Cálculo Simbólico y Numérico en ED: sobre formulaciones variacionales. Método de Galerkin / Elementos Finitos.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cálculo Simbólico y Numérico en ED: sobre formulaciones variacionales. Método de Galerkin / Elementos Finitos."

Transcripción

1 Cálculo Simbólico y Numérico en ED: sobre formulciones vricionles. Método de Glerkin / Elementos Finitos. Mrtínez meperez@unicn.es ETSI Cminos, Cnles y Puertos Universidd de Cntbri. Curso

2 Problem de contorno: Formulción vricionl Ddo un problem de contorno regulr: { (p(x)y (PC) ) + q(x)y = r(x), x (, b), y() =, y(b) =, p(x), p (x), q(x), r(x) funciones continus en [, b], p(x) >, x [, b], < < b <, (PC) Admite un formulción vricionl o formulción débil equivlente: Encontrr y(x) verificndo y() = y(b) = y (FV) p(x)y (x)ϕ (x)dx + q(x)y(x)ϕ(x)dx = r(x)ϕ(x)dx ϕ continu en [, b]/ ϕ continu trozos en [, b], ϕ() = ϕ(b) =. L solución de (PC) es solución de (FV) L solución de (FV) regulr es solución de (PC)

3 Pr condiciones de contorno más generles: y () = αy(), y (b) = βy(b) cmbi (FV): p(x)y (x)ϕ (x)dx p()y ()ϕ() + p(b)y (b)ϕ(b) + q(x)y(x)ϕ(x)dx = r(x)ϕ(x)dx ϕ continu en [, b]/ ϕ continu trozos en [, b]. α o β rrib pueden ser cero; tmbién fectr sólo un punto: e.g., y () =, y(b) = tomr ϕ(b) =. Extensión otrs condiciones de contorno (homogénes y no homogénes) pr y(x) y/o y (x) sobre y/o sobre b.

4 Método de Glerkin Dds ls funciones {ϕ i (x)} N i=1 suficientemente regulres tl que ϕ i () = ϕ i (b) =. Buscr l proximción de l solución y(x) de (PC): y N (x) = N c i ϕ i (x) i=1 pr cierts constntes c i determinr tles que [(p(x)y N) + q(x)y N r(x)]ϕ i (x) dx =, i = 1, 2,, N L determinción de los coeficientes c i resolución de un sistem de ecuciones pr un mtriz simétric: A c = f A = ( i,j ) i,j=1,2,,n, c = (c 1, c 2,, c N ) T, f = (f 1, f 2,, f N ) T i,j = p(x)ϕ i (x)ϕ j (x) dx + f i = r(x)ϕ i (x) dx q(x)ϕ i (x)ϕ j (x) dx

5 Necesidd de: estimr el error y(x) y N (x) pr N grnde integrciones numérics resolver numéricmente un sistem con muchs ecuciones un bse {ϕ i (x)} i=1 decud de funciones pr reducir cálculos numéricos Esquem pr un progrm: Introducir dtos p, q, r y N, y ls funciones de bse {ϕ i (x)} N i=1 (e.g., {ϕ i (x)} ls funciones propis de un problem regulr de vlores propios en (, b) ) i=1 Clculr ls integrles pr introducir el sistem Resolver el sistem de N ecuciones con N incógnits A c = f (pr cd i = 1, 2, N, c i proximrí l i-ésimo coeficiente del desrrollo en serie de Fourier de l solución exct y(x)) Dibujr l proximción de l solución y N (x) = N c i ϕ i (x) Comprr si se puede y N (x) l solución exct y(x) y c i con los coeficientes de Fourier α i i=1

6 Un ejemplo pr el Método de Glerkin: { y y = x 2, x (, 1) y() =, y(1) = y(x) l solución se proxim por y N (x) = ls funciones propis del problem de vlores propios: { y + λy =, x (, 1) y() =, y(1) = Pr i, j = 1, 2, 3, 4..., N i,j = N c i ϕ i (x). Tomr pr proximr i=1 {ϕ k (x)} k=1 {sin (kπx)} k=1. ijπ 2 cos (iπx) cos (jπx)dx f i = x 2 sin (iπx) dx, sin (iπx) sin (jπx)dx

