Análisis de Datos. Red de función de base radial. Profesor: Dr. Wilfrido Gómez Flores

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis de Datos. Red de función de base radial. Profesor: Dr. Wilfrido Gómez Flores"

Transcripción

1 Análisis de Datos Red de función de base radial Profesor: Dr. Wilfrido Gómez Flores 1

2 Introducción Las funciones de base radial han sido utilizadas en diversas técnicas de reconocimiento de patrones como interpolación, aproximación de funciones, agrupamiento, mezcla de modelos, etc. En 1988, Broomhead y Lowe propusieron las redes neuronales de función de base radial (RBFN, radial basis function network) como un método alternativo al perceptrón multicapa. La RBFN utiliza una topología invariante de tres capas y puede realizar mapeos muy complejos, en donde una red perceptrón multicapa necesitaría múltiples capas ocultas. La salida de la RBFN implementa una suma ponderada de las respuestas no lineales de las neuronas en la capa oculta. 2

3 Funciones radiales Una función de base radial (RBF) se caracteriza por su respuesta monotónamente creciente (o decreciente) en relación a un punto central. Una RBF típica es la función Gaussiana, en el caso de una entrada escalar x se tiene: (x c)2 φ(x) = exp r 2 (1) donde c y r son los parámetros del centro y radio, respectivamente. La RBF Gaussiana decrece monotónamente a medida que aumenta la distancia desde el centro, contrariamente a la RBF multicuadrática que se expresa como: φ(x) = (r 2 + (x c) 2 ) 1 2 (2) la cual aumenta monotónamente con la distancia desde el centro. 3

4 Funciones radiales Función Expresión Parámetros ( ) Gaussiana φ 1 (x) = exp (x c) 2 r 2 r>0 Multicuadrática inversa φ 2 (x) = (r 2 + (x c) 2 ) 1 2 r>0 Multicuadrática inversa generalizada φ 3 (x) = (r 2 + (x c) 2 ) q r>0, 1>q>0 Multicuadrática φ 4 (x) = (r 2 + (x c) 2 ) 1 2 r>0 Multicuadrática generalizada φ 5 (x) = (r 2 + (x c) 2 ) q r>0, q>0 φ(x) φ 3 (x) φ(x) φ 4 (x) φ 2 (x) φ 5 (x) φ 1 (x) x x 4

5 Topología RBFN x 1 x 1 φ 1 w jk z 1 Σ Salida de la red Referencia y 1 x 2 x 2 φ 2 Σ z 2 y 2 φ 3 x i x i Σ z k y k x D x D φ j Σ z C y C φ H Entrada Oculta Salida La RBFN consta de una topología invariante de tres capas: entrada, recibe y distribuye los datos desde el exterior; oculta, activada por funciones radiales no lineales; salida, activada por funciones lineales continuas. 5

6 Función de activación Considerando a la RBF Gaussiana, la activación de la j-ésima neurona oculta en función de un patrón de entrada xxxxxx 2 R D es: φ j (x) = exp x c j 2 2σ j 2, j = 1,,H (3) donde el vector c j =[c 1,,c D ] T es el centro de la RBF, la escalar σ j es el radio de la RBF, y denota distancia Euclidiana. i En general, las RBFs exhiben un comportamiento local, ya que una neurona se activa cuando el patrón x está dentro de su localidad en el espacio de características, de modo que: φ(x) 1 cuando x c 0 6

7 Función de activación φ(x) φ(x) x 1 x2 x 1 x2 Izquierda: cuatro neuronas inactivas donde cada una cubre una localidad del espacio de características. Derecha: neuronas activas en función de los datos de entrada, nótese que a mayor cantidad de datos en la localidad de la neurona su respuesta es aumenta. 7

8 Aprendizaje de la RBFN El entrenamiento de la RBFN consiste en determinar los parámetros de los centros y radios de las RBFs así como los pesos sinápticos entre las capas oculta y salida. Este proceso se realiza en dos etapas independientes mediante un algoritmo de aprendizaje híbrido : 1. Aprendizaje no supervisado: los centros de las RBFs se determinan a partir de un algoritmo de agrupamiento y posteriormente se computan los radios con base en los centros obtenidos. El número de grupos corresponde al número de neuronas ocultas. 2. Aprendizaje supervisado: dadas las respuestas de las neuronas ocultas, los pesos sinápticos se ajustan mediante un algoritmo supervisado que realice el mapeo entrada salida de las neuronas de salida. El número de neuronas de salida corresponde al número de clases. 8

9 Aprendizaje no supervisado El aprendizaje no supervisado realiza los siguientes pasos: 1. Definir el número de neuronas ocultas. 2. Calcular los centros de cada RBF mediante un algoritmo de agrupamiento (e.g., k-means) aplicado a los datos de entrenamiento, de modo que las neuronas se distribuyan adecuadamente en el espacio de características. 3. Determinar los radios de cada RBF con base en los centros calculados de modo que exista poco traslape entre RBFs: a. Media uniforme de las distancias Euclidianas a los q centros más cercanos: σ i = 1 q c (4) q i c j, i j j =1 b. Media geométrica de las distancias Euclidianas a los dos centros más cercanos: σ i = ( c i c a c i c b ) 1 2, i a b (5) 9

10 Aprendizaje no supervisado Media uniforme Media geométrica φ(x) φ(x) x 1 x 2 x 1 x 2 20 neuronas 4 neuronas x x 2 1 x 1 Regiones de activación en función de los radios y centros de las RBFs. En círculos negros se muestra la localización de los centros determinados con el algoritmo k-means. x 2 10

11 Aprendizaje supervisado Cada neurona de la capa de salida implementa una combinación lineal de las respuestas no lineales de las neuronas ponderadas con pesos sinápticos: z k = w 0k + H j =1 w jk φ j (x) Se deben minimizar las diferencias cuadradas entre las salidas de la red z k y las referencias y k : (6) J(w) = 1 2 C k=1 (y k z k ) 2 donde w son todos los pesos entre las capas oculta y salida. (7) Para computar los pesos se puede utilizar el algoritmo de descenso de gradiente o mediante el método de la pseudoinversa (ver clase AD-08). 11

