Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica"

Transcripción

1 Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. L Integrl.-. Definición e interpretción geométric Dd un función continu f :[, b] R ynonegtiv (f (), [, b]), vmos considerr l región del plno bjo l gráfic de f, R = {(, y) : b y f ()}. L siguiente gráfic corresponde f () = 4 +,. 4 Problem.- Cómo clculr el áre de l región R? L ide generl consiste en proimr l región R por un región formd por rectángulos tl como se muestr en l siguiente figur: Podemos clculr el áre de cd rectángulo y medinte l sum de ests áres proimr el áre de l región R. Es intuitivmente clro que cunto myor se l cntidd de rectángulos considerdos, mejor será l proimción obtenid. Finlmente, medinte un proceso de límite que se eplicráenldefinición más generl del concepto de integrl se define el áre de R.

2 Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. Definición Un prtición del intervlo [, b] es un conjunto de n + puntos tles que P = {,,,..., n } = < <...< n = b L prtición P divide l intervlo [, b] en n subintervlos [ k, k ],con k n, cd uno de longitud k = k k Ahor tommos un prtición P del intervlo [, b] y pr l función continu f :[, b] R considermos: sobre cd subintervlo [ k, k ], m k = min{f () : k k } M k = m{f () : k k } Los productos m k k y M k k representn ls áres de los rectángulos de bse [ k, k ] ylturm k y M k respectivmente. Con estos elementos podemos definir los conceptos de sum inferior y sum superior de f. L sum inferior de f socid l prtición P es nx (f,p) = m k k S k= ylsumsuperiordef socid P es nx S (f,p) = M k k k= Los siguientes gráficos representn un sum inferior y un sum superior pr f () = 4 +, Sum inferior de f socid P.5.5 Sum superior de f socid P

3 Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 3 Es evidente que S (f,p) Are (R) S (f,p) Un propiedd importnte de ests sums es el efecto que se produce l gregrle puntos l prtición P, oselrefinr l prtición. Considere por ejemplo que gregmos un punto ˆ ] k, k [ lprtición P, pr obtener un nuev prtición Q. Es fácil demostrr que S (f,p) S (f,q). Ose,lsuminferiorcreceylomismoocurresigregmos un número finito de puntos l prtición P. Qued de ejercicio demostrr que l sum superior decrece, l refinr un prtición. En resumen, si P y Q son dos prticiones del intervlo [, b], conp Q (Q refin P), entonces S (f,p) S (f,q) S (f,q) S (f,p) Theorem Si f :[, b] R es continu, entonces eiste único número rel I tl que prtición P de [, b] :S (f,p) I S (f,p) Este número I define el áre de l región R, como tmbién el concepto de integrl de f en el intervlo [, b]. Se escribe Are (R) =I = f () d Medinte los conceptos de Sum Inferior y de Sum Superior hemos llegdo l definición de f()d donde f :[, b] R es un función continu. El símbolo R b f()d represent l Integrl de f sobre el intervlo [, b]. Observe que l letr es sólo un referenci los elementos del dominio de l función, por lo tnto puede ser reemplzdo por culquier otro símbolo. Así, podemos escribir f()d f(t)dt (los tres símbolos representn lo mismo). f(ξ)dξ

4 Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 4 Emple 3 Use l definición pr demostrr que d = b Se P : = < <...< n = b un prtición de [, b]. Pr f () = se tiene, en cd subintervlo [ k, k ] ydemás m k = k,m k = k Luego, yenformsimilr k < ( k + k ) < k nx S (f,p) = m k k = k= nx k ( k k ) k= nx < ( k + k )( k k ) k= = nx k k = b k= Esto muestr que b < S (f,p) d = b Usndo l definición del concepto de integrl se pueden DEDUCIR sus propieddes más básics:. R b cd= c(b ). Obs.- R b d =