7 Ejemplo: método de Glerkin (continu) De ls crcterístics de los dtos p(x) = 1, q(x) = 1, y r(x) = x 2, se tiene: - un mtriz digonl A - cálculos explícitos de ls integrles - resolución del sistem: c i = f i 1 i,i - comprción de l solución con l solución proximd y de los c i con los coeficientes de Fourier de l solución - Los primeros coeficientes c i son los más significtivos -error pequeño en l proximción De mner generl, pr (PC): i,j = (p(x)y ) + q(x)y = r(x) x (, 1) y() =, y(1) = ijπ 2 cos (iπx) cos (jπx)p(x) dx + f i = r(x) sin (iπx) dx sin (iπx) sin (jπx)q(x) dx

8 Esquem del progrm: Introducir dtos p, q, r y N, y clculr ls integrles i,j = ijπ 2 cos (iπx) cos (jπx)p(x) dx + f i = r(x) sin (iπx) dx, sin (iπx) sin (jπx)q(x) dx i, j = 1, 2, N Resolver el sistem de N ecuciones con N incógnits A c = f Pr cd i = 1, 2, N, c i proxim l i-ésimo coeficiente de Fourier de l solución exct y(x): α i = y(x) sin(iπx) dx (sin(iπx))2 dx Dibujr l proximción de l solución y N (x) = N c i sin (iπx) Comprr si se puede y N (x) con l solución exct y(x) y c i con los coeficientes de Fourier α i i=1

9 Método de los Elementos Finitos Tomr como funciones de bse ls funciones lineles trozos, {ϕ i } N i=1, socids los nodos de l prtición en [, b]: x i = + i h, = x < x 1 < x 2 < x N < x N+1 = b h = b, i =, 1, 2,, N + 1 N + 1 {ϕ i } N i=1 funciones de bse de elementos finitos {ϕ i } N i=1, ϕ i polinomio de grdo 1 en [x j, x j+1 ] ϕ i (x j ) = δ ij, i = 1, 2,, N, j =, 1, 2,, N + 1 x x i 1 h si x [x i 1, x i ] ϕ i (x) = x x i+1 h si x [x i, x i+1 ] si x > x i+1 o x < x i 1

10 Propieddes importntes L mtriz A es tridigonl: i,j = si i j > 1 L mtriz A es simétric: i,j = j,i Integrciones sobre cd segmento [x j, x j+1 ] Integrles fectndo ϕ i no nuls en [x i 1, x i+1 ]. L resolución del sistem A c = f nos d c i = y N (x i ): l proximción de l solución exct de (PC) en los puntos de l prtición y(x i ). Estimción del error, supuesto q(x); r(x) continus en [, 1], pr l ecución y + q(x)y = r(x), x (, 1): y(x i ) c i Ch, i = 1, 2,, N Extensión de l estimción del error otros problems bjo condiciones de regulridd de l solución.

11 Ejemplo y fórmuls pr el Método de los Elementos Finitos Pr q(x), se consider el problem: { y + q(x)y = r(x), x (, 1), y() =, y(1) =, (FV) y (x)ϕ (x)dx + q(x)y(x)ϕ(x)dx =, r(x)ϕ(x)dx ϕ continu en [, 1]/ ϕ continu trozos en [, 1], ϕ() = ϕ(1) = y(x) y N (x) = N c i ϕ i (x), ϕ i () = ϕ i (1) = i=1 resolución del sistem: A c = f A = ( i,j ) i,j=1,2,,n, c = (c 1, c 2,, c N ) T, f = (f 1, f 2,, f N ) T i,j = ϕ i (x)ϕ j (x) dx + f i = r(x)ϕ i (x) dx q(x)ϕ i (x)ϕ j (x) dx

12 Ejemplo: método de los elementos finitos (continu) Ls integrles y definiciones de {ϕ i } N i=1 : i,j = si i j > 1 i,i = 1 h 2 ( 2h + Q i + R i ), i = 1, 2,, N, donde R i = f i = 1 h xi+1 i,i+1 = 1 h 2 (h S i+1), i = 1, 2,, N 1, i,i 1 = 1 h 2 (h S i), i = 2, 3,, N, x i q(x)(x x i+1 ) 2 dx, Q i = xi S i = xi xi x i 1 q(x)(x x i 1 )(x x i ) dx, x i 1 r(x)(x x i 1 ) dx + 1 h xi+1 x i 1 q(x)(x x i 1 ) 2 dx, x i r(x)( x + x i+1 ) dx, GRÁFICA l solución proximd: unir por rects los puntos (, ), (x 1, c 1 ), (x 2, c 2 ),..., (x N, c N ), (1, ). Comprr si se puede con l gráfic solución exct

13 Ejemplo: método de los elementos finitos (continu) L mtriz A es tridigonl y simétric Integrciones sobre cd segemento [x j, x j+1 ] Integrciones fectndo ϕ i no nuls en [x i 1, x i+1 ]. L resolución del sistem A c = f nos d c i = y N (x i ) y(x i ). Error (con q(x), r(x) continus en [, 1]): y(x i ) c i Ch, Myor error con integrción numéric: e.g., fórmul del punto centrl χ(x)dx (b )χ( + b 2 ) f i = hr(x i ), Q i = q( (x i + x i 1 ) h3 2 4, R i = q( (x i + x i+1 ) h3 2 4, S i = q( (x i + x i 1 ) h3 2 4 Mtrices con muchos ceros ventjs de lmcenmiento L mtriz del sistem A, obtenid con el método de elementos finitos, se denomin mtriz de rigidez, y en generl, suele obtenerse como sum o ensmblje de mtrices de rigidez elementles en cd segmento (elemento finito) Extensiones problems de contorno plntedos con EDP

14 Elementos finitos pr un problem de contorno en Ω R 2 - Aproximción del dominio Ω por un dominio con fronter poligonl - Introducción de un ciert tringulrizción regulr...con tmño de los triángulos - Numerción conveniente de los vértices / nodos mtriz tridigonl por bloques

15 Formulción vricionl / elementos finitos pr un problem de Dirichlet: esquem { u = f, en Ω (PC) y = sobre Ω. Pr cierts funciones ϕ j (x, y) lineles trozos, ϕ i tomndo el vlor 1 en el nodo j y en el resto de los nodos ( ϕ j (x, y) = j x + b j y + c j sobre cd triángulo, pr ciertos coeficientes j, b j, c j determinr ), ϕ j = sobre Ω, N se busc u(x, y) c j ϕ j (x, y) tl que Ω j=1 u. ϕ i dx dy = Ω Sistem : f ϕ i dxdy, A c = f i = 1, 2, N donde A mtriz simétric y definid positiv, A = ( ) N i,j, f = (f i,j=1 1, f 2, f N ) T, i,j = ϕ i. ϕ j dx dy, f j = f ϕ j dx dy, Ω y c = (c 1, c 2, c N ) T, con c j l proximción de u en el nodo j. Ω

1 Aproximación de funciones por polinomios.

1 Aproximación de funciones por polinomios. GEODESIA Y FUNCIONES OTOGONALES Enrique Clero Curso GPS en Geodesi y Crtogrfí Crtgen de Indis Aproximción de funciones por polinomios. Consideremos el conjunto de funciones S = ; x; x ; x 3 ; x ; :::::

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Complementos de Mtemátics, ITT Telemátic Tem 3. Deprtmento de Mtemátics, Universidd de Alclá Índice 1 básic 2 Obtención de ls regls de cudrtur 3 Error de cudrtur 4 Regls compuests Introducción Integrl

Más detalles

Fórmulas de cuadratura.