12 Aprendizaje supervisado El método de la pseudoinversa proporciona una solución rápida y directa para el cálculo de los pesos sinápticos: W = [(ΦΦ T ) 1 Φ] T Y (8) donde Φ, Y y W son las matrices de respuestas RBF, referencias y pesos, respectivamente, calculadas a partir del conjunto de entrenamiento con N patrones. La referencia Y={yN(x N ) N=1,,N}, donde xxxxxxxxxxxxxx, se debe binarizar de acuerdo al número de clases existentes, por ejemplo, para un problema con C=3 clases: Si y=1 se convierte en y=[1,0,0] Si y=2 se convierte en y=[0,1,0] Si y=3 se convierte en y=[0,0,1] y N 2 {1,...,C} 12

13 Aprendizaje supervisado Entonces, las matrices Φ, Y y W tienen la forma: Y = y 1 (x 1 ) y 2 (x 1 )! y k (x 1 )! y C (x 1 ) y 1 (x 2 ) y 2 (x 2 )! y k (x 2 )! y C (x 2 )!! "! "! y 1 (x i ) y 2 (x i )! y k (x i )! y C (x i )!! "! "! y 1 (x N ) y 2 (x N )! y k (x N )! y C (x N ) W = w 01 w 02! w 0k! w 0C w 11 w 12 w 1k! w 1C " " # " # " w j1 w j 2! w jk! w jc " " # " # " w H 1 w H 2! w Hk! w HC Φ = 1 1! 1! 1 φ 1 (x 1 ) φ 1 (x 2 )! φ 1 (x i )! φ 1 (x N ) φ 2 (x 1 ) φ 2 (x 2 )! φ 2 (x i )! φ 2 (x N )!! "! "! φ j (x 1 ) φ j (x 2 )! φ j (x i )! φ j (x N )!! "! "! φ H (x 1 ) φ H (x 2 )! φ H (x i )! φ H (x N ) Nótese que la primera fila en Φ tiene valores unitarios utilizados para el cálculo del bias. 13

14 Algoritmo de entrenamiento Entrenamiento de una RBFN Input: H #neuronas ocultas, X datos de entrenamiento, Y referencia Process: Encontrar los H centros C={c 1,,c H } de las RBFs usando X Calcular los H radios σ={σ 1,,σ H } de las RBFs usando C Obtener las respuestas de la capa oculta Φ usando X Calcular los pesos W de la capa oculta-salida usando Y y Φ Output: C, σ, W Para determinar el número óptimo de neuronas ocultas, se puede seguir una estrategia de incremento gradual hasta alcanzar el mínimo error de entrenamiento. Se debe considerar un conjunto de validación para evitar el sobreentrenamiento de la RBFN. 14

15 Algoritmo de entrenamiento Algoritmo para determinar el número óptimo de neuronas ocultas mediante el método de validación cruzada Input: H min #mínimo de neuronas ocultas, H max #máximo de neuronas ocultas, {D 1,,D K } datos de entrenamiento divididos en K-folds Process: for h = H min to H max for k = 1 to K Entrenar una RBFN con h neuronas ocultas usando D {1,,K}\k Obtener la salida de la RBFN usando D k Calcular el error de validación ek generado por D k end for Promediar los K errores de validación: e h = (e 1 + +e K )/K end for Obtener el número de neuronas óptimo: h*=argmin h (e h ) Output: h* 15

16 Funciones discriminantes Para clasificar un patrón desconocido, se tendrán C neuronas de salida, una para cada clase, y la señal de cada neurona de salida es la función discriminante: g k (x) z k = w k T φ(x) (9) T donde w k es el vector de pesos para la neurona k y φ(x) es el vector de respuestas RBF para el vector de entrada x. Entonces, el patrón x es clasificado en ω i, i=1,,c, si g p (x) > g q (x), p q (10) 16

17 Funciones discriminantes 20 neuronas ocultas 5 neuronas ocultas g(x) g(x) x 1 x 2 x 1 x 2 x 1 x 1 x 2 x 2 17

18 RBFN vs FNN RBFN FNN Una capa oculta Capa oculta no lineal y capa de salida lineal El argumento de las neuronas ocultas es la norma Euclidiana Propiedad de aproximación universal Aproximadores locales Una o múltiples capas ocultas Capa oculta no lineal y capa de salida no lineal o lineal El argumento de las neuronas ocultas es el producto escalar Propiedad de aproximación universal Aproximadores globales 18

Redes neuronales con funciones de base radial

Redes neuronales con funciones de base radial Redes neuronales con funciones de base radial Diego Milone y Leonardo Rufiner Inteligencia Computacional Departamento de Informática FICH-UNL Organización: RBF-NN Motivación y orígenes RBF Arquitectura

Más detalles

Análisis de Datos. Introducción al aprendizaje supervisado. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Introducción al aprendizaje supervisado. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Introducción al aprendizaje supervisado Profesor: Dr. Wilfrido Gómez Flores 1 Conceptos básicos Reconocimiento de patrones (RP): clasificar objetos en un número de categorías o clases.