5 Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 5. Pr f continu sobre un intervlo cerrdo que contiene los puntos, b y c se tiene: c f()d = f()d + c b f()d Ejemplo.- Pr f() = tiene ½ si 3 3 si 3 < 6 (continu sobre [, 6]) se 6 f()d = = 3 3 f()d + d d f()d = 3 +3(6 3) = 3 3. (Monotoní) Si f,g :[, b] R son continus con entonces [, b] :g() f() g()d f()d En prticulr, f() R b f()d 4. Teorem del vlor medio pr integrles.- Dd f :[, b] R continu, eiste c [, b] tl que: Obs.- El vlor sobre [, b]. b f()d = f(c)(b ) R b f()d = f(c) se denomin vlor promedio de f

6 Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 6 Teorem fundmentl del Cálculo. Si considermos l función identidd f() = sobre un intervlo I yelegimos I, podemosdefinir F : I R por R F () = f(t)dt f(t)dt es l integrl de l función f sobre el intervlo [, ] (de etremos y ). Así F () = f(t)dt = = = donde es un constnte. Qué relción hy entre ls funciones f() = y F () =? Theorem 4 (Teorem fundmentl del Cálculo). Se f : I R un función continu y c I un vlor fijo. Se define l función F : I R por F () = c f(t)dt Se tiene entonces que F es derivble y I : F () d f(t)dt = f() d c Dem.- Pr I tenemos: F F () F ( ) ( ) = lim R = lim f(t)dt R f(t)dt c c R = lim f(t)dt = lim f(c()),dondec() es un punto entre y = f( ) tdt

7 Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 7 Obs.- El TFC indic que tod función continu posee un ANTIDERIVADA. (F : I R es un ntiderivd de f cundo I : F () =f()). Aplicción.- Con l función f() =,>se define F : (, ) R 7 F () = t dt Est función es derivble con: F () = F () = Luego, F es creciente y su gráfico cóncvo hci bjo. Además, F () = y se puede probr que lim F () = + lim F () + = lo que indic que RecF = R. Est función F se denomin Logritmo Nturl y se denot ln. Así, con d d (ln ) =. Gráfico de ln. ln : (, ) R ln = t dt ln En términos más generles, un consecuenci del TFC es el siguiente corolrio.

8 Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 8 Corollry 5 Se f :[, b] R un función continu. Si F es culquier ntiderivd de f,entonces f()d = F (b) F () Dem.- L función G() = R f(t)dt del TFC es un ntiderivd de f, l igul que F. Luego, l diferenci entre mbs es un constnte. Así, yevlundoen = G() =F ()+C =G() =F ()+C C = F () y G() =F () F (). Finlmente evlundo en = b G(b) = Notción: F () b = F (b) F (). f(t)dt = F (b) F () A l vist de este resultdo, el problem de clculr un integrl se trnsform en l determinción de un ntiderivd (culquier) de l función integrndo. 3 Integrl indefinid.- d f()d = F ()+C [F ()] = f() d Est equivlenci determin ls siguientes propieddes de l integrl:. [f()+g()] d = f()d + g()d. cf()d = c f()d Obs.- Ambs propieddes determinn que el Operdor Integrl : un Operdor Linel (trnsformción linel). es

9 Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 9 Ests dos propieddes tmbién son válids pr integrles definids (con límites de integrción). Tmbién mbs propieddes se generlizn (un combinción linel) [c f ()+c f () c n f n ()] d = c f ()d + c f ()d c n f n ()d Como cso prticulr, se tiene pr un polinomio: n n + n n d n = n + n+ + n n n C Por ejemplo,.- (4 3 + π +5)d (4 3 + π +5)d 5 + 4cos d π 5 + 4cos d 5.- Encontrr el áre de l región encerrd por l curv y = +4 yel eje 3. Método de sustitución.- Según el TFC pr evlur R b f()d bst encontrr un ntiderivd de l función integrndo f. En todos los csos mostrdos nteriormente l determinción de l ntiderivd es csi direct. Sin embrgo, hy situciones en que esto puede ser bstnte más complicdo. Piense, por ejemplo, en el cálculo de 3 π/4 +d tn d,ode