Fórmulas de cuadratura. PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid

Más detalles

Clase No. 19: Integrales impropias MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 17

Clase No. 19: Integrales impropias MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 17 Clse No. 19: Integrles impropis MAT 251 Joquín Peñ (CIMAT) Métodos Numéricos (MAT 251) 23.1.213 1 / 17 Integrndos con singulriddes (I) Cundo el integrndo o lgun de sus derivds de bjo orden tienen un singulridd

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Integración numérica: Regla del trapecio Método de Romberg

Integración numérica: Regla del trapecio Método de Romberg Clse No. 18: Integrción numéric: Regl del trpecio Método de Romberg MAT 251 Dr. Alonso Rmírez Mnznres CIMAT A.C. e-mil: lrm@ cimt.mx web: http://www.cimt.mx/ lrm/met_num/ Dr. Joquín Peñ Acevedo CIMAT A.C.

Más detalles

Integración numérica por Monte-Carlo

Integración numérica por Monte-Carlo Integrción numéric por onte-crlo Ptrici Svedr Brrer 1 16 de julio de 28 1 Deprtmento de temátics, Universidd Autónom etropolitn-iztplp, psb@xnum.um.mx 2 Introducción Se X un vrible letori continu que tom

Más detalles

METODOS NUMERICOS TALLER 7, SEMESTRE Se obtuvieron los siguientes datos de la distancia recorrida por un cohete contra el tiempo:

METODOS NUMERICOS TALLER 7, SEMESTRE Se obtuvieron los siguientes datos de la distancia recorrida por un cohete contra el tiempo: METODOS NUMERICOS 697 TALLER 7, SEMESTRE Tem: Derivción e integrción numérics Se recomiend relizr los ejercicios propuestos en el texto guí, en prticulr los siguientes: Sección :,,, 7, 8,, Sección :, 8

Más detalles

Aplicaciones del Cálculo diferencial e integral

Aplicaciones del Cálculo diferencial e integral Aplicciones del Cálculo diferencil e integrl Integrción numéric con Mxim http://euler.us.es/~rento/ Rento Álvrez-Nodrse Universidd de Sevill Rento Álvrez-Nodrse Universidd de Sevill Aplicciones del Cálculo

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

ECUACIONES DIFERENCIALES PARCIALES Clasificación, formas y problemas bien planteados. Por Guillermo Hernández García

ECUACIONES DIFERENCIALES PARCIALES Clasificación, formas y problemas bien planteados. Por Guillermo Hernández García ECUACIONES DIFERENCIALES PARCIALES Clsificción, forms y problems bien plntedos Por Guillermo Hernández Grcí Clsificción Aquí se estudirán tres tipos de ecuciones diferenciles prciles: Ecuciones elíptics,

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

Integración Numérica. La regla del trapecio.

Integración Numérica. La regla del trapecio. Integrción Numéric. L regl del trpecio. Curso: Métodos Numéricos en Ingenierí Profesor: Dr. José A. Otero Hernández Correo: j..otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidd: ITESM

Más detalles

Integración Numérica. 18 Regla del Trapecio

Integración Numérica. 18 Regla del Trapecio Integrción Numéric L integrl resuelve el problem de clculr el áre bjo l gráfic de un función positiv definid sobre un intervlo cerrdo. El cálculo elementl de funciones de un vrible rel proporcion un método

Más detalles

Integración Numérica. Las reglas de Simpson.

Integración Numérica. Las reglas de Simpson. Integrción Numéric. Ls regls de Simpson. Curso: Métodos Numéricos en Ingenierí Profesor: Dr. José A. Otero Hernández Correo: j..otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidd: ITESM

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 3: Integración numérica

Métodos Numéricos: Resumen y ejemplos Tema 3: Integración numérica Métodos Numéricos: Resumen y ejemplos em 3: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Mrzo 8, versión.4 Contenido. Fórmuls de cudrtur.

Más detalles

Dpto. de Matemáticas. CÁLCULO NUMÉRICO. Curso 12/13. Problemas. Hoja 3

Dpto. de Matemáticas. CÁLCULO NUMÉRICO. Curso 12/13. Problemas. Hoja 3 Dpto. de Mtemátics. CÁLCULO NUMÉRICO. Curso 12/13 Problems. Hoj 3 Problem 1. Escrib explícitmente l mtriz de iterción M del método de Jcobi. Acotndo el rdio espectrl de M por l norm infinito dé un condición

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

6.1 Sumas de Riemann e integral definida

6.1 Sumas de Riemann e integral definida Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el

Más detalles

Unidad Temática Integral definida

Unidad Temática Integral definida Integrl definid Unidd Temátic 5 5.2 Integrl definid Análisis Mtemático (Ingenierí Informátic) Deprtmento de Mtemátic Aplicd Fcultd de Informátic Universidd Politécnic de Vlenci S. Cmp, J.A. Conejero y

Más detalles

Teorema fundamental del Cálculo.

Teorema fundamental del Cálculo. Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.

Más detalles

Integración numérica: Regla del trapecio Método de Romberg

Integración numérica: Regla del trapecio Método de Romberg Clse No. 18: MAT 251 Integrción numéric: Regl del trpecio Método de Romberg Joquín Peñ (CIMAT) Métodos Numéricos (MAT 251) 19.10.2011 1 / 14 Integrción numéric Dd un función f : [, b] R continu, queremos

Más detalles

Examen de Admisión a la Maestría 8 de Enero de 2016

Examen de Admisión a la Maestría 8 de Enero de 2016 Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

7 Integral triple de Riemann

7 Integral triple de Riemann Miguel eyes, pto. de Mtemátic Aplicd, FI-UPM 1 7 Integrl triple de iemnn 7.1 efinición Llmremos rectángulo cerrdo de 3 (prlelepípedo) l producto de tres intervlos cerrdos y cotdos de, es decir = [, b]

Más detalles

5.5 Integración numérica

5.5 Integración numérica 88 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.5 Integrción numéric Métodos de Newton-Côtes De cr clculr l integrl definid: f(x) dx se llmn Métodos de Newton-Côtes los que se bsn en integrr, en lugr de l

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

ANALISIS MATEMATICO II INTEGRAL DEFINIDA

ANALISIS MATEMATICO II INTEGRAL DEFINIDA ANALISIS MATEMATICO II INTEGRAL DEFINIDA Mrí Susn Montelr Fcultd de Ciencis Excts, Ingenierí y Agrimensur - UNR El problem del áre Dd f : [, b] R, tl que f(x) 0 pr todo x [, b] b x Se f un función no negtiv

Más detalles

Cap ıtulo 4 Integraci on num erica

Cap ıtulo 4 Integraci on num erica Cpítulo 4 Integrción numéric Cpítulo 4 Integrción numéric Comenzremos por recordr lguns coss fundmentles sobre ls integrles. Si f(x) es un función continu en el intervlo finito I = [, b] entonces podemos

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 202-203 (22/04/203??/05/203)

Más detalles

Tema 9. Aproximación

Tema 9. Aproximación Deprtmento de Mtemátic Aplicd Ecuciones Diferenciles y Cálculo Numérico Grdo en Ingenierí de Tecnologís de Telecomunicción Tem 9 (versión 4 de myo de 04 Tem 9 Aproximción Introducción L ide ásic de l proximción

Más detalles

TEMA 2. DETERMINANTES

TEMA 2. DETERMINANTES TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

1. Fórmulas Básicas de Newton-Cotes

1. Fórmulas Básicas de Newton-Cotes Práctic # 6 MAT-122: Cálculo Diferencil e Integrl II, Dr. Porfirio Suñgu S. 1. Fórmuls Básics de Newton-Cotes Considere f : [, b] R diferencible ls veces que se necesri según cd método. Ddo el número de

Más detalles

Teorema de Green. 6.1 Introducción

Teorema de Green. 6.1 Introducción SESIÓN 6 6.1 Introducción En est sesión se revis el primero de los 3 teorem clves del cálculo vectoril: el. Este teorem estblece que un integrl doble sobre un región del plno es igul un integrl de líne

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

C alculo Octubre 2010

C alculo Octubre 2010 Cálculo Octubre 2010 c Dpto. de Mtemátics UDC c Dpto. de Mtemátics UDC L integrl indefinid Sen I R un intervlo bierto y f : I IR Definición Diremos que F es primitiv de f en I si F (x) = f (x), x I Teorem

Más detalles

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x)

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x) Cálculo de primitivs: f(x) dx = F (x) + C, siendo F (x) un ntiderivd de f(x), es decir, siendo F (x) tl que F (x) = f(x) L constnte C se denomin constnte de integrción; es un constnte rbitrri porque se

Más detalles

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd

Más detalles

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple Integrl de un función rel Tem 08: Integrles Múltiples Jun Igncio Del Vlle Gmbo Sede de Guncste Universidd de Cost ic Ciclo I - 2014 Ls integrles definids clculn el áre bjo un curv y = f (x) pr un región

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES.

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES. MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Mtrices 11 Definición Se K un cuerpo y n, m N Un mtriz n m sobre K es un plicción: A : {1,,n} {1,,m} K Si (i, j) {1,,n} {1,,m} denotremos ij

Más detalles

3. Problemas de autovalores de Sturm-Liouville

3. Problemas de autovalores de Sturm-Liouville APUNTES DE AMPLIACIÓN DE MATEMÁTICAS II PARA INGENIEROS DE TELECOMUNICACIONES Elbordos por Arturo de Pblo, Domingo Pestn y José Mnuel Rodríguez 3. Problems de utovlores de Sturm-Liouville 3.1. Introducción

Más detalles

Fórmulas de Vieta. Entrenamiento extra Qué es el tiempo? Por: Argel. 5x 3 11x 2 + 7x + 3

Fórmulas de Vieta. Entrenamiento extra Qué es el tiempo? Por: Argel. 5x 3 11x 2 + 7x + 3 Fórmuls de Viet Entrenmiento extr Qué es el tiempo? Por: Argel Resumen En el presente mteril se trtrá con un cuestión relciond con ls ríces de un polinomio, en l que se estblece un serie de relciones entre

Más detalles

(Ésta es una versión preliminar de la teoría del tema.)

(Ésta es una versión preliminar de la teoría del tema.) Estudio de funciones periódics Ést es un versión preliminr de l teorí del tem. Un función fx se dice que es periódic de periodo cundo fx = fx +, x. Si se conoce fx en el intervlo [, ] su ciclo, se l conoce

Más detalles

Funciones continuas. Mariano Suárez-Alvarez. 4 de junio, Índice

Funciones continuas. Mariano Suárez-Alvarez. 4 de junio, Índice Funciones continus Mrino Suárez-Alvrez 4 de junio, 2013 Índice 1. Funciones continus................... 1 2. Alguns propieddes básics............ 3 3. Los teorems de Weierstrss y Bolzno... 6 4. Funciones

Más detalles

Polinomios ortogonales

Polinomios ortogonales Lección 7 Polinomios ortogonles 7.1 Funciones peso Si (, b) es un intervlo de l rect rel, cotdo o no, un función peso w en (, b) es, por definición, un función rel definid en (, b), continu, positiv excepto

Más detalles

Tema 9. La Integral de Riemann Construcción de la integral de Riemann.

Tema 9. La Integral de Riemann Construcción de la integral de Riemann. Tem 9 L Integrl de Riemnn. 9.1. Construcción de l integrl de Riemnn. Definición 9.1.1. Se I = [, b] R un intervlo cerrdo y cotdo (compcto). Se llm prtición de I todo conjunto de puntos P = {x 0, x 1,,

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES de Abril de MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clse ) Deprtmento de Mtemátic Aplicd Fcultd de Ingenierí Universidd Centrl de Venezuel Álgebr Linel y Geometrí Anlític José Luis Quintero

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

2. Estimar el área debajo de la gráfica de f(x) = cosx desde x = 0 hasta x = π/2, usando cuatro rectángulos

2. Estimar el área debajo de la gráfica de f(x) = cosx desde x = 0 hasta x = π/2, usando cuatro rectángulos 1. Estimr el áre debjo de l gráfic de f(x) = cosx desde x = hst x = π/2, usndo cutro rectángulos de proximción y como puntos muestr, los extremos derechos de los intervlos. Dibuje l curv y los rectángulos

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesión de funciones continus (18.04.2017) Se {f n } un sucesión de funciones f n, definids en I. Si {f n } converge uniformemente f en I y ls f n son continus en I, entonces f es continu en I. D:

Más detalles

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ.

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ. Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Algebr Linel MA 0, 0/08/3, Profs. J. González, R. Gouet. Solución Exmen. Considere el siguiente sistem de ecuciones lineles,

Más detalles

Cálculo integral de funciones de una variable

Cálculo integral de funciones de una variable Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 10 - Área entre curvas. y = f (x) f (x)dx A =

Teóricas de Análisis Matemático (28) - Práctica 10 - Área entre curvas. y = f (x) f (x)dx A = Teórics de nálisis Mtemático 28) - Práctic 0 - Áre entre curvs Práctic 0 - Prte Áre entre curvs Un de ls plicciones del cálculo de integrles definids es el cálculo de áres de regiones cotds del plno delimitds

Más detalles

Integral de Riemann. Introducción a la integración numérica.

Integral de Riemann. Introducción a la integración numérica. Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

Clase del Miércoles 13 de Junio de 2012: Ecuaciones Integrales.

Clase del Miércoles 13 de Junio de 2012: Ecuaciones Integrales. Clse del Miércoles 3 de Junio de 22: Ecuciones Integrles. Introducción En est clse estudiremos ls ecuciones integrles de Fredholm y de Volterr. -+ - Empezremos por considerr l ecución de Fredholm de segund

Más detalles

I Resolución de sistemas de ecuaciones lineales

I Resolución de sistemas de ecuaciones lineales ESCUELA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS I Resolución de sistems de ecuciones lineles Objetivo: El lumno deberá tener

Más detalles

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000)

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000) Portl Fuenterrebollo XXXVI OLIMPIADA MATEMÁTIA ESPAÑOLA, PALMA DE MALLORA (000) Problem. Sen los polinomios: P(x) = x 4 + x + bx + cx + ; Q(x) = x 4 + cx + bx + x +. Hll ls condiciones que deben cumplir

Más detalles

DETERMINANTES. Matemática I Lic. en Geología Lic. en Paleontología

DETERMINANTES. Matemática I Lic. en Geología Lic. en Paleontología Mtemátic I Lic. en Geologí Lic. en Pleontologí DETERMINNTES En un mtriz cudrd hy vrios spectos que el determnte yud esclrecer: Existirá un mtriz B tl que.b = I? Es decir, tendrá mtriz vers? De ls columns

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

LA INTEGRAL DE RIEMANN

LA INTEGRAL DE RIEMANN LA INTEGRAL DE RIEMANN En este tem se introduce el Cálculo Integrl que demás de permitir clculr longitudes, áres y volúmenes, tiene multiples plicciones en l Ciencis, Ingenierí, etc... En primer lugr,

Más detalles

GUIA DE SISTEMAS DE ECUACIONES LINEALES

GUIA DE SISTEMAS DE ECUACIONES LINEALES Fcultd de Ciencis Deprtmento de Mtemátics y Ciencis de l Computción GUIA DE SISEMAS DE ECUACIONES LINEALES. Resuelv los siguientes sistems de ecuciones usndo el metodo de elimincion gussin, verifique l

Más detalles

Derivación e integración numéricas

Derivación e integración numéricas Cpítulo 4 Derivción e integrción numérics 4.1 Introducción A veces es necesrio clculr el vlor, L(f, que el funcionl L sign l función f perteneciente un conjunto F. Algunos ejemplos son los siguientes:

Más detalles

La Integral Multiplicativa

La Integral Multiplicativa Universidd del Pís Vsco Mtemátic Aplicd y Estdístic L Integrl Multiplictiv Jun-Miguel Grci Extrcto: Se nliz l relción de l integrl multiplictiv de Volterr con l derivd logrítmic y los sistems diferenciles

Más detalles

5. Aplicación de la Integral de Riemann

5. Aplicación de la Integral de Riemann Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 8-2 Ingenierí Mtemátic Universidd de Chile SEMANA 9: APLICACIONES DE LA INTEGRAL 5. Aplicción

Más detalles

Clase 14: Teorema de Green

Clase 14: Teorema de Green lse 14: Teorem de Green.J. Vnegs 10 de junio de 008 Relcion un integrl de line lo lrgo de un curv cerrd c en el plno R con un intgrl doble en l región encerrd por. En Mtemátics 6 se extenderá este resultdo

Más detalles

Aproximación e interpolación mediante polinomios

Aproximación e interpolación mediante polinomios LA GACETA DE LA RSME, Vol. 5.3 (2002), Págs. 621 627 621 Aproximción e interpolción medinte polinomios por Miguel Mrno y Mrt Mrcolini En este trbjo se muestr un relción entre los conceptos de interpolción

Más detalles

Formulación de Galerkin El método de los elementos finitos

Formulación de Galerkin El método de los elementos finitos Clase No. 28: MAT 251 Formulación de Galerkin El método de los elementos finitos Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n Tem Álgebr Linel (Sistem de ecuciones lineles y álgebr mtricil) Mtrices Un mtriz de m n con elementos en C es un rreglo de l form M m KKK KKK m KKK n n mn donde,,..., mn Є y m, n Є Z. L mtriz es de orden

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

Integrales Elipticas. Longitud de una Curva

Integrales Elipticas. Longitud de una Curva Unidd 3 Función Logritmo y Exponencil 3. Logritmo trvés de l integrl. Integrles Eliptics Longitud de un Curv Se f un función continu en [, b]. Si {t, t,..., t n } es un prtición de [, b] tenemos que en

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

Integral definida. Áreas MATEMÁTICAS II 1

Integral definida. Áreas MATEMÁTICAS II 1 Integrl definid. Áres MATEMÁTICAS II APROXIMACIÓN AL VALOR DEL ÁREA BAJO UNA CURVA L integrl definid está históricmente relciond con el prolem de definir y clculr el áre de figurs plns. En geometrí se

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

MATRICES Y DETERMINANTES CCNN

MATRICES Y DETERMINANTES CCNN NOCIONES BÁSICAS Ls mtrices precen como consecuenci de ordenr los números en form de fils y columns. Ls línes horizontles se llmn fils, mientrs que ls línes verticles se llmn columns. - fil - column Pr

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como:

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como: Definición Un sistem de m ecuciones con n incógnits es un conjunto de ecuciones como: m ecuciones b b n n n n b m m m mn n m n incógnits términos independientes incógnits Coeficientes del sistem Epresión

Más detalles

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa Cálculo Diferencil e Integrl II 3 de octubre de 23 Aplicciones de l Integrl Mommentos y Centros de Ms Supong que tiene un vrill de ms pequeñ y en ell se fijn dos mss m y m 2 en ldos opuestos de un punto

Más detalles

Series de Taylor. Antes de comenzar con la series de Taylor, repasemos algunas propiedades importantes de las series infinitas.

Series de Taylor. Antes de comenzar con la series de Taylor, repasemos algunas propiedades importantes de las series infinitas. Semn 2 - Clse 5 15/1/1 Tem 1: Series Series de Tylor Antes de comenzr con l series de Tylor, repsemos lguns propieddes importntes de ls series infinits. 1. Algebr de series de potencis El álgebr elementl

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0. CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Aplicación de la Mecánica Cuántica a sistemas sencillos

Aplicación de la Mecánica Cuántica a sistemas sencillos Aplicción de l Mecánic Cuántic sistems sencillos Antonio M. Márquez Deprtmento de Químic Físic Universidd de Sevill Curso -17 Problem 1 Clcule los vlores promedio de x y x pr un prtícul en el estdo n =

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documento es de distriución grtuit y lleg grcis Cienci temátic www.ciencimtemtic.com El myor portl de recursos eductivos tu servicio! www.ciencimtemtic.com ATRICES Definición: Un mtriz A, es un rreglo

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. CÁLCULO Ingenierí Industril. Curso 9-1. Deprtmento de Mtemátic Aplicd II. Universidd de Sevill. Lección. Métodos numéricos en un vrible. Resumen de l lección..1. Método de Newton pr l resolución de ecuciones.

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 Cálculo diferencil e integrl 4 Guí 2. emuestr el cso del teorem de Fubini que no se demostró en clse. Concretmente: se R = A B R n un rectángulo compcto con A y B rectángulos de dimensión menor. Supongmos

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles