OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO Adjunto de un operador

Tamaño: px
Comenzar la demostración a partir de la página:

Download "OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO Adjunto de un operador"

Transcripción

1 OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO Adjunto de un operador Sea V un espacio con producto interno y sea T : V V un operador lineal. Un operador T * : V V se dice que es un adjunto de T si se cumple que: u ) v u * ( v ) ; u, v V Propiedades de operador adjunto Sea V un espacio vectorial sobre un campo K, con producto interno. Si S y T son operadores lineales en V y α es un escalar de k, entonces: a) T* * b) T * T* c) S T * S * T * * d) T T T 1 1 * e) S T * T * S * Teorema: Si V es un espacio vectorial de dimensión finita y con producto interno, entonces para cada operador lineal T: V V existe un único adjunto T*, que también es lineal. Demostración: Por definición: u ) v u * ( v ) ; u, v V O sea hay un operador adjunto para cada producto interno de un operador lineal.

2 Nota: Si V es de dimensión finita se puede asegurar la existencia y unicidad del operador adjunto para cada producto interno. Ej: Obtener el adjunto del operador lineal correspondencia es: T R R T x, y ( x y, x 3 y) Con respecto al producto interno en R definido por u v x1 y1 x1 y x y1 x y u = ( x, x ), v = (y, y ) 1 1 : cuya regla de 5 ; x y, x 3 y) a, b x, y ( a b, a b) ( x y) a ( x y) b ( x 3 y) a 5( x 3 y) b x( a b) x( a b) (y)( a b) 5y( a b) xa ya 4xb yb xa 6ya 5xb 15yb ax bx xa bx ya by 5 ya 5 by 4 xa ( ) xa 5ya ( 5 ) ya 9 xb ( ) xb 13yb ( 5 ) yb 10, 19, 3, 5 * T x y x y x y Ej:, (10 19,3 5 ) Obtener el adjunto del operador lineal correspondencia es: Con respecto al producto interno usual. T x, y ( x, x y) T R R : cuya regla de

3 * T x y x y y, (, ) OPERADOR NORMAL Sea T:V-> V un operador lineal en un espacio con producto interno. Si es una base ortonormal de V entonces * M T M T * ( ) ( ) Ej: Determinar si T R R : tal que T x, y ( x y,x 3 y) es un operador normal en R con producto interno usual. Teorema: Sea V un espacio vectorial de dimensión finita con producto interno y sea una base ortonormal de V. Si T: V V es un operador lineal, entonces: * M T M T * ( ) ( ) Para la obtención de la regla de correspondencia, es importante considerar una base ortonormal, obtener la matriz asociada con respecto a la base ortonormal y Utilizar el teorema * * M ( T )(v) T ( v) Consultar boletín 6 de Matemáticas y Cultura

4 OPERADOR NORMAL Sea V un espacio con producto interno y sea T:V V un operador lineal. Se dice que T es normal si T *o T = To T * De la definición anterior se sigue de inmediato que si T es normal, entonces T* también es normal y viceversa. Ejemplo: K(x, y x y x y) Determinar el autoadjunto del operador, y verificar si K es un operador Normal con K * Los operadores normales tienen las siguientes propiedades. Teorema: 1. T( v ) = T*( v ) vϵ V. Si T( v ) = λ v entonces T*( v )= λ v 3. Si v 1 y v son vectores característicos de T correspondientes a valores característicos distintos, entonces los vectores v 1 y v son ortogonales, es decir v1 v 0. TIPOS DE OPERADORES HERMITIANOS Definición: Sea V un espacio con producto interno, y sea T:V V un operador lineal, se dice que T es hermitiano si

5 v ) w v ( w ) ; w, v V Se dice que T es antihermitiano si v ) w v ( w ) ; w, v V Si V está definido sobre el campo real, entonces a un operador hermitiano se le llama simétrico y a un operador antihermitiano se le llama también antisimétrico Ej: Determinar si los siguientes operadores son hermitianos a) : tal que z1, z) iz, iz1) donde está definido sobre con el producto escalar complejo como producto interno. z w z w z w z z, z, w w, w b) Si : F F, donde F es el espacio de funciones reales continuas, S f ( t) f ( t) f ( t) f ( t) F, con el producto interno definido por 1 f g f ( t) g( t) dt sobre el campo real. 1 Resolución: z z, z, w w, w a) 1 1 La condición a cumplir es: z w iz iz1 w izw1 iz1w Por el otro lado ) (, ) )...(1) z w z iw iw1 z1 iw z iw1 iz w ) (, ) ( ) ( ) iz w () Como (1) =() entonces T es hermitiano. También es unitario. b) S será hermitiano si S f ( t) ) g( t) f ( t) S ( g( t)) Por un lado