10 Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. No es fácil encontrr ojo un ntiderivd de l función integrndo. Veremos cómo el método de sustitución permite resolver ests integrles. Este método es consecuenci de l regl de l cden: d d [G(f())] = G (f()) f () Si en l fórmul nterior considermos un función g con ntiderivd G, est qued d d [G(f())] = g(f()) f () lo que puede escribirse g(f())f () d = G(f()) + C Observe que est fórmul puede deducirse con el siguiente procedimiento: Usndo l sustitución u = f() du = f ()d se tiene g(f())f () d = g(u)du Ejemplos.-.- R 3 +4d.- R +d = G(u)+C = G(f()) + C 3.- R 3 +d Obs.- El método de sustitución puede usrse pr clculr intergrles definids, de hecho: g(f())f () d = G (f()) b f(b) f() = G (f(b)) G (f()) g(u)du = G(u) f(b) f() = G (f(b)) G (f())

11 Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. Luego g(f())f () d = f(b) f() g(u)du fórmul que se conoce como Teorem del cmbio de vrible. Ejemplo.- 5 ( 6 +) 3 d

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

La Integral Definida

La Integral Definida Nivelción de Mtemátic MTHA UNLP ID Introducción Prtición L Integrl Definid Un prtición del intervlo [, b] es un sucesión de números = x x x x n = b, entre y b, tl que x i x i+ (i =,,, n ) Ejemplo: se llm

Más detalles

C alculo Octubre 2010

C alculo Octubre 2010 Cálculo Octubre 2010 c Dpto. de Mtemátics UDC c Dpto. de Mtemátics UDC L integrl indefinid Sen I R un intervlo bierto y f : I IR Definición Diremos que F es primitiv de f en I si F (x) = f (x), x I Teorem

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles no vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

Tema 10: Integral definida. Aplicaciones al cálculo de áreas

Tema 10: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles nos vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

Teorema fundamental del Cálculo.

Teorema fundamental del Cálculo. Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.

Más detalles

Primitivas e Integrales

Primitivas e Integrales Cpítulo 25 Primitivs e Integrles En este cpítulo vmos trbjr con funciones de un vrible. En él estbleceremos un cso prticulr del Teorem Fundmentl del Cálculo Integrl (ver [3] pr el cso generl), con el que

Más detalles

CÁLCULO INTEGRAL. Definición: Sean a y b dos números reales a < b. Una partición del intervalo [a,b] es un conjunto finito de puntos de,

CÁLCULO INTEGRAL. Definición: Sean a y b dos números reales a < b. Una partición del intervalo [a,b] es un conjunto finito de puntos de, Deprtmento de Mtemátics I.E.S. Vlle del Jerte (Plsenci) CÁLCULO INTEGRAL 2.- INTEGRAL DEFINIDA. Definición: Sen y dos números reles

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

4.6. Teorema Fundamental del Cálculo

4.6. Teorema Fundamental del Cálculo Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 07-2 SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl del Cálculo Proposición 4.5. Se un

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

SEMANA 8: INTEGRAL DE RIEMANN

SEMANA 8: INTEGRAL DE RIEMANN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Ingenierí Mtemátic Universidd de Chile SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

Tema 9. La Integral de Riemann Construcción de la integral de Riemann.

Tema 9. La Integral de Riemann Construcción de la integral de Riemann. Tem 9 L Integrl de Riemnn. 9.1. Construcción de l integrl de Riemnn. Definición 9.1.1. Se I = [, b] R un intervlo cerrdo y cotdo (compcto). Se llm prtición de I todo conjunto de puntos P = {x 0, x 1,,

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

Definición de la función logaritmo natural.

Definición de la función logaritmo natural. L función logritmo Definición de l función logritmo nturl. Se sbe que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

ANALISIS MATEMATICO II INTEGRAL DEFINIDA

ANALISIS MATEMATICO II INTEGRAL DEFINIDA ANALISIS MATEMATICO II INTEGRAL DEFINIDA Mrí Susn Montelr Fcultd de Ciencis Excts, Ingenierí y Agrimensur - UNR El problem del áre Dd f : [, b] R, tl que f(x) 0 pr todo x [, b] b x Se f un función no negtiv

Más detalles

5.2 Integral Definida

5.2 Integral Definida 80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. 5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre

Más detalles

La integral de Riemann

La integral de Riemann L integrl de Riemnn 1 Vmos dr un definición precis de l integrl de un función definid en un intervlo. Este tiene que ser un intervlo cerrdo y cotdo, es decir [,] con < R, y l definición que dremos de integrl

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

Anexo 3: Demostraciones

Anexo 3: Demostraciones 170 Mtemátics I : Cálculo integrl en IR Anexo 3: Demostrciones Integrl de Riemnn Demostrción de: Propieddes 264 de l págin 142 Propieddes 264.- Se f: [, b] IR un función cotd. ) Pr tod P P[, b], se verific

Más detalles

Cálculo integral de funciones de una variable

Cálculo integral de funciones de una variable Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del

Más detalles

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x en INTEGRAL DEFINIDA El concepto de integrl definid está relciondo con el vlor que determin el áre jo l curv dd por un función f (x) el [, ]. (ve l intervlo gráfic) Uno de los primeros psos pr llegr este

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 202-203 (22/04/203??/05/203)

Más detalles

2. Estimar el área debajo de la gráfica de f(x) = cosx desde x = 0 hasta x = π/2, usando cuatro rectángulos

2. Estimar el área debajo de la gráfica de f(x) = cosx desde x = 0 hasta x = π/2, usando cuatro rectángulos 1. Estimr el áre debjo de l gráfic de f(x) = cosx desde x = hst x = π/2, usndo cutro rectángulos de proximción y como puntos muestr, los extremos derechos de los intervlos. Dibuje l curv y los rectángulos

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

Integral definida. Áreas MATEMÁTICAS II 1

Integral definida. Áreas MATEMÁTICAS II 1 Integrl definid. Áres MATEMÁTICAS II APROXIMACIÓN AL VALOR DEL ÁREA BAJO UNA CURVA L integrl definid está históricmente relciond con el prolem de definir y clculr el áre de figurs plns. En geometrí se

Más detalles

Límite - Continuidad

Límite - Continuidad Nivelción de Mtemátic MTHA UNLP Límite Definición (informl) Límite - Continuidd L función f tiende hci el ite L cerc de, si se puede hcer que f() esté tn cerc como quermos de L hciendo que esté suficientemente

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Mtemático Tem: L integrl Integrl Herrmients digitles de uto-prendizje pr Mtemátics, Grupo de Innovción Didáctic Deprtmento de Mtemátics Universidd de Extremdur Mtemático Tem: L integrl Integrl Mtemático

Más detalles

La función logaritmo. Definición de la función logaritmo natural.

La función logaritmo. Definición de la función logaritmo natural. L función logritmo Definición de l función logritmo nturl. Se se que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo

Más detalles

Unidad Temática Integral definida

Unidad Temática Integral definida Integrl definid Unidd Temátic 5 5.2 Integrl definid Análisis Mtemático (Ingenierí Informátic) Deprtmento de Mtemátic Aplicd Fcultd de Informátic Universidd Politécnic de Vlenci S. Cmp, J.A. Conejero y

Más detalles

Notas de Integral de Riemann-Stieltjes

Notas de Integral de Riemann-Stieltjes Nots de Integrl de Riemnn-Stieltjes 1. Definición y propieddes Dds funciones g, F : [, b] R que cumpln ciertos requisitos, definiremos l expresión g(x)df(x) de tl mner que cundo consideremos el cso prticulr

Más detalles

UNIDAD 6.- Integrales Definidas. Aplicaciones (tema 15 del libro)

UNIDAD 6.- Integrales Definidas. Aplicaciones (tema 15 del libro) UNIDAD 6.- Integrles Definids. Aplicciones (tem 5 del liro). ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como

Más detalles

6.1 Sumas de Riemann e integral definida

6.1 Sumas de Riemann e integral definida Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

Teoría Tema 7 Integral definida. Área encerrada por una curva

Teoría Tema 7 Integral definida. Área encerrada por una curva Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.

Más detalles

TEMA 4. Cálculo integral

TEMA 4. Cálculo integral TEMA 4. Cálculo integrl En este tem considerremos el cálculo integrl, que es un complemento nturl del cálculo diferencil y tiene múltiples plicciones en otrs ciencis. 4.. Introducción l cálculo integrl

Más detalles

TEMA 13: INTEGRAL DEFINIDA

TEMA 13: INTEGRAL DEFINIDA TEMA : INTEGRAL DEFINIDA..- El problem de clculr el áre bjo un curv El problem de clculr el áre limitd por lguns curvs fue borddo, por los mtemáticos griegos, desde bstntes siglos trás. El método empledo

Más detalles

Tema 4: Integrales Impropias

Tema 4: Integrales Impropias Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

una función acotada. a) Cuántas particiones puede tener el intervalo [ ab, ]?. c) Cuántos puntos como máximo puede tener una partición de [ ab, ]?.

una función acotada. a) Cuántas particiones puede tener el intervalo [ ab, ]?. c) Cuántos puntos como máximo puede tener una partición de [ ab, ]?. Ejercicios del Tem de Integrles Cálculo Diferencil e Integrl II ) Sen A y B dos conjuntos no vcíos de números reles, tles que B A y A está cotdo superiormente Demostrr que B está cotdo superiormente y

Más detalles

7.1. Definición de la Integral de Riemann

7.1. Definición de la Integral de Riemann Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo

Más detalles

Integral impropia Al definir la integral definida b

Integral impropia Al definir la integral definida b Mte Univ II, 14 FCE-BUAP CÁLCULO INTEGRAL ALEJANDRO RAMÍREZ PÁRAMO 1. Sucesiones y series Integrl impropi Al definir l integrl definid b f(x)dx, pretendimos que l función f estb definid; demás de cotd,

Más detalles

TRABAJOS DE MATEMATICA

TRABAJOS DE MATEMATICA UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA SERIE C TRABAJOS DE MATEMATICA Nº 36/07 Un segundo curso de Cálculo Crin Boyllin, Elid Ferreyr, Mrt Urciuolo, Cynthi Will Editores:

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 203-204 Contents

Más detalles

Integral de Riemann. Introducción a la integración numérica.

Integral de Riemann. Introducción a la integración numérica. Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

7 Integral triple de Riemann

7 Integral triple de Riemann Miguel eyes, pto. de Mtemátic Aplicd, FI-UPM 1 7 Integrl triple de iemnn 7.1 efinición Llmremos rectángulo cerrdo de 3 (prlelepípedo) l producto de tres intervlos cerrdos y cotdos de, es decir = [, b]

Más detalles

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesión de funciones continus (18.04.2017) Se {f n } un sucesión de funciones f n, definids en I. Si {f n } converge uniformemente f en I y ls f n son continus en I, entonces f es continu en I. D:

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. CÁLCULO Ingenierí Industril. Curso 9-1. Deprtmento de Mtemátic Aplicd II. Universidd de Sevill. Lección. Métodos numéricos en un vrible. Resumen de l lección..1. Método de Newton pr l resolución de ecuciones.

Más detalles

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración.

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración. INTEGRAL DEFINIDA Apuntes de A. Cñó Mtemátics II 6. Aproimción intuitiv l concepto de integrl definid. Propieddes con respecto l integrndo y l intervlo de integrción. 6. El teorem fundmentl del cálculo

Más detalles

f(t)dt para todo x [a, b].

f(t)dt para todo x [a, b]. ANÁLISIS MATEMÁTICO BÁSICO. EL TEOREMA FUNDAMENTAL DEL CÁLCULO. L integrl lnz todo su poder undo se li on l derivd. Esto ourre en el Teorem Fundmentl del Cálulo. Funiones definids trvés de l integrl. Dd

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Cpítulo 6 Aplicciones de l integrl. 6.. Cálculo del áre de un figur pln. En generl, pr clculr el áre de un región pln:. L dividimos en frnjs, infinitmente estrechs, de mner horizontl o verticl,. Suponemos

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

el blog de mate de aida: MATE I. Cónicas pág. 1

el blog de mate de aida: MATE I. Cónicas pág. 1 el blog de mte de id: MATE I. Cónics pág. 1 SECCIONES CÓNICAS Un superficie cónic se obtiene l girr un rect g (llmd genertriz), lrededor de otr rect e, llmd eje de giro, l que cort en un punto V (vértice).

Más detalles

Aplicaciones del Cálculo diferencial e integral

Aplicaciones del Cálculo diferencial e integral Aplicciones del Cálculo diferencil e integrl Integrción numéric con Mxim http://euler.us.es/~rento/ Rento Álvrez-Nodrse Universidd de Sevill Rento Álvrez-Nodrse Universidd de Sevill Aplicciones del Cálculo

Más detalles

Funciones continuas. Mariano Suárez-Alvarez. 4 de junio, Índice

Funciones continuas. Mariano Suárez-Alvarez. 4 de junio, Índice Funciones continus Mrino Suárez-Alvrez 4 de junio, 2013 Índice 1. Funciones continus................... 1 2. Alguns propieddes básics............ 3 3. Los teorems de Weierstrss y Bolzno... 6 4. Funciones

Más detalles

Práctico 8 - Integrabilidad y Teorema Fundamental. 1. Integrales geometricas

Práctico 8 - Integrabilidad y Teorema Fundamental. 1. Integrales geometricas Universidd de l Repúblic Cálculo Fcultd de Ingenierí - IMERL Segundo semestre 6 Práctico 8 - Integrbilidd y Teorem Fundmentl. Integrles geometrics En est sección se trbjr con l ide intuitiv de integrles,

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

LA INTEGRAL DE RIEMANN

LA INTEGRAL DE RIEMANN LA INTEGRAL DE RIEMANN En este tem se introduce el Cálculo Integrl que demás de permitir clculr longitudes, áres y volúmenes, tiene multiples plicciones en l Ciencis, Ingenierí, etc... En primer lugr,

Más detalles

Integración numérica: Regla del trapecio Método de Romberg

Integración numérica: Regla del trapecio Método de Romberg Clse No. 18: Integrción numéric: Regl del trpecio Método de Romberg MAT 251 Dr. Alonso Rmírez Mnznres CIMAT A.C. e-mil: lrm@ cimt.mx web: http://www.cimt.mx/ lrm/met_num/ Dr. Joquín Peñ Acevedo CIMAT A.C.

Más detalles

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b].

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b]. INTEGRALES Curso 9-.- ) Enuncir el Teorem del vlor medio integrl y dr un interpretción del mismo. Cundo f(), cómo puede interpretrse geométricmente? cos si [-, ] ) Se f () = 4 + sen si (, ] ) Hllr I =

Más detalles

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción

Más detalles

Fórmulas de cuadratura.

Fórmulas de cuadratura. PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

Primitiva de una función.

Primitiva de una función. Primitiv de un función. 1 / 29 Definición. Un función derivble F es primitiv de l función f en el intervlo I si F (x) = f(x), pr todo x I. Ejemplos 2 / 29 Ejemplo. Se f : R R tl que f(x) = 4x 3. i) F(x)

Más detalles

Integrales de ĺınea complejas

Integrales de ĺınea complejas Tem Integrles de ĺıne complejs. Integrles de líne.. Funciones complejs de vrible rel Un función complej de vrible rel llev socid un función vectoril de vrible rel, por lo que ls definiciones y resultdos

Más detalles

5. Aplicación de la Integral de Riemann

5. Aplicación de la Integral de Riemann Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 8-2 Ingenierí Mtemátic Universidd de Chile SEMANA 9: APLICACIONES DE LA INTEGRAL 5. Aplicción

Más detalles

Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales

Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales Tem 8.4: Teorem de Runge. Aproximción de funciones holomorfs por funciones rcionles Fcultd de Ciencis Experimentles, Curso 2008-09 Enrique de Amo, Universidd de Almerí Sbemos que ls funciones holomorfs

Más detalles

Funciones de variable compleja

Funciones de variable compleja Funciones de vrible complej Integrles impropis. Mrí Eugeni Torres Universidd Ncionl de Entre Ríos Fcultd de Ingenierí Funciones de Vrible Complej (Bioingenierí, Pln 28) Myo 29 Integrles impropis Alcnce

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39 Índice generl. L Integrl Indenid.. Antiderivd e Integrl Indenid...................... Integrles inmedits........................... 3.3. Regl de l Cden............................ 4.4. Sustitución o Cmbio

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

Clase No. 19: Integrales impropias MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 17

Clase No. 19: Integrales impropias MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 17 Clse No. 19: Integrles impropis MAT 251 Joquín Peñ (CIMAT) Métodos Numéricos (MAT 251) 23.1.213 1 / 17 Integrndos con singulriddes (I) Cundo el integrndo o lgun de sus derivds de bjo orden tienen un singulridd

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Complementos de Mtemátics, ITT Telemátic Tem 3. Deprtmento de Mtemátics, Universidd de Alclá Índice 1 básic 2 Obtención de ls regls de cudrtur 3 Error de cudrtur 4 Regls compuests Introducción Integrl

Más detalles

Integración numérica: Regla del trapecio Método de Romberg

Integración numérica: Regla del trapecio Método de Romberg Clse No. 18: MAT 251 Integrción numéric: Regl del trpecio Método de Romberg Joquín Peñ (CIMAT) Métodos Numéricos (MAT 251) 19.10.2011 1 / 14 Integrción numéric Dd un función f : [, b] R continu, queremos

Más detalles

Sean dos funciones f y g de variable real definidas en un dominio DŒÑ Definición g es una primitiva de f si f(x)=g (x) "x D

Sean dos funciones f y g de variable real definidas en un dominio DŒÑ Definición g es una primitiva de f si f(x)=g (x) x D INTEGRAL DE RIEMANN 1- Primitivs e integrl indefinid - Integrl de Riemnn 3- Interpretción geométric de ls integrles de Riemnn 4- Propieddes de ls integrles de Riemnn 5- Cmio de vrile en ls integrles de

Más detalles

Para demostrar la primera igualdad, se supondrá que la región D puede ser definida de la siguiente manera

Para demostrar la primera igualdad, se supondrá que la región D puede ser definida de la siguiente manera .7. Teorem de Green en el Plno. Se un curv cerrd, simple, suve trozos positivmente orientd en el plno, se l región limitd por l curv, e incluendo. Si F ( ) F ( ),, son continus tiene primers derivds prciles

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

PROGRAMA. a) Presentar en forma secuencialmente lógica las materias del Cálculo Integral y el estudio de Series.

PROGRAMA. a) Presentar en forma secuencialmente lógica las materias del Cálculo Integral y el estudio de Series. PONTIFICIA UNIVERSIDAD CATOLICA DE VALPARAISO INSTITUTO DE MATEMATICAS LUISA ABURTO HAGEMAN, Secretri Acdémic del Instituto de Mtemátics Certific este, PROGRAMA Asigntur MAT 223 CALCULO 2 I DATOS GENERALES

Más detalles

TEMA 2: Cálculo Integral en una variable

TEMA 2: Cálculo Integral en una variable TEMA 2: Cálculo Integrl en un vrible Cálculo pr los Grdos en Ingenierí EPIG - UNIOVI De niciones I Función primitiv Decimos que l función F (x) es un función primitiv de f (x) si F 0 (x) = f (x) pr todo

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de

Más detalles

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x)

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x) Cálculo de primitivs: f(x) dx = F (x) + C, siendo F (x) un ntiderivd de f(x), es decir, siendo F (x) tl que F (x) = f(x) L constnte C se denomin constnte de integrción; es un constnte rbitrri porque se

Más detalles