Más detalles

Redes de Neuronas de Base Radial

Redes de Neuronas de Base Radial Redes de Neuronas de Base Radial 1 Introducción Redes multicapa con conexiones hacia delante Única capa oculta Las neuronas ocultas poseen carácter local Cada neurona oculta se activa en una región distinta

Más detalles

Análisis de Datos. Combinación de clasificadores. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Combinación de clasificadores. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Combinación de clasificadores Profesor: Dr. Wilfrido Gómez Flores 1 Introducción Diversos algoritmos de clasificación están limitados a resolver problemas binarios, es decir, con dos

Más detalles

Análisis de Datos. Regresión logística. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Regresión logística. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Regresión logística Profesor: Dr. Wilfrido Gómez Flores 1 Regresión logística Supóngase que se tiene una variable binaria de salida Y, y se desea modelar la probabilidad condicional P(Y=1

Más detalles

Análisis de Datos. Perceptrón multicapa. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Perceptrón multicapa. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Perceptrón multicapa Profesor: Dr. Wilfrido Gómez Flores 1 Introducción De acuerdo con el consejo de la IEEE Neural Networks de 1996, inteligencia artificial (IA) es el estudio de cómo

Más detalles

Análisis de Datos. Validación de clasificadores. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Validación de clasificadores. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Validación de clasificadores Profesor: Dr. Wilfrido Gómez Flores 1 Introducción La mayoría de los clasificadores que se han visto requieren de uno o más parámetros definidos libremente,

Más detalles

REDES NEURONALES ADAPTABLES

REDES NEURONALES ADAPTABLES REDES NEURONALES ADAPTABLES Unidad 3: Redes neuronales artificiales y modelos de entrenamiento SubTemas 3.2 Perceptron simple Arquitectura Regla delta Multi Layer Perceptrón 3.3 Redes Neuronales Adaptables

Más detalles

Elementos de máquinas de vectores de soporte

Elementos de máquinas de vectores de soporte Elementos de máquinas de vectores de soporte Clasificación binaria y funciones kernel Julio Waissman Vilanova Departamento de Matemáticas Universidad de Sonora Seminario de Control y Sistemas Estocásticos

Más detalles

Redes Neuronales Artificiales

Redes Neuronales Artificiales Algoritmo de retropropagación Back propagation Es utilizado para entrenar redes neuronales multicapa. Exige que la función de activación de las neuronas sea derivable y creciente. Las funciones comúnmente

Más detalles

OTRAS CONSIDERACIONES. Introducción a las Redes Neuronales Artificiales

OTRAS CONSIDERACIONES. Introducción a las Redes Neuronales Artificiales OTRAS CONSIDERACIONES! Estrategias para generalización Existen diversas estrategias para mejorar la generalización: 1) Teoría de Regularización: Agregar una penalidad para lograr mejorar la forma de la

Más detalles

PREDICCIÓN DE VAPOR DE AGUA PRECIPITABLE CON DATOS DE MEDICIONES GPS UTILIZANDO UNA RED NEURONAL ARTIFICIAL

PREDICCIÓN DE VAPOR DE AGUA PRECIPITABLE CON DATOS DE MEDICIONES GPS UTILIZANDO UNA RED NEURONAL ARTIFICIAL PREDICCIÓN DE VAPOR DE AGUA PRECIPITABLE CON DATOS DE MEDICIONES GPS UTILIZANDO UNA RED NEURONAL ARTIFICIAL SIMPOSIO SIRGAS 2015 Santo Domingo, República Dominicana 18 20 Noviembre 2015 en colaboración

Más detalles

REDES NEURONALES. Una esquema simplificado de una neurona se muestra en la siguiente figura. Cuerpo celular. Dendrita. Axón.

REDES NEURONALES. Una esquema simplificado de una neurona se muestra en la siguiente figura. Cuerpo celular. Dendrita. Axón. REDES NEURONALES Las redes neuronales constituyen una poderosa herramienta para modelar sistemas, especialmente no lineales, sean dinámicos o estáticos. En el cuerpo celular se realizan la mayoría de las

Más detalles

Reconocimiento automático de palabras en documentos históricos usando redes neuronales convolucionales

Reconocimiento automático de palabras en documentos históricos usando redes neuronales convolucionales Reconocimiento automático de palabras en documentos históricos usando redes neuronales convolucionales Dra. Ma. de Guadalupe García Hernández Departamento de Ingeniería Electrónica Objetivo general Aplicar

Más detalles

Técnicas de inteligencia artificial. Aprendizaje: Perceptrón multi-capa

Técnicas de inteligencia artificial. Aprendizaje: Perceptrón multi-capa Técnicas de inteligencia artificial Aprendizaje: Perceptrón multi-capa Índice Regla delta Modelo computacional Neuronas e hiperplanos Entrenamiento como ajuste supervisado No-separabilidad lineal Backpropagation

Más detalles

MAPAS AUTOORGANIZATIVOS Y MODELOS SIMILARES

MAPAS AUTOORGANIZATIVOS Y MODELOS SIMILARES MAPAS AUTOORGANIZATIVOS Y MODELOS SIMILARES José D. Martín Guerrero, Emilio Soria, Antonio J. Serrano PROCESADO Y ANÁLISIS DE DATOS AMBIENTALES Curso 2009-2010 Page 1 of 11 1. Learning Vector Quantization.

Más detalles

Relación 7 - Redes neuronales

Relación 7 - Redes neuronales Sistemas Inteligentes 0-0 Relación - Redes neuronales Problemas Ejercicio. Explicar cómo se usaría una red neuronal para obtener un reconocedor de letras escritas a mano. Describir con precisión qué estructura

Más detalles

Inteligencia Artificial. Aprendizaje neuronal. Ing. Sup. en Informática, 4º. Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani

Inteligencia Artificial. Aprendizaje neuronal. Ing. Sup. en Informática, 4º. Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani Inteligencia Artificial Aprendizaje neuronal Ing. Sup. en Informática, 4º Curso académico: 20/202 Profesores: Ramón Hermoso y Matteo Vasirani Aprendizaje Resumen: 3. Aprendizaje automático 3. Introducción

Más detalles

Tema 8: Redes Neuronales

Tema 8: Redes Neuronales Tema 8: Redes Neuronales Pedro Larrañaga, Iñaki Inza, Abdelmalik Moujahid Intelligent Systems Group Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del País Vasco http://www.sc.ehu.es/isg/

Más detalles

4. El perceptrón. 4.1 Introducción. 4.2 Consideraciones básicas

4. El perceptrón. 4.1 Introducción. 4.2 Consideraciones básicas 4. El perceptrón 4.1 Introducción El perceptrón es la forma más simple de una red neuronal usada para la clasificación de un tipo especial de patrones, los linealmente separables (es decir, patrones que

Más detalles

Clasificación de Datos de Olor de Café provenientes de una Nariz Electrónica Utilizando Redes Neuronales

Clasificación de Datos de Olor de Café provenientes de una Nariz Electrónica Utilizando Redes Neuronales Clasificación de Datos de Olor de Café provenientes de una Nariz Electrónica Utilizando Redes Neuronales Cruz Teresa Rosales Hernández 1 y Orion Fausto Reyes Galaviz 2 Universidad Autónoma de Tlaxcala-

Más detalles

3.7 IDENTIFICACION DE UN SISTEMA DINÁMICO NO LINEAL Descripción del Problema: La identificación de un sistema consiste en

3.7 IDENTIFICACION DE UN SISTEMA DINÁMICO NO LINEAL Descripción del Problema: La identificación de un sistema consiste en 301 3.7 IDENTIFICACION DE UN SISTEMA DINÁMICO NO LINEAL 3.7.1 Descripción del Problema: La identificación de un sistema consiste en determinar una función que relacione las variables de entrada con las

Más detalles

Introducción a las Redes Neuronales Articiales

Introducción a las Redes Neuronales Articiales Inteligencia Humana como Inspiración Novena Sesión 24 de marzo de 2010 Inteligencia Humana como Inspiración Inteligencia Humana como Inspiración Sistema Nervioso Humano Características: Complejo No Lineal

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales SEGMENTACIÓN DE LA IMAGEN Segmentación basada en texturas INTRODUCCIÓN La textura provee información sobre la distribución espacio-local del color o niveles de intensidades

Más detalles

MÉTODOS DE APRENDIZAJE INDUCTIVO (continuación)

MÉTODOS DE APRENDIZAJE INDUCTIVO (continuación) Aprendiae Automático y Data Mining Bloque III MÉTODOS DE APRENDIZAJE INDUCTIVO (continuación) REDES NEURONALES 2 Redes neuronales (I) Red neuronal: método de aprendiae inductivo inspirado en la estructura

Más detalles

Métodos de gradiente. Métodos de Krylov

Métodos de gradiente. Métodos de Krylov Métodos de gradiente. Métodos de Krylov Damián Ginestar Peiró Departamento de Matemática Aplicada Universidad Politécnica de Valencia Curso 2012-2013 (UPV) Métodos de gradiente. Métodos de Krylov Curso

Más detalles

Definir un Equipo de Fútbol óptimo mediante Redes Neuronales Artificiales

Definir un Equipo de Fútbol óptimo mediante Redes Neuronales Artificiales Definir un Equipo de Fútbol óptimo mediante Redes Neuronales Artificiales Abstract Este trabajo tiene como objetivo analizar, experimentar y comprender el funcionamiento y las características de los Sistemas

Más detalles

Tema: Aprendizaje Supervisado.

Tema: Aprendizaje Supervisado. Sistemas Expertos e Inteligencia Artificial. Guía No. 9 1 Tema: Aprendizaje Supervisado. Facultad: Ingeniería Escuela: Computación Asignatura: Sistemas Expertos e Inteligencia Artificial Objetivos Específicos

Más detalles

Examen de Septiembre de TACCIII y TAI (Modelo 2)

Examen de Septiembre de TACCIII y TAI (Modelo 2) Examen de Septiembre de TACCIII y TAI (Modelo 2) 12 de septiembre de 2008 1. La desordenación de la base de datos puede influir en el resultado obtenido mediante a) clasificación por distancia a las medias

Más detalles

Identificación mediante el método de los mínimos cuadrados

Identificación mediante el método de los mínimos cuadrados Ingeniería de Control Identificación mediante el método de los mínimos cuadrados Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos relevantes aprendidos previamente:

Más detalles

TÉCNICAS DE AGRUPAMIENTO

TÉCNICAS DE AGRUPAMIENTO TÉCNICAS DE AGRUPAMIENTO José D. Martín Guerrero, Emilio Soria, Antonio J. Serrano PROCESADO Y ANÁLISIS DE DATOS AMBIENTALES Curso 2009-2010 Page 1 of 11 1. Algoritmo de las C-Medias. Algoritmos de agrupamiento

Más detalles

CAPÍTULO 3 RED NEURONAL PARA EL RECONOCIMIENTO DE ROSTROS

CAPÍTULO 3 RED NEURONAL PARA EL RECONOCIMIENTO DE ROSTROS CAPÍTULO 3 RED NEURONAL PARA EL RECONOCIMIENTO DE ROSTROS Descripción de la base de datos Como datos de entrenamiento, en este proyecto, se utilizó la base de datos ORL [1], la cual contiene un conjunto

Más detalles

Valores singulares. Producto escalar y ortogonalidad. Proposición. Curso < x, y >= si F = C. Si x C n x i=1

Valores singulares. Producto escalar y ortogonalidad. Proposición. Curso < x, y >= si F = C. Si x C n x i=1 Valores singulares Curso 2017-18 1 Producto escalar y ortogonalidad < x, y >= n y i x i = y T x si F = R, n y i x i = y x Si x C n x x = n x i 2 = x 2 2. si F = C Si x, y C n x y = y x, pero si x, y R

Más detalles

Tema 4.2: FUNCIONES DISCRIMINANTES LINEALES y SV

Tema 4.2: FUNCIONES DISCRIMINANTES LINEALES y SV ema 4.: FUNCIONES DISCRIMINANES LINEALES y SV Some Figures in these slides were taken from Pattern Classification (nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 000 with the permission

Más detalles

LIM. Modelización del conjunto motor-transmisión de un automóvil a partir de datos experimentales. Trabajo final de grado

LIM. Modelización del conjunto motor-transmisión de un automóvil a partir de datos experimentales. Trabajo final de grado Trabajo final de grado Modelización del conjunto motor-transmisión de un automóvil a partir de datos experimentales Autor Alfonso Ramón Varela Olmedo Tutores Miguel Ángel Naya Villaverde Emilio Sanjurjo

Más detalles

Redes Neuronales Artificiales

Redes Neuronales Artificiales Red de Hopfield Almacenar un conjunto de p patrones de forma tal que cuando se presente un nuevo patrón, la red responda produciendo alguno de los patrones previamente almacenados que más se parezca al

Más detalles

Neural Network Toolbox

Neural Network Toolbox Neural Network Toolbox Sistemas Conexionistas - Curso 07/08 La Neural Network Toolbox es un paquete de Matlab que contiene una serie de funciones para crear y trabajar con redes de neuronas artificiales.

Más detalles

CONCEPTOS BÁSICOS (Freeman capt.1; Neural Nets capt. 4,5 y 7)

CONCEPTOS BÁSICOS (Freeman capt.1; Neural Nets capt. 4,5 y 7) Tema 1: Conceptos Básicos Sistemas Conexionistas 1 CONCEPTOS BÁSICOS (Freeman capt.1; Neural Nets capt. 4,5 y 7) 1.- Introducción. 1.1.- Redes Neuronales de Tipo Biológico. 1.2.- Redes Neuronales dirigidas

Más detalles

Métodos de Aprendizaje en Redes Neuronales

Métodos de Aprendizaje en Redes Neuronales 11 de abril de 2011 Entrenamiento de redes feedforward (Backpropagation) Siendo {z m, t m } m=1...n un conjunto de n patrones de entrenamiento, con z m las entradas conocidas para el m ésimo patrón y

Más detalles

Self Organizing Maps. Self Organizing Maps. SOM/KOHONEN Network Mapas Auto-organizativos. Estructura de la Red. Estructura de la Red

Self Organizing Maps. Self Organizing Maps. SOM/KOHONEN Network Mapas Auto-organizativos. Estructura de la Red. Estructura de la Red SOM/KOHONEN Network Mapas Auto-organizativos Capitulo 6 Análisis Inteligente de datos Self Organizing Maps La red SOM es creada por Teuvo Kohonen en la década de los 8, rápidamente paso a ser una de las

Más detalles

PROCESO DE FERMENTACIÓN Y REDES NEURONALES. Gallardo, Alejandra Beatriz Sánchez, Mauricio Germán

PROCESO DE FERMENTACIÓN Y REDES NEURONALES. Gallardo, Alejandra Beatriz Sánchez, Mauricio Germán PROCESO DE FERMENTACIÓN Y REDES NEURONALES Gallardo, Alejandra Beatriz Sánchez, Mauricio Germán Universidad Tecnológica Nacional Facultad Regional Villa María INTRODUCCIÓN AL PROBLEMA La información que

Más detalles

Aprendizaje Automatizado. Redes Neuronales Artificiales

Aprendizaje Automatizado. Redes Neuronales Artificiales Aprendizaje Automatizado Redes Neuronales Artificiales Introducción Una forma de emular características propias de los humanos: memorizar y asociar hechos. Se aprende de la experiencia. El cerebro humano

Más detalles

Modelos matemáticos para la predicción de series temporales

Modelos matemáticos para la predicción de series temporales Capítulo 2 Modelos matemáticos para la predicción de series temporales 2.1. Modelo de regresión lineal Cuando se habla de predicción, el objetivo es determinar una variable de salida y a partir de la información

Más detalles

Introducción a Aprendizaje no Supervisado

Introducción a Aprendizaje no Supervisado Introducción a Aprendizaje no Supervisado Felipe Suárez, Álvaro Riascos 25 de abril de 2017 2 / 33 Contenido 1. Motivación 2. k-medias Algoritmos Implementación 3. Definición 4. Motivación 5. Aproximación

Más detalles

Área Académica: Instituto de Ciencias Básicas e Ingeniería, Sistemas Computacionales

Área Académica: Instituto de Ciencias Básicas e Ingeniería, Sistemas Computacionales Área Académica: Instituto de Ciencias Básicas e Ingeniería, Sistemas Computacionales Tema: Perceptron Parte I Profesor: Víctor Tomás T. Mariano. Alumnos: Leticia Hernández Hernández Agustín Hernández Espinoza

Más detalles

TEMA 6. SVM Support Vector Machines (Máquinas de Vectores Soporte)

TEMA 6. SVM Support Vector Machines (Máquinas de Vectores Soporte) TEMA 6. SVM Support Vector Machines (Máquinas de Vectores Soporte) Francisco José Ribadas Pena Modelos de Razonamiento y Aprendizaje 5 Informática ribadas@uvigo.es 17 de abril de 2012 FJRP ccia [Modelos

Más detalles

Redes Neuronales. Parte II. Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán Mg. Ing. Gustavo E. Juárez

Redes Neuronales. Parte II. Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán Mg. Ing. Gustavo E. Juárez Redes Neuronales Parte II Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán Mg. Ing. Gustavo E. Juárez UNIDAD TEMÁTICA : REDES NEURONALES Introducción. De/iniciones. Topologías

Más detalles

Método de mínimos cuadrados (Continuación)

Método de mínimos cuadrados (Continuación) Clase No. 11: MAT 251 Método de mínimos cuadrados (Continuación) Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT

Más detalles

Autor del Autor Director(es) del Director Título del PFC Descriptores Francisco Javier Mula Cruz Juan Pascual García, Ferna

Autor  del Autor Director(es)  del Director Título del PFC Descriptores Francisco Javier Mula Cruz Juan Pascual García, Ferna ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE CARTAGENA Proyecto Fin de Carrera MÉTODO BASADO EN LA RED NEURONAL PROJECTION PURSUIT LEARNING PARA LA ESTIMACIÓN DE

Más detalles

Ejemplos de funciones de covarianza

Ejemplos de funciones de covarianza Capítulo 5 Ejemplos de funciones de covarianza De lo explicado hasta el momento, se concluye que la regresión basada en Procesos Gaussianos se reduce a calcular la matriz de covarianza C n a partir de

Más detalles

Capítulo 2. Técnicas de Procesamiento de Imágenes

Capítulo 2. Técnicas de Procesamiento de Imágenes Capítulo 2. Técnicas de Procesamiento de Imágenes 2.1 Binarización La binarización es una de las técnicas más antiguas de procesamiento de imágenes ya que en el pasado, el primer analizador de imágenes

Más detalles

Introducción a la complejidad computacional

Introducción a la complejidad computacional Introducción a la complejidad computacional definida sobre anillos arbitrarios 18 de junio de 2016 Fuente: http://www.utmmcss.com/ Por qué otro modelo? Continuo vs discreto. Intuición interiorizada del

Más detalles

IBM SPSS Neural Networks

IBM SPSS Neural Networks IBM SPSS Neural Networks Nuevas Herramientas para la Construcción de Modelos Predictivos Características: Construya modelos con un mejor desempeño No es necesario programación Elija entre algoritmos MLP

Más detalles

Tema 2 Primeros Modelos Computacionales

Tema 2 Primeros Modelos Computacionales Universidad Carlos III de Madrid OpenCourseWare Redes de Neuronas Artificiales Inés M. Galván - José Mª Valls Tema 2 Primeros Modelos Computacionales 1 Primeros Modelos Computacionales Perceptron simple

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales FILTRADO DE LA IMAGEN Filtros espaciales suavizantes INTRODUCCIÓN El uso de máscaras espaciales para el procesamiento de imágenes se denomina filtrado espacial y a las propias

Más detalles

Algoritmo de Clasificación de Huellas Dactilares Basado en Redes Neuronales Función Base Radial

Algoritmo de Clasificación de Huellas Dactilares Basado en Redes Neuronales Función Base Radial Algoritmo de Clasificación de Huellas Dactilares Basado en Redes Neuronales Función Base Radial Victor Sarzuri Flores Postgrado en Informática Universidad Mayor de San Andrés - UMSA La Paz, Bolivia victor.sarzuri@gmail.com

Más detalles

Redes Neuronales Artificiales

Redes Neuronales Artificiales Redes Neuronales Artificiales Alejandro Osses Vecchi 11 de julio de 2009 1. Introducción Comenzaremos con una definición simple y general de Red Neuronal para, en las próximas secciones, explicar y profundizar

Más detalles

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas. Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.. El número de personas afectadas por el virus contagioso que produce la gripe en una determinada población viene dado por la siguiente

Más detalles

Redes neuronales. Conceptos fundamentales y modelos

Redes neuronales. Conceptos fundamentales y modelos Redes neuronales Conceptos fundamentales y modelos 2 Contenido Introduccion La neurona biologica Modelo de una neurona Arquitecturas de las redes: Redes feedforward Arquitecturas de las redes: Redes recurrentes

Más detalles

TUTORIAL SOBRE REDES NEURONALES APLICADAS EN INGENIERIA ELECTRICA Y SU IMPLEMENTACIÓN EN UN SITIO WEB

TUTORIAL SOBRE REDES NEURONALES APLICADAS EN INGENIERIA ELECTRICA Y SU IMPLEMENTACIÓN EN UN SITIO WEB TUTORIAL SOBRE REDES NEURONALES APLICADAS EN INGENIERIA ELECTRICA Y SU IMPLEMENTACIÓN EN UN SITIO WEB MARIA ISABEL ACOSTA BUITRAGO CAMILO ALFONSO ZULUAGA MUÑOZ UNIVERSIDAD TECNOLOGICA DE PEREIRA FACULTAD

Más detalles

ANEXO II.- TEORÍA SOBRE REDES NEURONALES ARTIFICIALES

ANEXO II.- TEORÍA SOBRE REDES NEURONALES ARTIFICIALES ANEXO II.- TEORÍA SOBRE REDES NEURONALES ARTIFICIALES 1. Concepto de red neuronal artificial Una red neuronal artificial (RNA) es un modelo matemático que intenta reproducir el modo de funcionamiento y

Más detalles

Redes Neuronales. Introducción a las redes neuronales Carlos Andrés Delgado S.

Redes Neuronales. Introducción a las redes neuronales Carlos Andrés Delgado S. Redes Neuronales Introducción a las redes neuronales carlos.andres.delgado@correounivalle.edu.co Carlos Andrés Delgado S. Facultad de Ingeniería. Universidad del Valle Agosto de 2017 Contenido 1 Neurofisiología

Más detalles

Estado civil: {casado/a, soltero/a, divorciado/a}

Estado civil: {casado/a, soltero/a, divorciado/a} Universidad Rey Juan Carlos Curso 2011 2012 Inteligencia Artificial Ingeniería Informática Hoja de Problemas 9 1. Un banco quiere clasificar los clientes potenciales en fiables o no fiables. El banco tiene

Más detalles

Redes neuronales en control de sistemas

Redes neuronales en control de sistemas Redes neuronales en control de sistemas Marco Teórico Las redes neuronales tratan de emular ciertas características propias de los humanos, una muy importante es la experiencia. El ser humano es capaz

Más detalles

Reconocimiento de variables multivariantes empleando el estadístico T 2 Hotelling y MEWMA mediante las RNA s

Reconocimiento de variables multivariantes empleando el estadístico T 2 Hotelling y MEWMA mediante las RNA s Ingeniería Investigación y Tecnología, volumen XV (número 1), enero-marzo 2014: 125-138 ISSN 1405-7743 FI-UNAM (artículo arbitrado) Reconocimiento de variables multivariantes empleando el estadístico T

Más detalles

Redes Neuronales Artificiales

Redes Neuronales Artificiales Estructuras de las Los aspectos más característicos de las estructuras son: la conexión, el tamaño y la elección entre ACON y OCON. Dos posibles tipos de arquitectura son: All-Class-in-One-Network (ACON),

Más detalles

Conceptos básicos de Geometría

Conceptos básicos de Geometría Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 15 de enero del 2013 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) 15 de enero del 2013 1 / 25 1 Geometría Afín Geometría Euclidiana Áreas y ángulos Dr. Eduardo

Más detalles

Repaso de álgebra de matrices y probabilidad. Javier Santibáñez (IIMAS, UNAM) Regresión Semestre / 58

Repaso de álgebra de matrices y probabilidad. Javier Santibáñez (IIMAS, UNAM) Regresión Semestre / 58 Repaso de álgebra de matrices y probabilidad Javier Santibáñez (IIMAS, UNAM) Regresión Semestre 2017-2 1 / 58 Preliminares Definición (matriz) Una matriz de dimensión m n es un arreglo rectangular de números

Más detalles

Fuzzification. M.C. Ana Cristina Palacios García

Fuzzification. M.C. Ana Cristina Palacios García Fuzzification M.C. Ana Cristina Palacios García Introducción Es el proceso donde las cantidades clásicas se convierten a difusas. Requiere el identificar la incertidumbre presente en valores finitos o

Más detalles

EL PERCEPTRON MULTICAPA (MLP) 6

EL PERCEPTRON MULTICAPA (MLP) 6 Otra diferencia fundamental de la adaline con respecto del asociador lineal y el perceptrón simple radica en la regla de aprendizaje. En la adaline se utiliza la regla de Widrow Holf, también conocida

Más detalles

Red Neuronal Artificial

Red Neuronal Artificial índice RN Supervisadas - Introducción - El Perceptrón y la estructura multicapa MLP - El aprendizaje retropropagado: BP - Aplicaciones y ejemplos - Características y limitaciones P Campoy 1 Red Neuronal

Más detalles

Operaciones con matrices

Operaciones con matrices Operaciones con matrices Problemas para examen Operaciones lineales con vectores 1. Programación: la suma de dos vectores. Escriba una función que calcule x + y, donde x, y R n. Calcule el número de flops.

Más detalles

Método de Gradientes Conjugados.

Método de Gradientes Conjugados. Método de Gradientes Conjugados. Lourdes Fabiola Uribe Richaud & Juan Esaú Trejo Espino. Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas February 17, 2015 1 Método de Direcciones

Más detalles

Vectores y matrices. Problemas para examen

Vectores y matrices. Problemas para examen Vectores y matrices Problemas para examen Operaciones lineales con vectores 1. Programación: la suma de dos vectores. Escriba una función que calcule x + y, donde x, y R n. Calcule el número de flops.

Más detalles

Estrategias para la Planificación de Trayectorias con Arquitecturas Neuronales de Aprendizaje

Estrategias para la Planificación de Trayectorias con Arquitecturas Neuronales de Aprendizaje UNIVERSIDAD POLITÉCNICA DE CARTAGENA PROYECTO FIN DE CARRERA INGENIERÍA DE TELECOMUNICACIÓN Estrategias para la Planificación de Trayectorias con Arquitecturas Neuronales de Aprendizaje Ingeniero de Telecomunicación

Más detalles

OPTIMIZACIÓN VECTORIAL

OPTIMIZACIÓN VECTORIAL OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de

Más detalles

Figura 1: Esquema de las tablas simplex de inicio y general.

Figura 1: Esquema de las tablas simplex de inicio y general. RELACIONES PRIMAL-DUAL Los cambios que se hacen en el modelo original de programación lineal afectan a los elementos de la tabla óptima actual el que se tenga en el momento, que a su vez puede afectar

Más detalles

Realzado de Imagen. 11 de junio de El histograma de una imagen digital con niveles de gris en la amplitud de [0, L 1], es función discreta

Realzado de Imagen. 11 de junio de El histograma de una imagen digital con niveles de gris en la amplitud de [0, L 1], es función discreta Realzado de Imagen 11 de junio de 2001 Una operación clásica en el procesado de imagen es realzar una imagen de entrada de alguna manera para que la imagen de salida sea más fácil de interpretarla. La

Más detalles

Técnicas de inteligencia artificial. Visión Artificial Extracción de características

Técnicas de inteligencia artificial. Visión Artificial Extracción de características Técnicas de inteligencia artificial Visión Artificial Extracción de características Indice Transformada de Hough Características: SIFT Transformada de Hough Fundamentos: Motivación: Desarrollar técnicas

Más detalles

A 4. En los siguientes ejercicios, resuelva el sistema de ecuaciones utilizando la regla de Cramer.

A 4. En los siguientes ejercicios, resuelva el sistema de ecuaciones utilizando la regla de Cramer. 9. Encuentre el determinante de A. Encuentre el determinante de A 8 9 En los siguientes ejercicios, resuelva el sistema de ecuaciones utilizando la regla de Cramer.. x x 8. x x 8 x x x x 9. x x 8. x 8x

Más detalles

Prerrequisitos de la asignatura Álgebra Lineal Numérica

Prerrequisitos de la asignatura Álgebra Lineal Numérica Prerrequisitos de la asignatura Álgebra Lineal Numérica El propósito de Álgebra Lineal Numérica es analizar algoritmos típicos de álgebra lineal, optimizando la rapidez y la precisión. Para analizar la

Más detalles

1. Determinantes de orden dos y tres:

1. Determinantes de orden dos y tres: 1. Determinantes de orden dos y tres: TEMA 8: DETERMINANTES. A una matriz cuadrada le vamos a asociar un número que servirá para resolver sistemas, calcular matrices inversas y rangos de matrices. A det

Más detalles

Procesamiento de voz - Reconocimiento de voz II

Procesamiento de voz - Reconocimiento de voz II Procesamiento de voz - Reconocimiento de voz II Marc S. Reßl Roxana Saint-Nom 2009 Ingeniería Electrónica Instituto Tecnológico de Buenos Aires Reconocimiento de voz Las técnicas que vimos hasta ahora

Más detalles

Caracterización del funcionamiento adecuado de equipos aplicando redes neuronales

Caracterización del funcionamiento adecuado de equipos aplicando redes neuronales Caracterización del funcionamiento adecuado de equipos aplicando redes neuronales Angel Marín, Nuria López, Miguel Ángel Rodríguez y Antonio José Fernández Iberdrola Ingeniería y Construcción, SAU ÍNDICE

Más detalles

Clasificador de Redes Neurales

Clasificador de Redes Neurales Clasificador de Redes Neurales Resumen El Clasificador Probabilístico de Redes Neurales (PNN, Probabilistic Neural Network Classifier) ejecuta un método no paramétrico para clasificar observaciones en

Más detalles

Introducción. Autoencoders. RBMs. Redes de Convolución. Deep Learning. Eduardo Morales INAOE (INAOE) 1 / 60

Introducción. Autoencoders. RBMs. Redes de Convolución. Deep Learning. Eduardo Morales INAOE (INAOE) 1 / 60 Deep Learning Eduardo Morales INAOE (INAOE) 1 / 60 Contenido 1 2 3 4 (INAOE) 2 / 60 Deep Learning El poder tener una computadora que modele el mundo lo suficientemente bien como para exhibir inteligencia

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

Proyecto Final - Reconocimiento de Patrones

Proyecto Final - Reconocimiento de Patrones Proyecto Final - Reconocimiento de Patrones Salim Perchy Maestría en Ingeniería Énfasis en Computación Pontificia Universidad Javeriana Cali, Valle del Cauca Email: ysperchy@cic.javerianacali.edu.co Mario

Más detalles

Aprendizaje Automático

Aprendizaje Automático id3 id3 como búsqueda Cuestiones Adicionales Regresión Lineal. Árboles y Reglas de Regresión Ingeniería Informática Fernando Fernández Rebollo y Daniel Borrajo Millán Grupo de Planificación y Aprendizaje

Más detalles

Técnicas de aprendizaje sobre series temporales

Técnicas de aprendizaje sobre series temporales Técnicas de aprendizaje sobre series temporales Contenido 1. Motivación. 2. Ejemplo del Problema. 3. Aproximaciones al problema de clasificación de series temporales. 4. Aprendizaje de reglas. 5. Boosting

Más detalles

ALN - Curso 2007 Gradiente Conjugado

ALN - Curso 2007 Gradiente Conjugado ALN - Curso 27 Gradiente Conjugado Cecilia González Pérez Junio 27 Métodos Iterativos Pueden ser: Métodos estacionarios Métodos no estacionarios Métodos no estacionarios hacen uso de información, evaluada

Más detalles

RESOLUCIÓN DE SISTEMAS LINEALES

RESOLUCIÓN DE SISTEMAS LINEALES Contenido 1 Métodos de Solución Contenido Métodos de Solución 1 Métodos de Solución Desarrollamos el algoritmo de sustitución regresiva, con el que podremos resolver un sistema de ecuaciones lineales cuya

Más detalles

APRENDIZAJE BASADO EN INSTANCIAS. Eduardo Morales y Jesús González

APRENDIZAJE BASADO EN INSTANCIAS. Eduardo Morales y Jesús González APRENDIZAJE BASADO EN INSTANCIAS Eduardo Morales y Jesús González Aprendizaje basado en Instancias 2 Diferente al tipo de aprendizaje que hemos visto Se almacenan los ejemplos de entrenamiento Para clasificar

Más detalles

Solución de sistemas lineales

Solución de sistemas lineales Solución de sistemas lineales Felipe Osorio http://www.ies.ucv.cl/fosorio Instituto de Estadística Pontificia Universidad Católica de Valparaíso Marzo 31, 2015 1 / 12 Solución de sistemas lineales El problema

Más detalles

Anexo Redes Neuronales

Anexo Redes Neuronales Anexo Redes Neuronales Félix Monasterio-Huelin y Álvaro Gutiérrez 8 de abril de 2016 Índice Índice 1 Índice de figuras 1 1. El entorno del robot 2 2. Neurona y funciones de activación 2 2.1. Vector de

Más detalles

4 Teoría de clasificadores

4 Teoría de clasificadores Reconocimiento de señales de tráfico para un sistema de ayuda a la conducción 4 Teoría de clasificadores 4.1 Introducción Clasificar un objeto consiste en asignarlo a una de las clases disponibles. Los

Más detalles

Predicción de potencia en el parque eólico de Villonaco, Loja, Ecuador. Alberto Reyes y Tania Guerrero INER Ecuador

Predicción de potencia en el parque eólico de Villonaco, Loja, Ecuador. Alberto Reyes y Tania Guerrero INER Ecuador Predicción de potencia en el parque eólico de Villonaco, Loja, Ecuador Alberto Reyes y Tania Guerrero INER Ecuador INTRODUCCIÓN El comportamiento del viento presenta alto grado de aleatoriedad, incertidumbre

Más detalles

Tema 2: PROCESAMIENTO EN EL DOMINIO ESPACIAL (Parte 2)

Tema 2: PROCESAMIENTO EN EL DOMINIO ESPACIAL (Parte 2) Tema 2: PROCESAMIENTO EN EL DOMINIO ESPACIAL (Parte 2) 1 I N G E N I E R Í A I N F O R M Á T I C A D P T O. M A T E M Á T I C A A P L I C A D A I 2 ÍNDICE: Filtrado espacial Filtros de suavizado Filtros

Más detalles

Clasificador no lineal basado en redes neuronales

Clasificador no lineal basado en redes neuronales Clasificador no lineal basado en redes neuronales con funciones de base radial para implementación en sistemas de punto fijo Juan Sebastián Botero Valencia 1 Luis Gonzalo Sánchez Giraldo 2 Edilson Delgado

Más detalles

Algebra lineal de dimensión finita

Algebra lineal de dimensión finita Algebra lineal de dimensión finita Métodos para calcular autovalores Pseudoinversa Algebra lineal númerica 1 Teorema:[Teorema 1.6] Sea A es una matriz real simétrica. Si Q(x) =< Ax, x > entonces: λ 1 =

Más detalles