*************************************************************************

Tamaño: px
Comenzar la demostración a partir de la página:

Download "*************************************************************************"

Transcripción

1 5.- figur reresent un estdo lno de deformciones; es decir: sólo son osibles ls deformciones según X e Y, siendo nuls en Z. Son dtos:, coeficiente de oisson (µ); y 4. ) Hllr l tensión según el eje Z. b) Determinr r qué intervlo de vlores del coeficiente de oisson del mteril (µ) l tensión tngencil máim tiene lugr en lnos rlelos l eje Z. Cuál es l inclinción de dicos lnos? y Z ************************************************************************* ) El enuncido nos dice que l deformción según el eje Z es nul; es decir: ε z 0. Est deformción unitri está relciond con ls tensiones, y y z según l ley de Hooke de l siguiente mner: [ µ ( )] ε z z + E y En l eresión nterior es dto y sbemos que y 4. Como ε z 0: [ z µ ( + 4 )] 0 z 5µ E será. En l figur del enuncido y y son tensiones de comresión; z tmbién lo y z ETSI-ICAI. Dertmento de Ingenierí Mecánic. Elsticidd y Resistenci de Mteriles. º IIND.

2 b), y y z son tensiones rinciles y ls direcciones en que ctún direcciones rinciles. Del rtdo ) sbemos que sus vlores son: 4 5 ν y z r que l tensión tngencil máim teng lugr en lnos rlelos l eje Z es necesrio que ést quede determind or y y. Eresemos esto trvés de los círculos de Mor: τ τ m y z or lo tnto debe cumlirse que: º) z > 5 µ > µ > 0. º) z < y 5 µ < 4 µ < 0. 8 De los cálculos nteriores rece desrenderse que 0. < µ < Sin embrgo, se sbe que el coeficiente de oisson está siemre comrendido en el intervlo 0 < µ < 0.5. or lo tnto l solución es: 0. < µ < 0.5 En los círculos de Mor uede verse demás que los lnos de tensión tngencil máim formn un ángulo de 45º con los lnos cuyos vectores normles son los ejes X e Y. ETSI-ICAI. Dertmento de Ingenierí Mecánic. Elsticidd y Resistenci de Mteriles. º IIND.

3 6.- Un column de ormigón rmdo de 00 cm con 4 0 (cutro redondos de cero de 0 mm de diámetro), se crg con kg (centrd). Hllr l tensión que qued sometido cd mteril (ormigón y cero), y el cortmiento unitrio de l column. Dtos: módulos de elsticidd: - cero E, 0 6 kg/cm. - ormigón E, 0 5 kg/cm. 0000kg SECCION 4 0 ********************************************************************** column de ormigón rmdo se encuentr sometid comresión. or ser el cero y el ormigón mteriles diferentes, l tensión en cd uno de ellos, y resectivmente, tmbién lo serán. r que eist equilibrio l crg kg debe ser bsorbid entre el ormigón y los cutro redondos de cero (est crg es negtiv or ser fuerz de comresión). En secciones de ormigón rmdo no es bitul descontrle l ormigón l sección de cero, debido que suone un error equeño en comrción con ls tolerncis en ls dimensiones de l sección de ormigón. Se obtiene sí un rimer ecución: 4 Sredondo + Scolumn π () Además, r que ls deformciones en los redondos y en el ormigón sen comtibles, mbs, ε y ε, deben ser igules. Esto nos drá l segund ecución: ε ε E E () 0 0 Introduciendo () en (): 0000 ( ) 57 kg/cm. or lo tnto, trvés de (): kg/cm. Clculmos or el cortmiento unitrio de l column: εcolumn ε ε ε column E E ETSI-ICAI. Dertmento de Ingenierí Mecánic. Elsticidd y Resistenci de Mteriles. º IIND.

4 El número nterior signific que l column se cort cm. or cd cm. que teng de longitud. El signo menos nos indic que se trt de un cortmiento. ETSI-ICAI. Dertmento de Ingenierí Mecánic. Elsticidd y Resistenci de Mteriles. º IIND.

5 7.- brr de l figur tiene los etremos fijos. Sbemos que se roducido un error de construcción de + 0.mm., or lo que r su montje será necesrio someterl un fuerz de comresión. Son dtos: Dimensiones (mm.): 00 r 50 b5 r 65 c400 Sección circulr. Crcterístics de los mteriles: Mteril Mteril Mteril Modulo de elsticidd kg/cm Coeficiente de diltción C - ) Definir l ley de vrición de ls tensiones normles lo lrgo de l brr. b) Hllr l vrición de temertur que debe roducirse r que se nulen dics tensiones. r r r b b c ********************************************************************** ) brr de l figur tiene un eceso de longitud igul +0. mm. Esto signific que cundo se efectúe el montje quedrá sometid un fuerz de comresión, que será l rección en los etremos. Est fuerz originrá uns tensiones de comresión lo lrgo de l brr, tles que rovoquen un cortmiento totl de l brr tmbién de 0. mm. Si no fuese sí, el montje de l iez no serí osible. En los trmos y, l sección es constnte, luego l tensión tmbién lo será en culquier sección erendiculr l eje. Sin embrgo, en el trmo, l tensión deenderá de l sección en que nos encontremos, or ser ést vrible. ETSI-ICAI. Dertmento de Ingenierí Mecánic Elsticidd y Resistenci de Mteriles. º IIND

6 ecución de comtibilidd de deformciones será or tnto: δ T - 0. mm. δ + δ + δ donde δ T es l vrición totl de longitud en l brr, y δ, δ y δ son ls vriciones de longitud en los trmos, y resectivmente. El signo menos en - 0. mm. se debe que se trt de un cortmiento. TRAMO. π A r π 5 kg/cm. () or l ley de Hooke: ε E 6 π 5 0 uesto que es constnte en todo el trmo, ε tmbién lo es. δ ε 00 π mm. TRAMO. En este cso, l tensión deenderá de l sección en que nos encontremos. geometrí del trmo es simétric resecto su sección medi, luego bstrá encontrr cuál es el cortmiento de un de ls mitdes ( δ b ), y multilicrlo or dos r sber el cortmiento del trmo comleto ( δ ). α r r r r r tg α 0. b 5 r r + tg α * mm. * b El áre de cd sección será: Asec ción π r π ( *) mm. ETSI-ICAI. Dertmento de Ingenierí Mecánic Elsticidd y Resistenci de Mteriles. º IIND

7 Y l tensión en cd un de ells debido l fuerz de comresión : ( *) A sec ción_ 00 π ( *) π ( *) 00 kg/cm. () or l ley de Hooke: ε ( *) ( *) E 00 π ( *). 0 6 uesto que ε deende de *, l vrición totl de longitud de este trmo de longitud b será l integrl de ε ( * ) lo lrgo de dico trmo. δ b b π ( *). 0 ε ( *) d 00 d* + π mm. or lo tnto: δ 00 δb + π mm. TRAMO. rocediendo del mismo modo que en el trmo : π A r π 5 kg/cm. () ε E π Se observ que l tensión coincide con. No ocurre sí con ls deformciones unitris en l dirección del eje, ε y ε, y que el módulo de elsticidd es diferente r los trmos y. δ ε c 400 π mm. ETSI-ICAI. Dertmento de Ingenierí Mecánic Elsticidd y Resistenci de Mteriles. º IIND

8 ecución de comtibilidd de deformciones qued finlmente: π 5 0 π π Resolviéndol se obtiene: kg. El signo menos indic que es comresión. Conocido el vlor de, trvés de ls eresiones (), () y (), l ley de vrición de ls tensiones normles lo lrgo de l brr está definid de l siguiente mner: 0 00 mm. ( ) 5 kg/cm mm mm. ( ) ( ) kg/cm. [ +. ( )] kg/cm. [. ( )] mm. ( ) 5 kg/cm. Se muestr continución l reresentción gráfic de est ley de vrición: -49 kg/cm -5 kg/cm ETSI-ICAI. Dertmento de Ingenierí Mecánic Elsticidd y Resistenci de Mteriles. º IIND

9 b) r que se nulen ls tensiones que se roducen or el error de construcción de +0. mm., se necesitrí un disminución de temertur que rovoque un disminución de longitud igul este error. Suoniendo l mism vrición de temertur en todos los trmos: Resultndo: l T α l T α l i i i i i i [ ] 0. T ( 5 + 5) T. 9 ºC El signo menos indic que se trt de un descenso de temertur. ETSI-ICAI. Dertmento de Ingenierí Mecánic Elsticidd y Resistenci de Mteriles. º IIND

10 8. Un brr de directriz rectilíne y de sección constnte, fij en sus etremos dos cueros rígidos serdos un distnci, está sometid un ley de crg il () y un ley de vrición de temertur T T(), tl como se indic en l figur. Se sbe, or otr rte, que dic brr tiene un error de construcción, de form que, en usenci de crg y de vrición de temertur, result 0 5 mm más lrg que l referid distnci. Se ide: ) Recciones en los etremos de l brr. b) Eresión nlític y reresentción gráfic roimd de l ley de vrición de l fuerz norml, indicndo el vlor del máimo. Dtos: Coeficiente de diltción linel:.0-5 ºC -. (kg/m) Módulo de elsticidd:.0 6 kg/cm. Sección de l brr: 5 cm ongitud 000 m T (ºC) 0 ****************************************************** Surimiendo l ligdur de l izquierd (se odrí cer tmbién con l de l derec) se uede definir un sistem isostático equivlente, con un fuerz desconocid X en l ligdur surimid, y l condición de deformción 0. X () El esfuerzo norml en un rebnd elementl de bscis viene ddo or: X () N ( ) X ( ) d X + d X 0 ( ) 0 De donde, l deformción debid ls crgs en l rebnd elementl es: ETSI-ICAI. Dertmento de Ingenierí Mecánic Elsticidd y Resistenci de Mteriles. º IIND.

11 N ( ) d d( ) ( X ) d EA EA Integrndo: EA ( X ) r considerr el efecto de l vrición de temertur se uede seguir un roceso nálogo con T T(), o bien, considerndo que l ley de vrición de temerturs es linel, clculr l deformción con l temertur medi: T T α + T Considerndo, demás, el error de construcción, 0, l deformción totl, que de ser igul cero, viene dd or: + + T 0 Sustituyendo ls eresiones nteriores y desejndo X, result: Con los vlores numéricos: result: X kg/m 4000kg/m T 40ºC T 0ºC 0 0,5 0 - m α, 0-5 ºC - m E, 0 0 kg/m A5 0-4 m m T α + T EA 0 EA X 4405 kg (el signo menos indic que l rección v en sentido contrrio l suuesto, es decir, ci l derec). N() (con N en Kg y en m.; signo +:trcción; signo : comresión). r el cálculo de l rección en el etremo de l derec, considermos ΣF 0: ETSI-ICAI. Dertmento de Ingenierí Mecánic Elsticidd y Resistenci de Mteriles. º IIND.

12 X () X X + X' ( ) d 0 de donde: X' X + + ( ) con: X 4405 kg, y sustituyendo los demás vlores numéricos, result: X 9405 kg (el signo ositivo eres que el sentido suuesto, ci l izquierd, es correcto). Nótese l concordnci de los resultdos de X y X con los vlores de l eresión de N() r 0 y r. r roceder l reresentción gráfic de N(), sí como r obtener los vlores más crcterísticos, bstrí con introducir su ecución en l clculdor. No obstnte, observemos que, del equilibrio de l rebnd elementl: N N+dN d d + dn 0 ; dn d Es decir, l ley de crg () es l derivd de N() con el signo cmbido. Así, l ser () ositiv (ci l derec) y creciente en tod l brr, su rimitiv N() tiene signo negtivo (comresión), y es creciente, y con derivd creciente, en vlor bsoluto, en todo el intervlo. N ETSI-ICAI. Dertmento de Ingenierí Mecánic Elsticidd y Resistenci de Mteriles. º IIND.

Problema 2.1. Resolución: Dibujamos el diagrama de sólido libre y obligamos el equilibrio. Además imponemos la igualdad de deformaciones.

Problema 2.1. Resolución: Dibujamos el diagrama de sólido libre y obligamos el equilibrio. Además imponemos la igualdad de deformaciones. 6 esistenci de mteriles. roblems resueltos roblem. Tenemos un brr rígid que está suspendid por dos cbles de igul diámetro 4 mm, y cuyos módulos de elsticidd son: =. 0 M y =0.7 0 M. longitud de l brr es

Más detalles

TEMA 6: PROBLEMAS RESUELTOS DE CÁLCULO PLÁSTICO

TEMA 6: PROBLEMAS RESUELTOS DE CÁLCULO PLÁSTICO roblems álculo lástico T : ROS RSUTOS ÁUO ÁSTIO.. Un vig de sección cudrd está erectmente emotrd en su extremo izquierdo y rticuld un tirnte en el derecho, tl como se indic en l igur. ste tirnte está rticuldo

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES Complementarios 2

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES Complementarios 2 ROES DE ESTIIDD Y RESISTENI DE TERIES omplementrios 2 1. r el estdo de tensiones definido en l figur, se pide: 200 ) Vlores de ls tensiones priciples. b) Representción del círculo de ohr tridimensionl,

Más detalles

MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA SEGUNDA CONVOCATORIA

MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA SEGUNDA CONVOCATORIA Dertmento de Mtemátic Alicd Escuel Universitri de Ingenierí Técnic Industril Universidd del Pís Vsco Plz de l Csill, 48 Bilbo MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA SEGUNDA CONVOCATORIA - EJERCICIO Tres

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES Complementarios 2

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES Complementarios 2 ROEMS DE ESTIIDD RESISTENI DE MTERIES omplementrios 2 1. r el estdo de tensiones definido en l figur, se pide: 200 ) Vlores de ls tensiones priciples. b) Representción del círculo de Mohr tridimensionl,

Más detalles

a) La percusión que recibe la varilla viene dada por De las leyes de la dinámica impulsiva se sigue:

a) La percusión que recibe la varilla viene dada por De las leyes de la dinámica impulsiva se sigue: . Un vrill uniforme de longitud l y ms m cuelg verticlmente y está sujet por un rticulción en su extremo superior. L vrill se golpe en su extremo inferior con un fuerz orizontl F que dur un tiempo muy

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

1. Dado que en el arranque la fuerza contraelectromotriz es nula (E = 0), despejamos la intensidad en el arranque y se reemplazan valores.

1. Dado que en el arranque la fuerza contraelectromotriz es nula (E = 0), despejamos la intensidad en el arranque y se reemplazan valores. www.eltemrio.com Oposiciones Secundri Tecnologí Motores de Corriente Continu roblem 1 Un motor de continu serie de 230 V gir 1200 r.p.m. L resistenci del inducido es de 0,3 Ω, l resistenci del devndo de

Más detalles

CAPÍTULO. La derivada

CAPÍTULO. La derivada CAPÍTULO 5 L derivd 5. L derivd de un función A continución trtremos uno de los concetos fundmentles del cálculo, que es el de l derivd. Este conceto es un ite que está estrecmente ligdo l rect tngente,

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de

Más detalles

OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL

OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL OLCOMA II Elimintori 0 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL FECHA: 7 de gosto, 0 SOLUCIONARIO NIVEL C ( - ) OLCOMA II Elimintori

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

el blog de mate de aida: MATE I. Cónicas pág. 1

el blog de mate de aida: MATE I. Cónicas pág. 1 el blog de mte de id: MATE I. Cónics pág. 1 SECCIONES CÓNICAS Un superficie cónic se obtiene l girr un rect g (llmd genertriz), lrededor de otr rect e, llmd eje de giro, l que cort en un punto V (vértice).

Más detalles

Fundamentos Físicos de Ingeniería de Telecomunicaciones Fuerzas electrostáticas

Fundamentos Físicos de Ingeniería de Telecomunicaciones Fuerzas electrostáticas Fundmentos Físicos de Ingenierí de Telecomunicciones Fuerzs electrostátics 1. Dos crgs igules de 3.0 µc están sobre el eje y, un en el origen y l otr en y = 6 m. Un tercer crg q 3 = 2.0 µc está en el eje

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

Función no Acotada en uno o en los dos extremos del Intervalo de Integración. f (x) d x = lim

Función no Acotada en uno o en los dos extremos del Intervalo de Integración. f (x) d x = lim Función no Acotd en uno o en los dos etremos del Intervlo de Integrción Si f () está definid sobre (, b] y si f () cundo, se define f () d = lim f () d ε + +ε Si f () está definid sobre [, b) y si f ()

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b

Más detalles

UT3 Analisis de esfuerzos en un Punto 3A Metodo Grafico. MC. Daniel Ramirez Villarreal. Ingenieria de Materiales. FIME-UANL + =

UT3 Analisis de esfuerzos en un Punto 3A Metodo Grafico. MC. Daniel Ramirez Villarreal. Ingenieria de Materiales. FIME-UANL + = UT3 Anlisis de esfuerzos en un Punto 3A Metodo Grfico Método Grfico. irculo de Mohr 3.5 Método grfico. irculo de Mohr Eiste un interpretción grfic de ls ecuciones nteriores hech por el ingeniero lemán

Más detalles

Paralaje estereoscópica

Paralaje estereoscópica Prlje estereoscóic Ecución Por semejnz de los triángulos O 1 o O 1 o : Y Y Por semejnz de los triángulos O 1 o O 1 o : ( ( ( (b 1 Tmbién or semejnz de los triángulos O 2 o O 2 o : B ' ' ( ; H (c B + H

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

CÁLCULO INTEGRAL. Definición: Sean a y b dos números reales a < b. Una partición del intervalo [a,b] es un conjunto finito de puntos de,

CÁLCULO INTEGRAL. Definición: Sean a y b dos números reales a < b. Una partición del intervalo [a,b] es un conjunto finito de puntos de, Deprtmento de Mtemátics I.E.S. Vlle del Jerte (Plsenci) CÁLCULO INTEGRAL 2.- INTEGRAL DEFINIDA. Definición: Sen y dos números reles

Más detalles

Unidad Temática Integral definida

Unidad Temática Integral definida Integrl definid Unidd Temátic 5 5.2 Integrl definid Análisis Mtemático (Ingenierí Informátic) Deprtmento de Mtemátic Aplicd Fcultd de Informátic Universidd Politécnic de Vlenci S. Cmp, J.A. Conejero y

Más detalles

Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor:

Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor: CAPÍULO - 8 Problem El estdo de tensiones de un punto de un sólido viene definido por el siguiente tensor: 7 6 ( ) 6 8 N / m XYZ 76 Hllr: ) ensiones direcciones principles sí como l mtri de pso entre el

Más detalles

Para 0 z a La densidad de carga y el campo eléctrico están relacionados por medio de la ecuación diferencial del teorema E 1. = ρ ε 0 a z.

Para 0 z a La densidad de carga y el campo eléctrico están relacionados por medio de la ecuación diferencial del teorema E 1. = ρ ε 0 a z. letos Físic pr Ciencis e Ingenierí Contcto: letos@telefonicnet ρ(z) V En el espcio vcío entre dos plcs conductors plns, y, de grn extensión, seprds un distnci, hy un estrto de crg de espesor, con un densidd

Más detalles

el blog de mate de aida. MATE I. Derivadas. Pág. 1

el blog de mate de aida. MATE I. Derivadas. Pág. 1 el blo de mte de id. MATE I. erivds. Pá. TASAS E VARIACIÓN L siuiente tbl orece el número de ncimientos en cd mes lo lro de un ño en un determind poblción: Meses 7 8 9 Ncimientos 7 8 98 9 8 7 Pr sber,

Más detalles

Diremos que lim f(x) b si podemos lograr que los valores de f( x) como queramos, con tal de tomar valores de x tan próximos a a como sea preciso.

Diremos que lim f(x) b si podemos lograr que los valores de f( x) como queramos, con tal de tomar valores de x tan próximos a a como sea preciso. Límite de un unción en un punto Diremos que () b si podemos logrr que los vlores de ( ) sen tn próimos b como quermos, con tl de tomr vlores de tn próimos como se preciso. Podemos dr un deinición más orml

Más detalles

Funciones trascendentes

Funciones trascendentes Cálculo 1 _Comisión -3 Año 017 Funciones trscendentes I) Funciones trigonométrics Son quells unciones cuys regls de deinición corresponden relciones trigonométrics (seno, coseno, tngente, cotngente, secnte

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

F r Q ( que se puede escribir como. En otras palabras:

F r Q ( que se puede escribir como. En otras palabras: 57 V i R + ε V ue se puede escribir como i R + ε 0. (8.6) En otrs plbrs: L sum lgebric de los cmbios en el potencil eléctrico ue se encuentren en un circuito completo debe ser cero. Est firmción se conoce

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

CAPÍTULO. Aplicaciones

CAPÍTULO. Aplicaciones CAPÍTULO 3 Aplicciones 3.5 Trbjo de un fuerz 1 Se dice que un fuerz reliz un trbjo cundo cmbi el estdo de reposo o estdo de movimiento de un cuerpo. En este sentido, el trbjo que reliz un fuerz pr llevr

Más detalles

E.T.S. DE INGENIERÍA (ICAI). TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES Examen Septiembre 2009

E.T.S. DE INGENIERÍA (ICAI). TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES Examen Septiembre 2009 E.T.S. DE INGENIERÍ (ICI). TEORÍ DE ESTRUCTURS Y CONSTRUCCIONES INDUSTRIES Exmen Septiembre 009 EE TENTENTE El exmen const de vrios ejercicios, que se reprtirán sucesivmente, con un tiempo máximo pr l

Más detalles

Electromagnetismo II

Electromagnetismo II Electromgnetismo II Semestre: 25- TAREA 4 Y SU SOLUCIÓN Dr. A. Reyes-Corondo Por: Pedro Edurdo Romn Tbod.- Problem: (5pts Clcul l fuerz sobre l crg +q de l figur que se muestr continución. El plno XY represent

Más detalles

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ.

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ. Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Algebr Linel MA 0, 0/08/3, Profs. J. González, R. Gouet. Solución Exmen. Considere el siguiente sistem de ecuciones lineles,

Más detalles

5.2 Integral Definida

5.2 Integral Definida 80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

VECTORES, PLANOS Y RECTAS EN R 2 Y R 3

VECTORES, PLANOS Y RECTAS EN R 2 Y R 3 Profesionl en Técnics de Ingenierí VECTORES, PLANOS Y RECTAS EN R Y R 3 1. Puntos en R y R 3 Un pr ordendo (, ) y un tern ordend (,, c) representn puntos de IR y IR 3, respectivmente.,, c, se denominn

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesión de funciones continus (18.04.2017) Se {f n } un sucesión de funciones f n, definids en I. Si {f n } converge uniformemente f en I y ls f n son continus en I, entonces f es continu en I. D:

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

geometria proyectiva primer cuatrimestre 2003 Práctica 5

geometria proyectiva primer cuatrimestre 2003 Práctica 5 geometri proyectiv primer cutrimestre 2003 Práctic 5 1. Encontrr un curv prmetrizd α cuy trz se el círculo x 2 + y 2 = 1, que lo recorr en el sentido de ls gujs del reloj y tl que α(0) = (0, 1). 2. Se

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

5.2 Línea de influencia como diagrama de desplazamiento virtual

5.2 Línea de influencia como diagrama de desplazamiento virtual 5.2 íne de influenci como digrm de desplzmiento virtul líne de influenci se puede determinr plicndo el rincipio del Desplzmiento Virtul. r ello st con:. Remover el vínculo socido con el efecto cuy líne

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

1 a. 1 a. dq πε

1 a. 1 a. dq πε .94 L crg positiv Q está distribuid uniformemente lrededor de un semicírculo de rdio. Hlle el cmpo eléctrico (mgnitud y dirección) en el centro de curvtur P. + + + + + Q + d x d P dθ y d y dl + θ dθ dq

Más detalles

CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES

CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE ATERIALES CONCEPTO DE PIEZA PRISÁTICA Centro de grvedd Directriz o eje G C Sección trnsversl ADERTENCIA: Eisten otrs rms de l ecánic de edios Continuos en ls

Más detalles

Teorema de Green. 6.1 Introducción

Teorema de Green. 6.1 Introducción SESIÓN 6 6.1 Introducción En est sesión se revis el primero de los 3 teorem clves del cálculo vectoril: el. Este teorem estblece que un integrl doble sobre un región del plno es igul un integrl de líne

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

TEMA 2. DETERMINANTES

TEMA 2. DETERMINANTES TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

Aplicaciones de la Integral.

Aplicaciones de la Integral. Seminrio 2 Aplicciones de l Integrl. 2.1. Áre de figurs plns. Definición 2.1.1. Se f : [, b] R continu y f(x) 0 x [, b]. El áre del recinto {(x, y) R 2 : x b, 0 y f(x)} viene dd por l integrl: A = f(x)

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

MOMENTOS Y CENTROS DE MASA

MOMENTOS Y CENTROS DE MASA MOMENTOS Y CENTROS DE MASA El objetivo de ests línes es explicr brevemente otr de ls numeross plicciones que posee el Cálculo Integrl. En este cso, considermos un plc pln y delgd con form culquier, y nos

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

Teorema fundamental del Cálculo.

Teorema fundamental del Cálculo. Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.

Más detalles

Física II. Potencial Eléctrico. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA

Física II. Potencial Eléctrico. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Físic II Potencil Eléctrico UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejndr Escor Energí Potencil Eléctric Se puede socir un energí potencil todo un sistem en el que

Más detalles

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000)

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000) Portl Fuenterrebollo XXXVI OLIMPIADA MATEMÁTIA ESPAÑOLA, PALMA DE MALLORA (000) Problem. Sen los polinomios: P(x) = x 4 + x + bx + cx + ; Q(x) = x 4 + cx + bx + x +. Hll ls condiciones que deben cumplir

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

Primitivas e Integrales

Primitivas e Integrales Cpítulo 25 Primitivs e Integrles En este cpítulo vmos trbjr con funciones de un vrible. En él estbleceremos un cso prticulr del Teorem Fundmentl del Cálculo Integrl (ver [3] pr el cso generl), con el que

Más detalles

1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO

1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Límite de funciones. Continuidd MATEMÁTICAS II 1 1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Cómo determinr el límite de un función cundo l vrible se proim un vlor? En generl, pr tener un ide de l respuest

Más detalles

Geodesia Física y Geofísica

Geodesia Física y Geofísica Geodesi Físic y Geofísic I semestre, 014 Ing. José Frncisco Vlverde Clderón Emil: jose.vlverde.clderon@un.c Sitio web: www.jfvc.wordpress.com Prof: José Fco Vlverde Clderón Geodesi Físic y Geofísic I semestre

Más detalles

AN ALISIS MATEM ATICO B ASICO.

AN ALISIS MATEM ATICO B ASICO. AN ALISIS MATEM ATICO B ASICO. LONGITUDES, AREAS Y VOL UMENES. Un trtmiento mlio de l integrl ermite el clculo de longitudes de curvs, res de suercies (lns y lbeds) y de volumenes. Con nuestro conocimiento

Más detalles

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES puntes de. Cbñó Mtemátics II SISTEMS DE ECUCIONES LINELES 8. Epresión mtricil de un sistem.clsificción de un sistem en términos del número de soluciones. 8. Teorem de RouchéFrobenius. 8. El método de eliminción

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

Funciones continuas. Mariano Suárez-Alvarez. 4 de junio, Índice

Funciones continuas. Mariano Suárez-Alvarez. 4 de junio, Índice Funciones continus Mrino Suárez-Alvrez 4 de junio, 2013 Índice 1. Funciones continus................... 1 2. Alguns propieddes básics............ 3 3. Los teorems de Weierstrss y Bolzno... 6 4. Funciones

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles no vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tem 3: Sistems de ecuciones lineles 1. Introducción Los sistems de ecuciones resuelven problems relciondos con situciones de l vid cotidin, que tiene que ver con ls Ciencis Sociles. Nos centrremos, por

Más detalles

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA Sistems Electromecánicos, Guí : Máquins de Corriente Continu GUÍA : MÁQUNAS DE COENTE CONTNUA. L crcterístic de mgnetizción de un generdor de corriente continu operndo un velocidd de 500 [rpm] es: [A]

Más detalles

NÚMEROS REALES 1. RECTA NUMÉRICA REAL. Indicadores 2. RELACIÓN DE ORDEN. Contenido. Números Reales

NÚMEROS REALES 1. RECTA NUMÉRICA REAL. Indicadores 2. RELACIÓN DE ORDEN. Contenido. Números Reales Indicdores NÚMEROS REALES Identific ls propieddes de los números reles, determinndo el vlor de verdd de proposiciones. Clcul el vlor de epresiones lgebrics usndo ls propieddes del vlor bsoluto. Evlú y

Más detalles

METODOS NUMERICOS TALLER 7, SEMESTRE Se obtuvieron los siguientes datos de la distancia recorrida por un cohete contra el tiempo:

METODOS NUMERICOS TALLER 7, SEMESTRE Se obtuvieron los siguientes datos de la distancia recorrida por un cohete contra el tiempo: METODOS NUMERICOS 697 TALLER 7, SEMESTRE Tem: Derivción e integrción numérics Se recomiend relizr los ejercicios propuestos en el texto guí, en prticulr los siguientes: Sección :,,, 7, 8,, Sección :, 8

Más detalles

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal Introducción l Teorí Económic Crmen olores Álvrez Alelo Miguel Becerr omínguez Ros Mrí Cáceres Alvrdo Mrí del ilr Osorno del Rosl Olg Mrí Rodríguez Rodríguez http://it.ly/8l8u Tem 3 L elsticidd y sus plicciones

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Tema 10: Integral definida. Aplicaciones al cálculo de áreas

Tema 10: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles nos vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

MATEMÁTICAS (II) JUNIO 2002

MATEMÁTICAS (II) JUNIO 2002 MTEMÁTICS (II) JUNIO El emen present dos opciones, B. El lumno deberá elegir UN Y SÓLO UN de ells resolver los cutro ejercicios de que const. No se permite el usó de clculdors con cpcidd de representción

Más detalles

ANEXO B3 ECUACIÓN DE CAMBIO DE CONDICIONES

ANEXO B3 ECUACIÓN DE CAMBIO DE CONDICIONES ANEXO B3 ECUACIÓN DE CAMBIO DE CONDICIONES Pág. 1 B3.1 ECUACIÓN DE CAMBIO DE CONDICIONES B3.1.1 CATENARIA B3.1.1.1 Curv de equilibrio de un hilo El conductor tendido entre dos poyos dquiere l for de un

Más detalles

Ecuación de la circunferencia de centro el origen C(0, 0) y de

Ecuación de la circunferencia de centro el origen C(0, 0) y de CÓNICAS EN EL PLANO. CIRCUNFERENCIA, ELIPSE, HIPÉRBOLA Y PARÁBOLA centrds en el origen CIRCUNFERENCIA Aunque segurmente se sep, recordmos que l circunferenci es el conjunto de puntos que distn un cntidd

Más detalles

Capítulo 5. Medición de la Distancia por Medio de Triangulación

Capítulo 5. Medición de la Distancia por Medio de Triangulación Cpítulo 5. Medición de l Distnci por Medio de Tringulción 5.1 Introducción Hemos visto cómo medir l distnci de un objeto un cámr cundo dicho objeto es cptdo por un sol cámr; sin embrgo, cundo el objeto

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coordinción de Mtemátic II (MAT) Primer semestre de 3 Semn : Lunes de Junio Viernes 4 de Junio CÁLCULO Contenidos Clse : Método de ls cs cilíndrics. Clse : Áres de suerficies de revolución. CLASE.. Método

Más detalles

es un número aproximado, si difiere ligeramente de un número exacto X. < X, se dice que X es una aproximación por defecto (la mas pequeña) de X.

es un número aproximado, si difiere ligeramente de un número exacto X. < X, se dice que X es una aproximación por defecto (la mas pequeña) de X. TEMA Nº 1 TEOÍA DE EOES INTODUCCIÓN Los errores numéricos se genern con el uso de roximciones r reresentr ls oerciones y cntiddes mtemátics, estos incluyen errores de: cifrs significtivs, de redondeo,

Más detalles

Problemas de inventarios.

Problemas de inventarios. Problems de inventrios. Un inventrio es un recurso inemledo ero útil que osee vlor económico. El roblem se lnte cundo un emres exendedor o roductor de bienes y servicios no roduce en un momento determindo

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

Funciones de variable compleja

Funciones de variable compleja Funciones de vrible complej Integrles impropis. Mrí Eugeni Torres Universidd Ncionl de Entre Ríos Fcultd de Ingenierí Funciones de Vrible Complej (Bioingenierí, Pln 28) Myo 29 Integrles impropis Alcnce

Más detalles

Matemáticas Bachillerato

Matemáticas Bachillerato Mtemátics Bchillerto Continuidd CONTINUIDAD DE FUNCIONES. Definición de continuidd en un punto Definición: Un función f se dice continu en un punto de bscis (o se, en = ) si lím f ( ) f ( ). Esto es equivlente

Más detalles

Primitiva de una función.

Primitiva de una función. Primitiv de un función. 1 / 29 Definición. Un función derivble F es primitiv de l función f en el intervlo I si F (x) = f(x), pr todo x I. Ejemplos 2 / 29 Ejemplo. Se f : R R tl que f(x) = 4x 3. i) F(x)

Más detalles

Z ξ. g(t)dt y proceda como sigue:

Z ξ. g(t)dt y proceda como sigue: Prolems Prolem.9. Sen f(x) y g(x) funciones continus en [,] y f (x) continu y de signo constnte en [,]. demuestre que (,) tl que f(x)g(x)dx = f() g(x)dx+ f() g(x)dx. R Pr esto considere l función G(x)

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles

es una matriz de orden 2 x 3.

es una matriz de orden 2 x 3. TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 202-203 (22/04/203??/05/203)

Más detalles