6 S f ( t) ) g( t) f ( t) f ( t) g( t ) 1 1 f ( t) g( t) dt f ( t) g( t) dt...(1) 1 1 Por otro lado f ( t) ) S( g( t)) f ( t) g( t ) g( t) f ( t) ( g( t)) g( t)) dt f ( t) g( t) dt f ( t) g( t) dt...() Pero si t, cuando 1 t 1, cuando 1, t 1, dt d, por tan to 1 1 f ( ) g( ) d f ( t) g( t) dt...(3) 1 1 Como (1) (3) S es hermitiano o simétrico. Teorema: 1) La matriz asociada a un operador hermitiano (simétrico) referida a una base ortonormal es una matriz hermitiana (simétrica). ) La matriz asociada a un operador antihermitiano (antisimétrico) referida a una base ortonormal es una matriz antihermitiana (antisimétrica). Ejemplo: Determinar si los siguientes operadores definidos en considerando el producto interno usual. a) x, y) x y,x 3 y) b) S x, y) 17x 4 y, x 10 y) Solución: R son simétricos, Dado que en ambos casos el producto es usual, se utiliza la base canónica de la cual ya es ortonormal. R a) E ME 1 ( T) 3 que es simétrica, por lo tanto, T es un operador simétrico.

7 b) E ME 17 4 ( S) 10 no es simétrica, por lo tanto S no es un operador simétrico. Sin embargo, para el producto interno x, y, 5 x y 1 1 x y 1 x y 1 17 x y el operador S sí es simétrico. Un operador puede ser hermitiano para un producto interno y puede no serlo para otro. Sin embargo, es suficiente que un operador sea hermitiano para algún producto interno para llamarlo así. Existen operadores que no son hermitianos o antihermitianos para ningún producto interno. Teorema: Sea T un operador lineal y un valor característico de T. 1) Si T es hermitiano entonces es real. ) Si T es antihermitiano, entonces es imiraginario. De este teorema se concluye que un operador hermitiano (antihermitiano) sus valores característicos son siempre números reales (números imaginarios). Lo contrario no siempre es cierto, es decir, que un operador lineal tenga todos sus valores caracterísiticos reales (imaginarios) no implica que sea hermitiano o antihermitiano. Demostración: 1) Si T es hermitiano entonces es real. Sea v un vector característico asociado al valor característico del operador hermitiano T. Como T es hermitiano: v v v ( v ) v v v v Como v v v, es real. 0; 0 Teorema: Los valores característicos asociados a valores distintos de un operador hermitiano o antihermitiano, son ortogonales.

8 OPERADORES UNITARIOS Definición: Sea V un espacio con producto interno, al operador T:V V se le llama unitario si v ) T( w) v ( w) ; w, v V Cuando el espacio V está definido sobre el campo real, al operador T se le llama operador ortogonal. 1 es ortogonal 13 Ejemplo: Determinar si el operador T( x, y) 5x 1 y, 1x 5y considerando al producto interno usual. Soluciòn: 1 1 ) ( ) 5 1, , 1 5 ; x1 y1 60x1 y 60x y1 144x y 144x1 y1 60x1 y 60x y1 5x y x1 y1 169 x y x1 y1 x y x y 169 x T y x1 x x1 x y1 y y1 y T es ortogonal. Teorema Sea T:V V un operador unitario. Para todo x, y V 1) Si x y entonces T x T y ) T( x) ( x) 0 ( ) ( ) 0 3) T( x) T( y) x y 4) Teorema T es invertible T 1, es unitario. Sea T:V V un operador unitario

9 1) Si T tiene un valor característico, entonces 1 ) Si x e y son vectores característicos dist int os, entonces x e y son ortogonales. correspondientes a valores característi cos 3) La matriz asociada a T referida a una base ortonormal es una matriz unitaria (ortogonal en el caso real). En el ejemplo anterior, la matriz asociada a la base canónica, es una base ortonormal, es: unitaria. 1 T M ( T), es una matriz ortogonal : M M es una matriz Operador proyección: Sea T : V V un operador lineal en un espacio V con producto interno y sea W un subespacio de V. El operador P : V W tal que P( v) proy wv es el operador proyección y es un operador lineal. Teorema espectral. Sea T un operador hermitiano sobre el campo real o complejo, o un operador antihermitiano sobre el campo complejo, entonces T es diagonalizable. Además, si la base a la cual está referida la matriz diagonal es ortonormal, entonces la matriz diagonalizadora es unitaria (ortogonal, cuando el campo es real). Sea T un operador unitario definido sobre el campo complejo, entonces T es diagonalizable. Además, si la base a la cual está referida la matriz diagonal es ortonormal, entonces su matriz diagonalizadora es unitaria (ortogonal en el caso real). Es importante hacer notar que no todos los operadores ortogonales son diagonalizables, pero cualquier operador unitario definido sobre el campo complejo si es diagonalizable. Sea T : V V un operador lineal normal y P1, P,..., P n operadores de proyección sobre los espacios característicos de T se cumple:

10 1) T P P P... P donde ) P P... P I 3) P P 0 n n n Ejemplo: Determinar la descomposición espectral del operador simétrico T : R R a) T x, y 7x y, x 4y 7 M 4 7 P 4 ( ) 11 4; 1 8, Para 1 8; E(8) ( y, y) y Para 4 1 3; E() ( x, x) x xy, (,1) 4x y x y P1 ( x, y) (,1),,1 (,1) xy, (1, ) x y x 4y P ( x, y) (1, ), 1, (1, ) 5 5 T P P 4x y x y x y x 4y T 8, 3, T ( x, y) (7x y,x 4 y) b) T x, y x 4 y, 4x 5y Verificar el teorema espectral para el operador hermitiano T : definido por T ( z1, z) ( iz, iz1) en el cual está dado el producto escalar complejo como producto interno.

11 Solución. Una base ortonormal es la base canónica i, j 0 i i M T M I i 0 i. ( ), det( ) 1 0; 1 Como sobre el campo y los valores característi dim ( ) cos son dist int os, entonces T es diagonalizable, lo cual verifica una parte del Teorema. Para 1, se forma el sistema 1 i z1 0; z1 iz 0, si z k, z1 ik i 1 z E(1) ( ik, k) k Para 1, se forma el sistema 1 i z1 0; z1 iz 0, si z k z1 ik i 1 z E( 1) ( ik, k) k Se forma una base escogiendo un vector de cada espacio, por ejemplo, ( i, 1), ( i, 1) ortogonal. La norma de ambos vectores es, entonces una base ortonormal es 1 1 ( i, 1 ), ( i, 1 ) ' 0 i, M ' ( T) i D, su matriz diagonalizadora es i i P 1 1 La matriz asociada a La cual debe ser unitaria, es la matriz diagonal que es 1 i 1 i 1 i 1 i 1 P, det P i P P i 1 1 i i 1 * 1 * Aplicación a las formas cuádricas:

12 Ax xy Cy 1 A (, ) x x x y Ax y x Cy y y C Ax xy xy Cy T x A x 1; A siempre es diagonalizable. A es similar a una matriz diagonal D A 1 P DP T 1 Sustituyendo x P DPx T T x P DPx ' ' ' 1 x ( x, y ) ' 0 y ' ' 1 1, P es ortogonal. T 1, ( Px) D( Px) 1, como P es una matriz de transición se obtiene el vector de coordenadas de x pero en la base de los vectores propios. T v Dv 1 x 0 y Ejemplo: 1 Identificar la curva 3x xy 3y 1

CAPÍTULO 4 OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO

CAPÍTULO 4 OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO CAPÍULO 4 OPERADORES LINEALES EN ESPACIOS CON PRODUCO INERNO Adjunto de un operador En un espacio vectorial V con producto interno, cada operador lineal tiene un operador llamado su adjunto que también

Más detalles

Operadores Lineales en Espacios con Producto Interno

Operadores Lineales en Espacios con Producto Interno Operadores Lineales en Espacios con Producto Interno Definición y propiedades elementales del adjunto de un operador Al combinar las transformaciones lineales y el producto interno en un espacio vectorial

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA

UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA AL GEBRA III UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA ALGEBRA III DEFINICION : Sea L : V V un operador lineal sobre el espacio vectorial

Más detalles

Material para el examen parcial 1

Material para el examen parcial 1 Algebra Lineal 2, FAMAT-UG, aug-dic, 2009 Material para el examen parcial 1 (17 oct, 2009) Definiciones: Hay que saber las definiciones precisas de todos los siguientes términos, y conocer ejemplos concretos

Más detalles

Examen Final - soluciones

Examen Final - soluciones Algebra Lineal 2, FAMAT-UG, agsto-dic, 2009 PARTE A (60 puntos). Cierto o Falso. Examen Final - soluciones 9 dic, 2009 1. Para todo operador ortogonal T en R n, det(t ) = 1. Falso. T : (x 1,..., x n )

Más detalles

Transformaciones lineales autoadjuntas (hermíticas)

Transformaciones lineales autoadjuntas (hermíticas) Transformaciones lineales autoadjuntas (hermíticas) Objetivos. Estudiar propiedades elementales de transformaciones lineales autoadjuntas. Demostrar que para toda transformación lineal autoadjunta en un

Más detalles

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,

Más detalles

ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO

ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO 2012-2013 José García-Cuerva Universidad Autónoma de Madrid 11 de febrero de 2013 JOSÉ GARCÍA-CUERVA

Más detalles

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL. Tema 5. Operadores Lineales en Espacios con Producto Interno OPERADOR ADJUNTO. ; donde: F(z)=α z ( )

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL. Tema 5. Operadores Lineales en Espacios con Producto Interno OPERADOR ADJUNTO. ; donde: F(z)=α z ( ) OPERDOR DJUNO Problema : Sea el espacio vectorial con producto interno complejo definido por z w, en donde w es el conjugado de w. Obtener el adjunto del operador lineal ( zw) = F : cua regla de correspondencia

Más detalles

Ejemplo 1 Sea V un espacio con producto interno sobre un cuerpo K. A las transformaciones lineales T : V K las llamamos funcionales lineales.

Ejemplo 1 Sea V un espacio con producto interno sobre un cuerpo K. A las transformaciones lineales T : V K las llamamos funcionales lineales. Facultad de Ingeniería - IMERL - Geometría y Álgebra Lineal 2 - Curso 2008. 1 Transformaciones lineales en espacios con producto interno Notas para el curso de Geometría y Algebra Lineal 2 de la Facultad

Más detalles

2.5 Ejercicios... 59

2.5 Ejercicios... 59 Índice General 1 Espacios vectoriales 1 1.1 Espacios vectoriales y subespacios......................... 1 1.1.1 Preliminares................................. 1 1.1.2 Espacios vectoriales.............................

Más detalles

ESPACIO VECTORIAL EUCLÍDEO

ESPACIO VECTORIAL EUCLÍDEO ESPACIO VECTORIAL EUCLÍDEO PRODUCTO ESCALAR Sea V un espacio vectorial sobre C. Una aplicación que asocia un número complejo < u, v > a cada pareja de vectores u y v en V, se dice que es un producto escalar

Más detalles

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72.0

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72.0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO Aprobado por el Consejo Técnico de la Facultad de Ingeniería en su sesión ordinaria del 19 de noviembre de 2008 ÁLGEBRA

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios y subespacios vectoriales Espacios Vectoriales 1. Demuestre que con la suma y multiplicación habituales es un espacio vectorial real.. Considere el conjunto C de los números complejos con la suma

Más detalles

Lista de problemas de álgebra, 2016

Lista de problemas de álgebra, 2016 Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas Posgrado en Ciencias Físicomatemáticas Línea de Matemáticas Lista de problemas de álgebra 2016 Egor Maximenko: En mi opinión cualquier

Más detalles

Material para el examen final

Material para el examen final Algebra Lineal 2, FAMAT-UG, ene-jun, 2004 Material para el examen final 31 de mayo, 2004 Definiciones: Hay que saber las definiciones precisas de todos los siguientes términos, y conocer ejemplos concretos

Más detalles

Química Cuántica I Formas cuadráticas

Química Cuántica I Formas cuadráticas Formas cuadráticas/jesús Hernández Trujillo p. 1/16 Química Cuántica I Formas cuadráticas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Formas cuadráticas/jesús Hernández Trujillo p. 2/16 Ecuación

Más detalles

4.2 Producto escalar.

4.2 Producto escalar. Producto escalar. 147 Este resultado tiene su recíproco, es decir, cualquier matriz cuadrada A define la forma bilineal b(x, y) =x T Ay Si b es simétrica, la matriz A es simétrica. Si b es definida positiva,

Más detalles

Segundo parcial Geometría y algebra lineal II

Segundo parcial Geometría y algebra lineal II Segundo parcial Geometría y algebra lineal II HOJA PARA EL ESTUDIANTE 1. Completar los datos personales en la tabla que aparece al dorso. 2. La duración del parcial es de cuatro horas. 1 de diciembre de

Más detalles

1. ESPACIOS DE HILBERT Y OPERADORES

1. ESPACIOS DE HILBERT Y OPERADORES 1. ESPACIOS DE HILBERT Y OPERADORES 1. DEFINICIÓN, PROPIEDADES Y EJEMPLOS Definición. Sea H un espacio vectorial sobre el cuerpo C de los números complejos, un producto escalar sobre H es una aplicación

Más detalles

Tema 3: Espacios eucĺıdeos

Tema 3: Espacios eucĺıdeos Marisa Serrano, Zulima Fernández Universidad de Oviedo 25 de noviembre de 2009 email: mlserrano@uniovi.es Índice 1 2 3.1 V, R espacio vectorial, la aplicación : V V R ( v, u) v u a) v 1, v 2, u V α, β

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 007-008 1.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) = Ax, así como los subespacios vectoriales

Más detalles

Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno.

Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno. Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno. Teoremas con demostraciones que se pueden incluir en el examen: 1. Fórmula para f(j m (λ)), donde J m (λ) es el bloque

Más detalles

Notas para el curso de Álgebra Lineal II. Centro de Matemática Facultad de Ciencias Universidad de la República. Andrés Abella

Notas para el curso de Álgebra Lineal II. Centro de Matemática Facultad de Ciencias Universidad de la República. Andrés Abella Notas para el curso de Álgebra Lineal II Centro de Matemática Facultad de Ciencias Universidad de la República Andrés Abella 5 de febrero de 2014 Introducción Estas son las notas y ejercicios del curso

Más detalles

ÁLGEBRA LINEAL. 4 horas a la semana 8 créditos Segundo semestre

ÁLGEBRA LINEAL. 4 horas a la semana 8 créditos Segundo semestre ÁLGEBRA LINEAL 4 horas a la semana 8 créditos Segundo semestre Objetivo del curso: El alumno analizará los conceptos básicos del álgebra lineal, ejemplificándolos mediante sistemas algebraicos ya conocidos,

Más detalles

TEMA III: DIAGONALIZACIÓN.

TEMA III: DIAGONALIZACIÓN. TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:

Más detalles

7 Aplicaciones ortogonales

7 Aplicaciones ortogonales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 7 Aplicaciones ortogonales 7.1 Aplicación ortogonal Se llama aplicación ortogonal a un endomorfismo f : V V sobre un espacio vectorial

Más detalles

A d) Estudiar la diagonalización del endomorfismo T. Es posible encontrar una base de vectores propios de R 2 [x]? Razonar la respuesta.

A d) Estudiar la diagonalización del endomorfismo T. Es posible encontrar una base de vectores propios de R 2 [x]? Razonar la respuesta. Universidad de Oviedo Ejercicio.5 puntos Se consideran las aplicaciones lineales T : R [x] R y T : R R [x] de las que se conoce la matriz A asociada a T en las bases canónicas de R [x] y R y la matriz

Más detalles

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base.

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. EJERCICIOS PROPUESTOS 1. Espacios vectoriales. Sistemas de ecuaciones. 1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. (a) S = {

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS ESPACIOS EUCLÍDEOS ) a) Decir cuál de las siguientes aplicaciones de x de no definir un producto escalar comprobar el axioma que falla: a ) x' x,y,

Más detalles

AUTOVALORES Y AUTOVECTORES

AUTOVALORES Y AUTOVECTORES 12 de Julio de 2011 AUTOVALORES Y AUTOVECTORES (Clase 01) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela 1 Puntos a tratar 1. Valores y vectores propios 2.

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 01 Taller 4

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 01 Taller 4 Universidad Nacional de Colombia Departamento de Matemáticas - Álgebra Lineal - Grupo Taller () Es el conjunto de los números reales con las operaciones de suma y multiplicación un R-espacio vectorial?

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

Espacios vectoriales con producto escalar

Espacios vectoriales con producto escalar 147 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 10 Espacios vectoriales con producto escalar 10.1 Producto escalar. Norma. Distancia Definición 71.- Un producto escalar o producto interior en

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas...

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas... Contents 6 Formas Bilineales y Producto Escalar 3 6.1 Formas bilineales............................... 3 6.1.1 Matriz de una forma bilineal....................... 4 6.1. Formas bilineales simétricas.......................

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Vectores y Valores Propios

Vectores y Valores Propios Capítulo 11 Vectores y Valores Propios Las ideas de vector y valor propio constituyen conceptos centrales del álgebra lineal y resultan una valiosa herramienta en la solución de numerosos problemas de

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA DE INGENIERÍA INDUSTRIAL

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA DE INGENIERÍA INDUSTRIAL UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA DE INGENIERÍA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: Álgebra Lineal IDENTIFICACIÓN DE LA ASIGNATURA MODALIDAD:

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Capítulo 4 Espacios vectoriales reales. 4.1 Espacios vectoriales. Definición 86.- Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe

Más detalles

Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III. Ana Isabel Garralda Guillem y Manuel Ruiz Galán

Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III. Ana Isabel Garralda Guillem y Manuel Ruiz Galán MATEMÁTICAS TICAS I Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III Ana Isabel Garralda Guillem y Manuel Ruiz Galán Tema. Diagonalización de matrices.1. Diagonalización de matrices por

Más detalles

Universidad de Los Andes Álgebra lineal 1. Parcial 3 - Tema A. 20 de abril 2013 MATE 1105

Universidad de Los Andes Álgebra lineal 1. Parcial 3 - Tema A. 20 de abril 2013 MATE 1105 Universidad de Los Andes Álgebra lineal Parcial 3 - Tema A de abril 3 MATE 5 Esto es un examen individual. No se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. Los

Más detalles

Bases ortogonales. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo

Bases ortogonales. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo Bases ortogonales Profesores Omar Darío Saldarriaga Ortíz Iván Dario Gómez Hernán Giraldo 9 Definición Sea V un espacio vectorial y {v,..., v n} una base para V. decimos que {v,..., v n} es una base ortogonal

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales.

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales. Capítulo V Valores y vectores propios. Diagonalización de operadores lineales. Hemos visto que la aplicaciones lineales de en están definidas a través de una expresión de la forma ; pero esta fórmula puede

Más detalles

FACULTAD DE I NGENIERÍA

FACULTAD DE I NGENIERÍA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE I NGENIERÍA FUNDAMENTOS DE ÁLGEBRA LINEAL Y EJERCICIOS Francisco Barrera García DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS BARRERA GARCÍA,

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ARAGÓN INGENIERÍA EN COMPUTACIÓN

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ARAGÓN INGENIERÍA EN COMPUTACIÓN UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ARAGÓN INGENIERÍA EN COMPUTACIÓN ASIGNATURA: Álgebra Lineal SEGUNDO SEMESTRE ÁREA DE CONOCIMIENTO: Matemáticas OBLIGATORIO U OPTATIVO:

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es:

Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es: Álgebra lineal y Geometría II Gloria Serrano Sotelo Departamento de MATEMÁTICAS ÁLGEBRA LINEAL Y GEOMETRÍA. 0 FÍSICAS Métricas y formas cuadráticas.. La matriz de la métrica T ((x, y, z), (x, y, z )) =

Más detalles

TEMA 6 FORMAS BILINEALES Y PRODUCTO ESCALAR

TEMA 6 FORMAS BILINEALES Y PRODUCTO ESCALAR TEMA 6 FORMAS BILINEALES Y PRODUCTO ESCALAR Índice 6.1. Formas bilineales....................... 154 6.1.1. Representación matricial de una forma bilineal. 155 6.1.. Formas multilineales reales............

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Espacios vectoriales con producto interno Problemas teóricos En todos los problemas relacionados con el caso complejo se supone que el producto interno es lineal con respecto al segundo argumento. Definición

Más detalles

Preparaduría V. 1.- Sea A una matriz diagonal n n cuyo polinomio característico es

Preparaduría V. 1.- Sea A una matriz diagonal n n cuyo polinomio característico es Preparaduría V 1.- Sea A una matriz diagonal n n cuyo polinomio característico es (x c 1 ) d1 (x c 2 ) d2... (x c k ) d k donde los c 1,..., c k son distintos dos a dos. Sea V el espacio de matrices n

Más detalles

REPASO DE ALGEBRA VECTORIAL

REPASO DE ALGEBRA VECTORIAL REPASO DE ALGEBRA VECTORIAL Vectores en R 2 : Un vector v en el plano R 2 = XY es un par ordenado de números reales (a,b). Los números reales a y b se llaman componentes del vector v. El vector cero es

Más detalles

Transformación adjunta a una transformación lineal

Transformación adjunta a una transformación lineal Transformación adjunta a una transformación lineal Objetivos. Estudiar la construcción y las propiedades básicas de la transformación lineal adjunta. Requisitos. Transformación lineal, producto interno,

Más detalles

VALORES Y VECTORES PROPIOS

VALORES Y VECTORES PROPIOS VALORES Y VECTORES PROPIOS En diversos campos de la ingeniería y las matemáticas surge el problema de calcular los valores escalares λ y los vectores x 0 tales que para la matriz cuadrada A se cumple Ax

Más detalles

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

6.6. Diagonalización de matrices simétricas o hermitianas. Ejemplo de una diagonalización de una matriz simétrica

6.6. Diagonalización de matrices simétricas o hermitianas. Ejemplo de una diagonalización de una matriz simétrica 6.6 Diagonalización de matrices simétricas o hermitianas Ejemplo de una diagonalización de una matriz simétrica Matrices hermitianas Los autovalores de las matrices reales simétricas o complejas hermitianas

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Principio minimax para los valores propios de matrices hermitianas

Principio minimax para los valores propios de matrices hermitianas Principio minimax para los valores propios de matrices hermitianas El propósito de estos apuntes (escritos por Egor Maximenko, Rogelio Rocha Hernández, Eliseo Sarmiento Rosales y Zacarías Sánchez Francisco

Más detalles

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR:

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Componentes de un vector Si las coordenadas de los puntos A y B son ELEMENTOS DE UN VECTOR:

Más detalles

Espacios vectoriales reales

Espacios vectoriales reales 144 Matemáticas 1 : Álgebra Lineal Capítulo 9 Espacios vectoriales reales 9.1 Espacios vectoriales Los conjuntos de vectores del plano, R, y del espacio, R 3, son conocidos y estamos acostumbrados a movernos

Más detalles

Clase de Álgebra Lineal

Clase de Álgebra Lineal Clase de Álgebra Lineal M.Sc. Carlos Mario De Oro Facultad de Ciencias Básicas Departamento de matemáticas 04.2017 Page 1 Espacios vectoriales Definicion. Espacio Vectorial (E.V.) Un V espacio vectorial

Más detalles

Métodos Matemáticos: Análisis Funcional

Métodos Matemáticos: Análisis Funcional Licenciatura en Ciencias y Técnicas Estadísticas Universidad de Sevilla http://euler.us.es/ renato/clases.html Espacios eucĺıdeos Definición Se dice que un espacio vectorial E es un espacio eucĺıdeo si

Más detalles

2 Espacios vectoriales

2 Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay

Más detalles

Clase 7 Herramientas de Álgebra Lineal

Clase 7 Herramientas de Álgebra Lineal Clase 7 Herramientas de Álgebra Lineal 1 Formas cuadráticas La descomposición en valores singulares 3 Normas de matrices 4 Ejercicios Dada una matriz M R n n, la función escalar x T Mx, donde x R n, es

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Espacios vectoriales con producto interno Mariano Suárez-Alvarez 24 de junio, 2011 1. Espacios con producto interno... 1 2. Normas y distancias... 3 3. Ortogonalidad... 5 4. Proyectores ortogonales...

Más detalles

CLASIFICACIÓN AFÍN DE CÓNICAS

CLASIFICACIÓN AFÍN DE CÓNICAS Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS CLASIFICACIÓN AFÍN DE CÓNICAS Sea E un R-espacio vectorial de dimensión. Sean E = e 1, e un plano vectorial de E y e 0 un

Más detalles

Tema 4: FORMAS BILINEALES Y CUADRÁTICAS

Tema 4: FORMAS BILINEALES Y CUADRÁTICAS Tema 4: FORMAS BILINEALES Y CUADRÁTICAS Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura:

Más detalles

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero.

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero. RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: Dirección de un vector: La dirección del vector es la dirección

Más detalles

Álgebra lineal II Examen Parcial 3

Álgebra lineal II Examen Parcial 3 UNIVERSIDAD DE COSTA RICA ESCUELA DE MATEMATICA Álgebra lineal II Examen Parcial II Semestre 04 Nick Gill Instrucciones: Puede usar cualesquiera de las proposiciones vistas en las lecciones incluidos los

Más detalles

PRÁCTICO 5. Coordenadas y matriz de cambio de bases

PRÁCTICO 5. Coordenadas y matriz de cambio de bases Algebra y Algebra II Segundo Cuatrimestre 2012 PRÁCTICO 5 Coordenadas y matriz de cambio de bases Ejercicio 1. Probar que los vectores α 1 = (1 0 i) α 2 = (1 + i 1 i 1) α 3 = (i i i) forman una base de

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2 Capítulo 6 Diagonalización 6 Valores y vectores propios 6 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V, nos planteamos el problema

Más detalles

1. Hallar el rango de cada una de las siguientes matrices

1. Hallar el rango de cada una de las siguientes matrices Tarea 5 Hallar el rango de cada una de las siguientes matrices 5 5 a) = 7 6 5 5 b) = 5 8 Solución: a) rang ( ) = b) rang ( ) = Determinar si cada uno de los siguientes conjuntos de vectores es linealmente

Más detalles

Diagonalización. Índice General. Nelson Möller. 1 Matrices Semejantes 2. 2 Matrices diagonalizables 2

Diagonalización. Índice General. Nelson Möller. 1 Matrices Semejantes 2. 2 Matrices diagonalizables 2 Diagonalización Nelson Möller Índice General 1 Matrices Semejantes 2 2 Matrices diagonalizables 2 3 Polinomio característico de una matriz 4 3.2 Valores propios.... 5 4 Vectores propios. 6 4.1 Ejemplo...

Más detalles

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4.

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4. 1 Tema 2. Sección 1. Espacio vectorial de Minkowski. Manuel Gutiérrez. Departamento de Álgebra, Geometría y Topología. Universidad de Málaga. 29071-Málaga. Spain. Abril de 2010. En este capítulo se recordará

Más detalles

Descomposición en forma canónica de Jordan (Segunda versión)

Descomposición en forma canónica de Jordan (Segunda versión) Descomposición en forma canónica de Jordan (Segunda versión) Francisco J. Bravo S. 1 de septiembre de 211 En esta guía se presentan los resultados necesarios para poder construir la forma de Jordan sin

Más detalles

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos ECUACIONES EN DERIVADAS PARCIALES Tópicos previos Para tomar el curso de ecuaciones en derivadas parciales es importante la familiaridad del alumno con los conceptos que se detallan a continuación. Sugerimos

Más detalles

1. Espacios Vectoriales Reales.

1. Espacios Vectoriales Reales. . Espacios Vectoriales Reales. El Álgebra Lineal es una rama de la Matemática que trata las propiedades comunes de todos los sistemas algebráicos donde tiene sentido las combinaciones lineales y sus consecuencias.

Más detalles

Álgebra Lineal. Tema 11. El Teorema Espectral en R. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Tema 11. El Teorema Espectral en R. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Tema. El Teorema Espectral en R Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Índice

Más detalles

2. Teorema de las multiplicidades algebraica y geométrica.

2. Teorema de las multiplicidades algebraica y geométrica. Guía. Álgebra III. Examen parcial II. Valores y vectores propios. Forma canónica de Jordan. Teoremas con demostraciones que se pueden incluir en el examen El examen puede incluir una demostración entera

Más detalles

Examen de Algebra Lineal Final. subespacio. Defina matriz diagonalizable b- Cuáles son las condiciones que debe cumplir A para ser diagonalizable?

Examen de Algebra Lineal Final. subespacio. Defina matriz diagonalizable b- Cuáles son las condiciones que debe cumplir A para ser diagonalizable? 1a- Deina: V espacio vectorial sobre un cuerpo K b- Demuestre: V espacio vectorial sobre K, v1, v,... v r V W = v1, v,..., vr subespacio Si v1 es combinación lineal de v, v,... v r entonces W = v, v,...

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

1. Espacio vectorial. Subespacios vectoriales

1. Espacio vectorial. Subespacios vectoriales Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Sea k un cuerpo. 1. Espacio vectorial. Subespacios vectoriales Definición 1.1. Un k-espacio vectorial o espacio vectorial

Más detalles

2.1 Proyección ortogonal sobre un subespacio. El teorema de la proyección ortogonal

2.1 Proyección ortogonal sobre un subespacio. El teorema de la proyección ortogonal Tema 2- Proyecciones, simetrías y giros ÍNDICE 21 Proyección ortogonal sobre un subespacio El teorema de la proyección ortogonal 22 Simétría ortogonal respecto de un subespacio 23 Matrices de Householder

Más detalles

6.14 Descomposición ortogonal y proyección ortogonal

6.14 Descomposición ortogonal y proyección ortogonal CAPÍTULO. ESPACIO EUCLÍDEO CANÓNICO IR N 282.14 Descomposición ortogonal y proyección ortogonal El resultado W W = IR n, significa que cada y IR n se puede escribir de forma única como suma de un vector

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

ÍNDICE TEMÁTICO. Operadores Lineales en Espacios con Producto Interno

ÍNDICE TEMÁTICO. Operadores Lineales en Espacios con Producto Interno UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Álgebra IDENTIFICACIÓN

Más detalles

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases...

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases... Álgebra Lineal Grupo A Curso 2011/12 Espacios vectoriales. Bases 61) Dados los vectores v 1,v 2,...,v n linealmente independientes, probar que también lo son los vectores u 1 = v 1 u 2 = v 1 + v 2... u

Más detalles

Soluciones de los problemas de álgebra lineal

Soluciones de los problemas de álgebra lineal Soluciones de los problemas de álgebra lineal HOJA :. a. a. b,d 4. b,c. b. (a) 4A +C t = 6 6 µ 6 4 7 6, (b) (BA) t C = 7 6 0 8 4 µ (c) B + AC = 0 9 4, (d) CA =, 0 µ (e) (B I) =, (f) (CA) = 6 4 0 6 8 7

Más detalles

INGENÍERIA INFORMÁTICA. PROBLEMAS DE ALGEBRA

INGENÍERIA INFORMÁTICA. PROBLEMAS DE ALGEBRA INGENÍERIA INFORMÁTICA. PROBLEMAS DE ALGEBRA C. Galindo 1. Resolver el siguiente sistema de ecuaciones x 1 + 3x 2 2x 3 + 2x 5 = 0 2x 1 + 6x 2 5x 3 2x 4 + 4x 5 3x 6 = 1 5x 3 + 10x 4 + 15x 6 = 5 2x 1 + 6x

Más detalles

Esta definición se puede ampliar a cualquier par de bases de los espacio inicial y final MATRIZ DE UNA APLICACIÓN LINEAL EN BASES ARBITRARIAS

Esta definición se puede ampliar a cualquier par de bases de los espacio inicial y final MATRIZ DE UNA APLICACIÓN LINEAL EN BASES ARBITRARIAS Cambios de base 3 3. CAMBIOS DE BASE Dada una aplicación lineal : y la base,,, se ha definido matriz en bases canónicas de la aplicación lineal a la matriz,, cuyas columnas son las coordenadas de en la

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles