 1 + y 1 ; U (x,y = ax (x + y con 4 > a >0 donde x, =1,, es la cantdad del ben x consumda

Más detalles

CI63G Planificación de Sistemas de Transporte Público Urbano. Clase 8 Semestre Otoño 2008

CI63G Planificación de Sistemas de Transporte Público Urbano. Clase 8 Semestre Otoño 2008 CI63G Planfcacón de Sstemas de Transporte Públco Urbano Clase 8 Semestre Otoño 2008 Undades Temátcas 1. La oferta de transporte públco urbano (2 semanas) 2. La demanda por TPU (1,5 sem.) 3. Dseño y optmzacón

Más detalles

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versón Integral / 28/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Prueba Integral FECHA DE

Más detalles

Programación entera, el método del árbol de cubos, su algoritmo paralelo y sus aplicaciones

Programación entera, el método del árbol de cubos, su algoritmo paralelo y sus aplicaciones Programacón entera, el método del árbol de cubos, su algortmo paralelo y sus aplcacones Dr. José Crspín Zavala Díaz, Dr. Vladmr Khachaturov 2 Facultad de Contabldad, Admnstracón e Informátca, jc_zavala2002@yahoo.com

Más detalles

Optimización no lineal

Optimización no lineal Optmzacón no lneal José María Ferrer Caja Unversdad Pontfca Comllas Planteamento general mn f( x) x g ( x) 0 = 1,..., m f, g : n R R La teoría se desarrolla para problemas de mnmzacón, los problemas de

Más detalles

Algoritmo para la ubicación de un nodo por su representación binaria

Algoritmo para la ubicación de un nodo por su representación binaria Título: Ubcacón de un Nodo por su Representacón Bnara Autor: Lus R. Morera González En este artículo ntroducremos un algortmo de carácter netamente geométrco para ubcar en un árbol natural la representacón

Más detalles

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls Examen Fnal Pregunta ( punto) Responda brevemente a las sguentes preguntas: a) Cuál es el obetvo en el aprendzae del Perceptron

Más detalles

Tema 3. Teoremas de la Teoría de Circuitos

Tema 3. Teoremas de la Teoría de Circuitos Tema 3. Teoremas de la Teoría de Crcutos 3.1 Introduccón 3. Superposcón 3.3 Transformacón de fuentes 3.4 Teorema de Theenn 3.5 Teorema de Norton 3.6 Máxma transferenca de potenca Th Th L nálss de Crcutos

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

3.- Programación por metas.

3.- Programación por metas. Programacón Matemátca para Economstas 1 3.- Programacón por metas. Una vez menconados algunos de los nconvenentes de las técncas generadoras, la ncorporacón de nformacón se va a traducr en una accón del

Más detalles

Operadores por Regiones

Operadores por Regiones Operadores por Regones Fltros por Regones Los fltros por regones ntentan determnar el cambo de valor de un píxel consderando los valores de sus vecnos I[-1,-1] I[-1] I[+1,-1] I[-1, I[ I[+1, I[-1,+1] I[+1]

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordnacón de Cencas Computaconales - INAOE Matemátcas Dscretas Cursos Propedéutcos 2010 Cencas Computaconales INAOE Dr. Lus Vllaseñor Pneda vllasen@naoep.mx http://ccc.naoep.mx/~vllasen Algo de nformacón

Más detalles

Ejercicios y problemas (páginas 131/133)

Ejercicios y problemas (páginas 131/133) 7 Calcula el opuesto y el conjugado de los sguentes números complejos, expresándolos en forma polar: a) z b) z (cos 00 sen 00 ) c) z Expresamos en prmer lugar los números complejos en forma Calcula las

Más detalles

Métodos Matemá5cos en la Ingeniería Tema 1. Ecuaciones no lineales

Métodos Matemá5cos en la Ingeniería Tema 1. Ecuaciones no lineales Métodos Matemá5cos en la Ingenería Tema. Ecuacones no lneales Jesús Fernández Fernández Carmen María Sordo García DEPARTAMENTO DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE CANTABRIA

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

El diodo Semiconductor

El diodo Semiconductor El dodo Semconductor J.I. Hurcán Unversdad de La Frontera Aprl 9, 2012 Abstract Se plantean procedmentos para analzar crcutos con dodos. Para smpl car el trabajo, el dodo semconductor es reemplazado por

Más detalles

En un mercado hay dos consumidores con las siguientes funciones de utilidad:

En un mercado hay dos consumidores con las siguientes funciones de utilidad: En un mercado hay dos consumdores con las sguentes funcones de utldad: U ( + y, y = ln( + U ( = + y con a >,, y a ln( + donde, =,, es la cantdad del ben consumda por el ndvduo, y es la cantdad de renta

Más detalles

DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO

DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO Clascacón: Emtdo para Observacones de los Coordnados Versón: 1.0 DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO Autor Dreccón de Operacón Fecha Creacón 06-04-2010 Últma Impresón 06-04-2010 Correlatvo

Más detalles

RELACIÓN DE PROBLEMAS DE CLASE DE MODELADO DE DECISIÓN MULTICRITERIO PROBLEMA 1: FÁBRICA DE COMPONENTES ELECTRÓNICOS (FACTORY OF

RELACIÓN DE PROBLEMAS DE CLASE DE MODELADO DE DECISIÓN MULTICRITERIO PROBLEMA 1: FÁBRICA DE COMPONENTES ELECTRÓNICOS (FACTORY OF RELACIÓN DE PROBLEMAS DE CLASE DE MODELADO DE DECISIÓN MULTICRITERIO PROBLEMA 1: FÁBRICA DE COMPONENTES ELECTRÓNICOS (FACTOR OF ELECTRONIC PARTS) Una empresa fabrca tres tpos de componentes electróncos,

Más detalles

Actividades de recuperación

Actividades de recuperación Actvdades de recuperacón 1.- Para cada uno de los sguentes complejos, se pde 1 Señala cuál es su parte real y su parte magnara e ndca cuáles se corresponden con números reales y cuáles son magnaros puros.

Más detalles

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE En el Aula Vrtual se encuentra dsponble: Materal nteractvo con teoría y ejerccos resueltos. Para acceder a ello deberá pulsar sobre los sguentes enlaces una vez dentro

Más detalles

Facultad de Química. UNAM Alejandro Baeza

Facultad de Química. UNAM Alejandro Baeza Facultad de Químca. UNM lejandro Baeza.006 Químca nalítca Instrumental I nálss de mezclas por espectrofotometría. Documento de apoyo. Dr. lejandro Baeza. Semestre 007-I.0 Selectvdad espectral en espectrofotometría

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Hemos estudado dferentes meddas numércas correspondentes a conjuntos de datos, entre otras, estudamos la meda, la desvacón estándar etc. Ahora vamos a dstngur entre meddas numércas

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente en el análss y dseño de sstemas de control. Otro procedmento alternatvo

Más detalles

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales 16.21 Técncas de dseño y análss estructural Prmavera 2003 Undad 8 Prncpo de desplazamentos vrtuales Prncpo de desplazamentos vrtuales Tengamos en cuenta un cuerpo en equlbro. Sabemos que el campo de esfuerzo

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Clase Auxiliar #1: Teoría de Juegos

Clase Auxiliar #1: Teoría de Juegos UNIVERSIDAD DE CHILE FAC DE CIENCIAS FÍSICAS Y MATEMÁTICAS Departamento de Ingenería Industral Curso: IN5A Economía Industral Semestre: Prmavera 7 Profesor: Ronald Fscher Auxlares: Klaus Kaempfe Sofía

Más detalles

INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS: UN ENFOQUE MATEMÁTICO

INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS: UN ENFOQUE MATEMÁTICO MEF para problemas do orden Problema undmensonal INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS: UN ENFOQUE MATEMÁTICO Govann Calderón y Rodolfo Gallo Grupo Cencas de la Computacón Departamento de Matemátcas

Más detalles

MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc.

MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc. TEMA. INSTRUMENTOS FÍSICO-MATEMÁTICOS.. SISTEMAS DE MAGNITUDES Y UNIDADES. CONVERSIÓN DE UNIDADES. MAGNITUD: propedad o cualdad físca susceptble de ser medda y cuantfcada. Ejemplos: longtud, superfce,

Más detalles

Redalyc. Gallego, Ramón A.; Escobar Z., Antonio H.; Rodas Rendón, Darío E.

Redalyc. Gallego, Ramón A.; Escobar Z., Antonio H.; Rodas Rendón, Darío E. Redalyc Sstema de Informacón Centífca Red de Revstas Centífcas de Amérca Latna, el Carbe, España y Portugal Gallego, Ramón A.; Escobar Z., Antono H.; Rodas Rendón, Darío E. ALGORITMO GENÉTICO ESPECIALIZADO

Más detalles

1.- Objetivo Alcance Metodología...3

1.- Objetivo Alcance Metodología...3 PROCEDIMIENTO DO PARA EL CÁLCULO DEL FACTOR DE DESEMPEÑO DEL CONTROL DE FRECUENCIA (FECF) EN EL SIC DIRECCIÓN DE OPERACIÓN ÍNDICE 1.- Objetvo...3 2.- Alcance...3 3.- Metodología...3 3.1.- Cálculo de la

Más detalles

INGENIERÍA ENZIMÁTICA

INGENIERÍA ENZIMÁTICA Dvsón de Cencas Bológcas y de la Salud Ingenería Boquímca Industral INGENIERÍA ENZIÁTICA PROBLEARIO Dr. Sergo Huerta Ochoa NOTA: Los ejerccos presentados en este problemaro, son una recoplacón de problemas:

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,.

1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,. º. a Deducr la expresón de la fórmula de dervacón numérca de tpo x,x,x,x,. nterpolatoro que permte aproxmar f (x* con el soporte { } 3 x 4 b Demostrar que en el caso de que el soporte sea de la forma:

Más detalles

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla.

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla. EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. Consdere la sguente tabla, donde 0 : 0 y y0 y Deducr la fórmula para el polnomo de Lagrange de grado a lo más uno que Interpola la tabla.. Consdere la sguente

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas.

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas. UIDAD 3: Meddas estadístcas Las meddas estadístcas o parámetros estadístcos son valores representatvos de una coleccón de datos y que resumen en unos pocos valores la normacón del total de datos. Estas

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

TÍTULO I Aspectos Generales TÍTULO II Alcance TÍTULO III Metodología de Cálculo de FECF... 3

TÍTULO I Aspectos Generales TÍTULO II Alcance TÍTULO III Metodología de Cálculo de FECF... 3 PROCEDIMIENTO DO DESEMPEÑO DEL CONTROL DE FRECUENCIA EN EL SIC DIRECCIÓN DE OPERACIÓN ÍNDICE TÍTULO I Aspectos Generales... 3 TÍTULO II Alcance... 3 TÍTULO III Metodología de Cálculo de FECF... 3 TÍTULO

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Optimización de la ecualización del histograma en el procesamiento de imágenes digitales

Optimización de la ecualización del histograma en el procesamiento de imágenes digitales Optmzacón de la ecualzacón del hstograma en el procesamento de mágenes dgtales Roberto Depaol Lus A. Fernández Danel Daz rd-ng@unlm.edu.ar lfernand@unlm.edu.ar ddaz@unlm.edu.ar Departamento de Ingenería

Más detalles

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena.

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena. UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE COURNOT. Autores: García Córdoba, José Antono; josea.garca@upct.es Ruz Marín, Manuel; manuel.ruz@upct.es Sánchez García, Juan Francsco; jf.sanchez@upct.es

Más detalles

INSTRUMENTACIÓN Y TÉCNICAS DE MEDIDA. EL AMPLIFICADOR DE POTENCIA

INSTRUMENTACIÓN Y TÉCNICAS DE MEDIDA. EL AMPLIFICADOR DE POTENCIA PÁCTICA 1. INSTUMENTACIÓN Y TÉCNICAS DE MEDIDA. EL AMPLIFICADO DE POTENCIA 1.1 Objetvos El objetvo de esta práctca consste en presentar los nstrumentos y las técncas de medda habtualmente utlzadas para

Más detalles

UN PROBLEMA LOGÍSTICO DE RUTEO DE VEHÍCULOS Y UNA SOLUCIÓN CON LA HEURÍSTICA R: UN CASO DE ESTUDIO

UN PROBLEMA LOGÍSTICO DE RUTEO DE VEHÍCULOS Y UNA SOLUCIÓN CON LA HEURÍSTICA R: UN CASO DE ESTUDIO Scenta et Technca Año XIII, No 37, Dcembre de 2007. Unversdad Tecnológca de Perera. ISSN 0122-1701 407 UN PROBLEMA LOGÍSTICO DE RUTEO DE VEHÍCULOS Y UNA SOLUCIÓN CON HEURÍSTICA R: UN CASO DE ESTUDIO A

Más detalles

Captura de objetos móviles sobre una recta *

Captura de objetos móviles sobre una recta * Morfsmos, Vol. 18, No. 1, 2014, pp. 45 55 Captura de objetos móvles sobre una recta * Lus E. Urbán Rvero Rafael López Bracho Francsco J. Zaragoza Martínez Resumen En el problema del agente vajero eucldano

Más detalles

MUESTREO EN POBLACIONES FINITAS

MUESTREO EN POBLACIONES FINITAS MUESTREO EN POBLACIONES FINITAS Antono Morllas A.Morllas: Muestreo 1 MUESTREO EN POBLACIONES FINITAS 1. Conceptos estadístcos báscos. Etapas en el muestreo 3. Tpos de error 4. Métodos de muestreo 5. Tamaño

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI

CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI CAPÍTULO 5: MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 57 CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 5. Resumen Se busca solucón a las ecuacones acopladas que descrben los perfles de onda medante

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

GUÍA DE APOYO AL APRENDIZAJE N 1

GUÍA DE APOYO AL APRENDIZAJE N 1 GUÍA DE APOYO AL APRENDIZAJE N 1 1.- Dencones de conceptos báscos. Estadístca: la estadístca es un conjunto de métodos y procedmentos que srven para recolectar, organzar y presentar los datos obtendos,

Más detalles

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia MAT-3 Estadístca I Tema : Meddas de Dspersón Facltador: Félx Rondón, MS Insttuto Especalzado de Estudos Superores Loyola Introduccón Las meddas de tendenca central son ndcadores estadístcos que resumen

Más detalles

E. P. E. T. N 20 CUADERNILLO DE MATEMÁTICA TERCER AÑO PROF.: JIMENA CARRAZCO MARÍA ANGÉLICA NETTO

E. P. E. T. N 20 CUADERNILLO DE MATEMÁTICA TERCER AÑO PROF.: JIMENA CARRAZCO MARÍA ANGÉLICA NETTO E. P. E. T. N 0 CUADERNILLO DE MATEMÁTICA TERCER AÑO PROF.: JIMENA CARRAZCO MARÍA ANGÉLICA NETTO E. P. E. T. N 0 MATEMÁTICA AÑO Undad N I: Epresones algebracas PROGRAMA DE MATEMÁTICA 0 TERCER AÑO Revsón:

Más detalles

5 Centrales Hidráulicas

5 Centrales Hidráulicas Curso SmSEE IIE 2012 Cap. 5 pág 1/6 5 Centrales Hdráulcas 5.1 Centrales Hdráulcas con Embalse En el caso de centrales con embalses, tendremos que agregar restrccones adconales para mponer los límtes de

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

SEMANA 13. CLASE 14. MARTES 20/09/16

SEMANA 13. CLASE 14. MARTES 20/09/16 SEMAA 3. CLASE. MARTES 20/09/6. Defncones de nterés.. Estadístca descrptva. Es la parte de la Estadístca que se encarga de reunr nformacón cuanttatva concernente a ndvduos, grupos, seres de hechos, etc..2.

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

rsums Aproxima la integral de f mediante sumas de Riemann y realiza una representación gráfica de los rectángulos.

rsums Aproxima la integral de f mediante sumas de Riemann y realiza una representación gráfica de los rectángulos. PRÁCTICA INTEGRACIÓN Práctcas Matlab Práctca : Integracón Objetvos o Calcular ntegrales defndas de forma aproxmada, utlzando sumas de Remann. o o o Profundzar en la comprensón del concepto de ntegracón.

Más detalles

IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR

IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR En esta práctca se llevará a cabo un estudo de modelado y smulacón tomando como base el ntercambador de calor que se ha analzado en el módulo de teoría.

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

, x es un suceso de S. Es decir, si :

, x es un suceso de S. Es decir, si : 1. Objetvos: a) Aprender a calcular probabldades de las dstrbucones Bnomal y Posson usando EXCEL. b) Estudo de la funcón puntual de probabldad de la dstrbucón Bnomal ~B(n;p) c) Estudo de la funcón puntual

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D. Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca

Más detalles

ECUACIONES DIFERENCIALES ELÍPTICAS EN DERIVADAS PARCIALES. Armando Blanco A.

ECUACIONES DIFERENCIALES ELÍPTICAS EN DERIVADAS PARCIALES. Armando Blanco A. ECUACIONES DIFERENCIALES ELÍPICAS EN DERIVADAS PARCIALES Armando Blanco A. Captulo V ECUACIONES DIFERENCIALES ELÍPICAS EN DERIVADAS PARCIALES Introduccón Dferencas fntas Métodos de relaacón sucesva Métodos

Más detalles

ÁLGEBRA LINEAL. Tarea 1. Nombre: Fecha:

ÁLGEBRA LINEAL. Tarea 1. Nombre: Fecha: ÁLGEBRA LINEAL Tarea. Investque a) Defncón de vector b) Operacones de vectores c) Defncón de matr d) Operacones de matrces e) Defncón de matr traspuesta Bblografía: ÁLGEBRA LINEAL Tarea. a) Investque )

Más detalles

5. DIAGONALIZACIÓN DE MATRICES

5. DIAGONALIZACIÓN DE MATRICES Dagonalzacón Herraentas nforátcas para el ngenero en el estudo del algebra lneal 5. DIAGONALIZACIÓN DE MATRICES 5.1. INTRODUCCIÓN 5.2. VALORES Y VECTORES PROPIOS 5.3. MATRICES DIAGONALIZABLES 5.4. DIAGONALIZACIÓN

Más detalles

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D. Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

Regresión y Correlación Métodos numéricos

Regresión y Correlación Métodos numéricos Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.mx mbenavdesr5@gmal.com Regresón lneal El

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

6 Impacto en el bienestar de los beneficiarios del PAAM

6 Impacto en el bienestar de los beneficiarios del PAAM 6 Impacto en el benestar de los benefcaros del PAAM Con el fn de evaluar el efecto del PAAM sobre sus benefcaros, se consderó como hpótess que el Programa ha nfludo en el mejoramento de la caldad de vda

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

Planeamiento de sistemas de distribución de energía eléctrica usando Branch and Bound

Planeamiento de sistemas de distribución de energía eléctrica usando Branch and Bound Planeamento de sstemas de dstrbucón de energía eléctrca usando Branch and Bound Maurco Granada Echeverr 1 Ramón Alfonso Gallego Rendón 2 Rcardo Alberto Hncapé Isaza 3 RESUMEN Este trabajo presenta un algortmo

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

CLAVE - Laboratorio 1: Introducción

CLAVE - Laboratorio 1: Introducción CLAVE - Laboratoro 1: Introduccón ( x )( x ) x ( xy) x y a b a b a a a ( x ) / ( x ) x ( x ) x a b a b a b ab n! n( n 1)( n 2) 1 0! 1 x x x 1 0 1 (1) Smplfque y evalúe las sguentes expresones: a. 10 2

Más detalles

ANEXO B SISTEMAS NUMÉRICOS

ANEXO B SISTEMAS NUMÉRICOS ANEXO B SISTEMAS NUMÉRICOS Sstema Decmal El sstema ecmal emplea ez ferentes ígtos (,,,, 4, 5, 6, 7, 8 y 9). Por esto se ce que la base el sstema ecmal es ez. Para representar números mayores a 9, se combnan

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria).

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria). Unversdad de Sonora Dvsón de Cencas Exactas y Naturales Departamento de Físca Laboratoro de Mecánca II Práctca #3: Cálculo del momento de nerca de un cuerpo rígdo I. Objetvos. Determnar el momento de nerca

Más detalles

Deducción de parámetros y comportamiento

Deducción de parámetros y comportamiento Captulo 7. Deduccón de paráetros y coportaento presto por el odelo 287 Capítulo 7: presto por el odelo Deduccón de paráetros y coportaento S ben la utlzacón del odelo consttuto planteado requere la deternacón

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17 Procesamento Dgtal de mágenes Pablo Roncaglolo B. Nº 7 Orden de las clases... CAPTURA, DGTALZACON Y ADQUSCON DE MAGENES TRATAMENTO ESPACAL DE MAGENES TRATAMENTO EN FRECUENCA DE MAGENES RESTAURACON DE MAGENES

Más detalles

Ejercicios Resueltos de Vectores

Ejercicios Resueltos de Vectores Departamento de Matemátca y C C Coordnacón: Calculo II para Ingenería Semestre Eerccos Resueltos de Vectores Sean los vectores en IR : v,,, u,, 4, a,, y b,, 4 : a) Determne los vectores: UV y AB UV AB

Más detalles

Diferencias Finitas. 4.1 Introducción. 4.2 Método de las Diferencias Finitas. 4. Diferencias Finitas

Diferencias Finitas. 4.1 Introducción. 4.2 Método de las Diferencias Finitas. 4. Diferencias Finitas . Dferencas Fntas Dferencas Fntas. Introduccón La técnca de las dferencas fntas fue la prmera técnca ue surgó para resolver problemas práctcos en ngenería. Ho en día ésta técnca a está obsoleta con lo

Más detalles

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II)

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II) LECTURA 03 DISTRIBUCIONES DE FRECUENCIAS (PARTE II) DISTRIBUCIONES DE FRECUENCIAS EN INTERVALOS DE CLASE Y DISTRIBUCIONES DE FRECUENCIAS POR ATRIBUTOS O CATEGORÍAS TEMA 6 DISTRIBUCIÓN DE FRECUENCIAS EN

Más detalles

1).- Para > 0, B= {x R L : p. x I} = {x R L

1).- Para > 0, B= {x R L : p. x I} = {x R L Pontfca Unversdad Católca del Perú Programa de Maestría en Economía Curso: Mcroeconomía Intermeda Profesores: Clauda Barrga & José Gallardo Asstente: César Gl Malca Propedades de las funcones de demanda

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Inicial

ECUACIONES DIFERENCIALES Problemas de Valor Inicial DIVISIÓN DE IENIAS FÍSIAS Y MATEMÁTIAS DTO. TERMODINÁMIA Y FENÓMENOS DE TRANSFERENIA MÉTODOS AROXIMADOS EN ING. QUÍMIA TF-33 EUAIONES DIFERENIALES roblemas de Valor Incal Esta guía fue elaborada por: rof.

Más detalles

Para construir un diagrama de tallo y hoja seguimos los siguientes pasos:

Para construir un diagrama de tallo y hoja seguimos los siguientes pasos: UNIDAD 2: Gráfcos estadístcos Los gráfcos muestran vsualmente y de forma rápda la dstrbucón de los datos y sus prncpales característcas, consttuyen un mportante complemento en la presentacón de la nformacón.

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

6.9 El trazador cúbico

6.9 El trazador cúbico 4.9 El trazador cúbco El polnomo de nterpolacón es útl s se usan pocos datos y que además tengan un comportamento polnomal, así su representacón es un polnomo de grado bajo y adecuado. S no se cumplen

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles