x b EXPONENTES Y LOGARITMOS Formulario Matemático para Economía III x = x x = Claudia Aburto 1 = x a A. Propiedades exponenciales: 1.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "x b EXPONENTES Y LOGARITMOS Formulario Matemático para Economía III x = x x = Claudia Aburto 1 = x a A. Propiedades exponenciales: 1."

Transcripción

1 Formulrio Mtemático pr Economí III EXPONENTES Y LOGARITMOS Cludi Aurto A. Propieddes eponenciles:. Multiplicción 4. División Distriución con Multiplicción: () () Distriución con división 0 5. Potenci de un potenci ( ) ( ) 6 6. Potenci invers: 4 7. Potenci Ríz: 4 8. Potenci Rcionl

2 Formulrio Mtemático pr Economí III Cludi Aurto B. Propieddes logrítmics form logrítmic:. Form logrítmic: log, esto se lee como es el eponente l que se dee elevr pr otener. log00 0, 0 es el eponente l que se dee elevr pr otener 00 o Propieddes logrítmics: ) Multiplicción: log log + log ) División: log log log c) Propiedd de potenci: log * log d) Propiedd de identidd: si log log, entonces D. Gráfics de ecuciones eponenciles logrítmics : Ejemplo :, (/) en l mism gráfic. (5) Ejemplo : 9 +X (5) Ejemplo : - (5) Ejemplo 4: - + (54) Ejemplo 5: log (+) (55) Ejemplo 6: log (-) (56) Ejemplo 7: log (-)+ (57) Ejemplo 8: log (+)- (58) F()9 + F() - + F() - - Asíntot en - Asíntot en Asíntot en F()log (-) F()log (-)+ F()log (+)- F()log (+) Asíntot en 57 Asíntot en 58 Asíntot en - Br Chrts, Inc. 00.

3 Formulrio Mtemático pr Economí III Cludi Aurto INTEGRALES L integrl indefinid F() SE LLAMA ANTIDERIVADA DE f(), SI F ()f().. L ntiderivd más generl está denotd por f()d.. f()d. tmién se llm integrl indefinid de f(). Teorem fundmentl de cálculo. Si F () f() f() es continu sore [,], entonces f ( ) d F( ) F( ) Fórmuls de Integrción. Si k es l constnte kd k + c d + c n n. d + c n + d Ln + c 5. d Ln + c. (integrl de ) n - 4. >0 6. k k d + c kln 7. k k e e d + c k kf ( ) d k f ( ) d [ ) g( ) ] d f ( ) d + f ( + g( ) d 0. f ( ) d f ( ) d 0 (q ln e). Si f() 0 sore [,], d el áre jo l curv. f ( ) d. Si f() g() sore [,], [ f ( ) g( ) ] d d el áre entre ls curvs f() g().. El vlor promedio de f() sore [,] es f ( ) d Integrción por prtes. Fctorice l integrl en prtes: u dv. Encuentre du v dv. Encuentre v du 4. Hg u dv uv - v du

4 Formulrio Mtemático pr Economí III Integrción por sustitución Pr resolver f ( g( )) g'( ) d Cludi Aurto Derivds:. Hg ug(), donde g() se escoge pr simplificr el integrndo.. Sustitu ug() dug ()d en el integrndo. ) Este pso por lo generl require multiplicr o dividir entre un constnte. Resuelv f(u)du F(u)+C 4. Sustitu ug() pr otener l respuest: F(g())+C L primer derivd nos hl de l pendiente de l función.. d Se un constnte 0. d. d Sen constntes demás se 0 d. dln d 4. d Ln d es un constnte de Cso prticulr: e d Suponemos f() g() son dos funciones de que f () g () eisten [ f ( ) + g( ) ] d f ' ( ) + g' ( ) d d[ f ( ). g( ) ] f ( ) g' ( ) + g( ) f d f ( ) d g( ) g( ) f '( ) f ( ) g'( ) d g( ) [ ] ' ( ) g ( ) 0 Suponemos f() g(z) que f () g (z) d d d g 8. Regl de l cden. f ' ( ). g' ( z) dz d dz z Se puede ver cómo un vrile (z) fect otr () trvés de l influenci de un intermediri (). z & +5 z z. 6 ( + 5)

5 Formulrio Mtemático pr Economí III Derivds Prciles Cludi Aurto f (,,...,n) ó Ó f ó f Derivd de con respecto, mnteniendo constntes TODAS ls demás vriles. lim f ( + h,,..., n ) f ( +,..., n ),... n h 0 h ejemplos: f ( + + c, ) + + c Derivds prciles de segundo orden (segunds derivds) Es l derivd prcil de un derivd prcil Nos hln de l curvtur de l función. ( i) / j z ó f i j i j Ejemplo nterior: f ( + + c, ) + + c Segunds derivds cruzds c Teorem de Young f i j f j i ó Diferencil totl f(,,...,n) 5

6 Formulrio Mtemático pr Economí III d d + d n dn Cludi Aurto Vrición Vrición de multiplicd por l pendiente de l función medid en dirección. + Vrición de multiplicd por l pendiente de l función medid en dirección Ejemplos: d Si f() d f () d f '( ) d Si f(,,...n) d f ()d + f ()d+...f (n)dn. Conveidd Estrict Conveidd Concvidd f () > 0 positiv f () > 0 positiv f () > 0 f () 0 f () > 0 f () < 0 constnte creciente positiv decreciente Crece tss constntes Crece tss crecientes Crece tss decrecientes f () < 0 f () 0 negtiv constnte f () < 0 f () > 0 negtiv creciente f () < 0 f () < 0 negtiv decreciente Decrece ts constnte Crece de - cero Decrece de 0-6

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el

Más detalles

CÁLCULO DIFERENCIAL E

CÁLCULO DIFERENCIAL E UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL ORIENTE GUÍA PARA EL EXAMEN EXTRAORDINARIO CÁLCULO DIFERENCIAL E INTEGRAL II d f( ) d f () f ( ) d f( ) 1 1 1 0 ( ) < d

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución. APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

La función logaritmo. Definición de la función logaritmo natural.

La función logaritmo. Definición de la función logaritmo natural. L función logritmo Definición de l función logritmo nturl. Se se que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo

Más detalles

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x en INTEGRAL DEFINIDA El concepto de integrl definid está relciondo con el vlor que determin el áre jo l curv dd por un función f (x) el [, ]. (ve l intervlo gráfic) Uno de los primeros psos pr llegr este

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites

Más detalles

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

Muchos cálculos algebraicos, que son difíciles o imposibles por otros métodos, son fáciles de desarrollar por medio de los logaritmos.

Muchos cálculos algebraicos, que son difíciles o imposibles por otros métodos, son fáciles de desarrollar por medio de los logaritmos. 1.3. L función Logrítmic Con el uso de los ritmos, los procesos de multiplicción, división, elevción potencis extrcción de ríces entre números reles pueden simplificrse notorimente. El proceso de multiplicción

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

2. LAS INTEGRALES DEFINIDA E INDEFINIDA

2. LAS INTEGRALES DEFINIDA E INDEFINIDA 2. LAS INTEGRALES DEFINIDA E INDEFINIDA Ojetivo: El lumno identificrá los conceptos de ls integrles definid e indefinid y los plicrá en el cálculo y otención de integrles Notción sum Se k un numero rel

Más detalles

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b].

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b]. INTEGRALES Curso 9-.- ) Enuncir el Teorem del vlor medio integrl y dr un interpretción del mismo. Cundo f(), cómo puede interpretrse geométricmente? cos si [-, ] ) Se f () = 4 + sen si (, ] ) Hllr I =

Más detalles

DERIVADAS. I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas - GBG

DERIVADAS. I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas - GBG DERIVADAS DERIVADAS TASA DE VARIACIÓN MEDIA Llmmos ts de vrición medi de l fnción f entre y b con < b, y lo representmos por TVM[, b], l cociente entre l vrición de f () y l de en el intervlo [, b]. f

Más detalles

Teorema fundamental del Cálculo.

Teorema fundamental del Cálculo. Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.

Más detalles

Integral definida. Áreas MATEMÁTICAS II 1

Integral definida. Áreas MATEMÁTICAS II 1 Integrl definid. Áres MATEMÁTICAS II APROXIMACIÓN AL VALOR DEL ÁREA BAJO UNA CURVA L integrl definid está históricmente relciond con el prolem de definir y clculr el áre de figurs plns. En geometrí se

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

Es una función exponencial con base 2. Veamos con la rapidez que crece:

Es una función exponencial con base 2. Veamos con la rapidez que crece: Funciones eponenciles y ritmics Doc. Luis Hernndo Crmon R Funciones Eponenciles Ejemplos: f ( ) Es un función eponencil con bse. Vemos con l rpidez que crece: f () 8 f (0) 0 04 f (0) 0,07,74,84 Funciones

Más detalles

3 HERRAMIENTAS DE MATEMÁTICAS

3 HERRAMIENTAS DE MATEMÁTICAS HERRAMIENAS DE MAEMÁICAS Entre ls operciones mtemátics más comunes se encuentrn: Sum, Rest, Multiplicción, División, Elevción Potencis Etrcción de Ríces, que se indicn con los signos siguientes: -El signo

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles no vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal Introducción l Teorí Económic Crmen olores Álvrez Alelo Miguel Becerr omínguez Ros Mrí Cáceres Alvrdo Mrí del ilr Osorno del Rosl Olg Mrí Rodríguez Rodríguez http://it.ly/8l8u Tem 3 L elsticidd y sus plicciones

Más detalles

Tema 10: Integral definida. Aplicaciones al cálculo de áreas

Tema 10: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles nos vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

LOGARITMOS. John Neper ( ) Henry Briggs ( )

LOGARITMOS. John Neper ( ) Henry Briggs ( ) LOGARITMOS John Neper (550-67) Henry Briggs (56-630) MATEMÁTICAS CCSS I º Bchillerto Alfonso González IES Fernndo de Men Dpto. de Mtemátics I) FUNCIÓN EXPONENCIAL de BASE f()= «Es quell función en l que

Más detalles

UNIDAD 6.- Integrales Definidas. Aplicaciones (tema 15 del libro)

UNIDAD 6.- Integrales Definidas. Aplicaciones (tema 15 del libro) UNIDAD 6.- Integrles Definids. Aplicciones (tem 5 del liro). ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

Función Cuadrática. 1. Si f ( x) x x 2, determine su forma canónica

Función Cuadrática. 1. Si f ( x) x x 2, determine su forma canónica Función Cudrátic. Si f ( ), determine su form cnónic. Determine el ámbito de l función ( 4). Hlle l ecución de l prábol que tiene vértice V (,) y cort l eje y en el punto (0,5). 4. Grfique l función f

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

CONTENIDO PROGRAMÁTICO

CONTENIDO PROGRAMÁTICO CONTENIDO PROGRAMÁTICO Fech Emisión: 205/09/30 Revisión No. 2 AC-GA-F-8 Págin de 5 NOMBRE DEL CONTENIDO PROGRAMÁTICO CÓDIGO 2202 PROGRAMA TECNOLOGÍA EN ELECTRÓNICA Y COMUNICACIONES ÁREA Y/O COMPONENTE

Más detalles

TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1

TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1 TEMA : Logritmos y ecuciones rítmics Tem : Logritmos y ecuciones rítmics ESQUEMA DE LA UNIDAD.- Logritmos...- Logritmo de un número rel...- Logritmos decimles y neperinos..- Propieddes de los ritmos..-

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene

Más detalles

una función acotada. a) Cuántas particiones puede tener el intervalo [ ab, ]?. c) Cuántos puntos como máximo puede tener una partición de [ ab, ]?.

una función acotada. a) Cuántas particiones puede tener el intervalo [ ab, ]?. c) Cuántos puntos como máximo puede tener una partición de [ ab, ]?. Ejercicios del Tem de Integrles Cálculo Diferencil e Integrl II ) Sen A y B dos conjuntos no vcíos de números reles, tles que B A y A está cotdo superiormente Demostrr que B está cotdo superiormente y

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

Tema V: CALCULO DE INTEGRALES

Tema V: CALCULO DE INTEGRALES http://selectividd.intergrnd.com Tem V: CALCULO DE INTEGRALES.- CONCEPTO DE PRIMITIVA DE UNA FUNCION: Como hemos visto hst hor, l derivción es un técnic prtir de l cul dd un función culquier f() podemos

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES En l epresión n c, puede clculrse un de ests tres cntiddes si se conocen dos de ells resultndo de este odo, tres operciones diferentes: º Potenci º Rdicción º Logrito

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

Lím. Lím. Lím. Lím 3. Lím Lím Lím. Lím Lím Lím Lím Lím Lím. Lím. Lím. Lím. Lím. Lím

Lím. Lím. Lím. Lím 3. Lím Lím Lím. Lím Lím Lím Lím Lím Lím. Lím. Lím. Lím. Lím. Lím Universidd Ncionl Autónom de Hondurs Fcultd de Ciencis Económics Guí de Ejercicios No. DET 85, Métodos Cuntittivos III PARTE : Propieddes de límites: No. Teorem Form de reconocerlo C C ite de un constnte

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

Teoría Tema 7 Integral definida. Área encerrada por una curva

Teoría Tema 7 Integral definida. Área encerrada por una curva Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.

Más detalles

Fundamentos matemáticos. Tema 7 Integración. Aplicaciones

Fundamentos matemáticos. Tema 7 Integración. Aplicaciones Fundmentos mtemáticos Grdo en Ingenierí grícol y del medio rurl Tem 7 Integrción. Aplicciones José Brrios Grcí Deprtmento de Análisis Mtemático Universidd de L Lgun jrrios@ull.es 16 Licenci Cretive Commons

Más detalles

UNIVERSIDAD ALAS PERUANAS FACULTAD DE MEDICINA HUMANA y CIENCIAS DE LA SALUD Escuela Académico Profesional de Nutrición Humana SILABO

UNIVERSIDAD ALAS PERUANAS FACULTAD DE MEDICINA HUMANA y CIENCIAS DE LA SALUD Escuela Académico Profesional de Nutrición Humana SILABO 1. DATOS INFORMATIVOS. SILABO 1.1. Asigntur : Cálculo Diferencil e Integrl. 1.2. Código : 28-112 1.3 Áre : Formtivo 1.4 Fcultd : Ciencis de l Slud 1.5 Ciclo : Segundo 1.6 Créditos : 04. 1.7 Totl de hors

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

Integración de funciones racionales

Integración de funciones racionales Integrción de funciones rcionles P() Se l integrl d donde P() y Q() son funciones polinómics. Si el grdo P() Q() se Q() divide P() entre Q() medinte el método de l cj y se otiene un cociente () y un resto

Más detalles

Primitiva de una función.

Primitiva de una función. Primitiv de un función. 1 / 29 Definición. Un función derivble F es primitiv de l función f en el intervlo I si F (x) = f(x), pr todo x I. Ejemplos 2 / 29 Ejemplo. Se f : R R tl que f(x) = 4x 3. i) F(x)

Más detalles

X = x ) pierde su significado. Lo que se hace es sustituir la definida sólo para x,..., por una función f (x)

X = x ) pierde su significado. Lo que se hace es sustituir la definida sólo para x,..., por una función f (x) rte Vriles letoris. Vriles letoris continus En l sección nterior se considerron vriles letoris discrets, o se vriles letoris cuo rngo es un conjunto finito o infinito numerle. ero h vriles letoris cuo

Más detalles

Logaritmos y exponenciales de otras bases. La función. Tipo III: Si u y v son funciones diferenciables en x y u > 0,

Logaritmos y exponenciales de otras bases. La función. Tipo III: Si u y v son funciones diferenciables en x y u > 0, Logritmos y eponenciles de otrs ses L función Leer con cuiddo el [S, 8] o ien [S, 4] y = Pr >, ln = e Definición: (Tp474) Pr R y > se define ln = e d AL- Deducir l fórmul de ( ) d d v AL- Si u y v son

Más detalles

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS Unitt d ccés ccés l universitt dels mjors de 25 ns Unidd de cceso cceso l universidd de los mores de 25 ños UNIDAD DIDÁCTICA 4: LOGARITMOS ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función

Más detalles

MÉTODOS DE INTEGRACIÓN

MÉTODOS DE INTEGRACIÓN Mtemátics II LE.Tem 4: Introducción l teorí de integrción Integrles inmedits MÉTODOS DE INTEGRACIÓN x α = xα+ α+ + C, si α - (f(x)) α f '(x) = (f(x))α+ + C, si α - α + x = x + C f '(x) = f(x) + C f(x)

Más detalles

c. m a t e m á t i c a s

c. m a t e m á t i c a s Guí de mtemátics ingeníeris Universidd Tecnológic de Agusclientes c. m t e m á t i c s Guí de estudio Educción...nuestr visión hci el futuro Eloro: M en C Mónic González Rmírez Guí de mtemátics ingeníeris

Más detalles

f x dx F(x) b = F(b) F(a) De esta manera se define la Integral definida 14. Propiedades de la integral definida

f x dx F(x) b = F(b) F(a) De esta manera se define la Integral definida 14. Propiedades de la integral definida Sugerencis pr quien imprte el curso Anteriormente se clculron lguns áres emplendo solmente fórmuls de l geometrí pln pr otener áres de triángulos, rectángulos y trpecios; Se utilizó tmién l proimción numéric.

Más detalles

La Integral Definida

La Integral Definida Nivelción de Mtemátic MTHA UNLP ID Introducción Prtición L Integrl Definid Un prtición del intervlo [, b] es un sucesión de números = x x x x n = b, entre y b, tl que x i x i+ (i =,,, n ) Ejemplo: se llm

Más detalles

b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e.

b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e. MsMtescom Integrles Selectividd CCNN Murci [] [EXT-A] ) Clcule l integrl indefinid rctgd, donde rctg denot l función rco-tngente de ) De tods ls primitivs de l función f() = rctg, encuentre l que ps por

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

Definición de la función logaritmo natural.

Definición de la función logaritmo natural. L función logritmo Definición de l función logritmo nturl. Se sbe que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo

Más detalles

LA FUNCIÓN LOGARÍTMICA

LA FUNCIÓN LOGARÍTMICA LA FUNCIÓN LOGARÍTMICA.- Definición.- Se denomin ritmo en bse de un número, l eponente que es preciso elevr pr que resulte. debe ser un número positivo y distinto de l unidd. Pr epresr que y es el ritmo

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración.

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración. INTEGRAL DEFINIDA Apuntes de A. Cñó Mtemátics II 6. Aproimción intuitiv l concepto de integrl definid. Propieddes con respecto l integrndo y l intervlo de integrción. 6. El teorem fundmentl del cálculo

Más detalles

Descomposición elemental (ajustes por constantes)

Descomposición elemental (ajustes por constantes) Descomposición elementl (justes por constntes) OBSERVACIONES. Ls primers integrles que precen se hn obtenido del libro de Mtemátics I (º de Bchillerto) McGrw-Hill, Mdrid 007.. Otros problems se hn obtenido

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

Estudio de funciones exponenciales y logarítmicas

Estudio de funciones exponenciales y logarítmicas FUNCIÓN EXPONENCIAL Recomendciones l Docente: L ctividd proponer debe puntr que los lumnos puedn nlizr los siguientes spectos: 1. Cómo vrí el gráfico de l función eponencil y de qué depende su monotoní.

Más detalles

Universidad de Antioquia

Universidad de Antioquia Fcultd de Ciencis Ects Nturles Instituto de Mtemátics Grupo de Semilleros de Mtemátics (Semátic) Funciones inverss gráfics Mtemátics Opertivs Tller 7 0 El concepto mtemático de función epres l ide intuitiv

Más detalles

C u r s o : Matemática. Material N 25 GUÍA TEÓRICO PRÁCTICA Nº 20 UNIDAD: ÁLGEBRA Y FUNCIONES. Sean a, b lr {0} y m, n.

C u r s o : Matemática. Material N 25 GUÍA TEÓRICO PRÁCTICA Nº 20 UNIDAD: ÁLGEBRA Y FUNCIONES. Sean a, b lr {0} y m, n. C u r s o : Mtemátic Mteril N 5 GUÍA TEÓRICO PRÁCTICA Nº 0 UNIDAD: ÁLGEBRA Y FUNCIONES POTENCIAS ECUACIÓN EXPONENCIAL FUNCIÓN EXPONENCIAL PROPIEDADES DE POTENCIAS Sen, b lr {0} y m, n PRODUCTO DE POTENCIAS

Más detalles

Tema 11. La integral definida

Tema 11. La integral definida Mtemátics II (Bchillerto de Ciencis) Análisis: Integrl definid 5 Integrl definid: áre jo un curv Tem L integrl definid L integrl definid permite clculr el áre del recinto limitdo, en su prte superior por

Más detalles

Tema 4: Integrales Impropias

Tema 4: Integrales Impropias Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función

Más detalles

DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA

DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA Sugerencis pr quien imprte el curso: Se esper que con l propuest didáctic presentd en conjunción con los prendizjes logrdos

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

UNIDAD III INECUACIONES

UNIDAD III INECUACIONES Licencitur en Administrción Mención Gerenci y Mercdeo UNIDAD III INECUACIONES Elordo por: Ing. Ronny Altuve Rg, Esp. Ciudd Ojed, mrzo de 2017 Universidd Alonso de Ojed s reles Los números que están ordendos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

a Y = X donde a 1 siendo Lg el logaritmo y

a Y = X donde a 1 siendo Lg el logaritmo y Mteri: Mtemátics de 4to ño Tem: Función logrítmic Mrco Teórico L función exponencil de l form f ( ) tiene un función invers, que llmmos función logrítmic y se escribe de l form: Un función > 0 g( ) Lg

Más detalles

Cálculo integral de funciones de una variable

Cálculo integral de funciones de una variable Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del

Más detalles

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción

Más detalles

Tecnólogo Mecánico-Cartografía

Tecnólogo Mecánico-Cartografía PRÁCTICO MATEMÁTICA II Tecnólogo Mecánico - Tecnólogo en Crtogrfí. Mtemátic II En los cursos re-universitrios rendimos derivr funciones. Dd un función f (derivble) se estudiron cierts técnics que nos ermitín

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

ÁLGEBRA: Propiedades para la Simplificación

ÁLGEBRA: Propiedades para la Simplificación Sludmed 016, por Prof. Edgr Loptegui Corsino ( http://www.sludmed.com/ ), se encuentr bjo un licenci CC: Cretive Commons : Atribución-No Comercil-Sin Derivds 3.0 PR: http://cretivecommons.org/licenses/by-nc-nd/3.0/pr/

Más detalles

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ENERGÉTICA NÚMEROS COMPLEJOS Miguel Angel Rodríguez Pozuet Doctor Ingeniero Industril OBSERVACIONES SOBRE LA NOMENCLATURA En este teto, siguiendo l nomencltur hitul

Más detalles

Módulo 12 La División

Módulo 12 La División Módulo L División OBJETIVO: Epresrá lguns propieddes de l división usndo propieddes de l división los inversos; epresr un numero rcionl de l form deciml frcción común vicevers. L división es un operción

Más detalles

La Integral Multiplicativa

La Integral Multiplicativa Universidd del Pís Vsco Mtemátic Aplicd y Estdístic L Integrl Multiplictiv Jun-Miguel Grci Extrcto: Se nliz l relción de l integrl multiplictiv de Volterr con l derivd logrítmic y los sistems diferenciles

Más detalles

TEMA 4. Cálculo integral

TEMA 4. Cálculo integral TEMA 4. Cálculo integrl En este tem considerremos el cálculo integrl, que es un complemento nturl del cálculo diferencil y tiene múltiples plicciones en otrs ciencis. 4.. Introducción l cálculo integrl

Más detalles

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II. Análisis: Integrales 171. Tema 8. Integrales. , es fácil hallar su derivada F (x)

Matemáticas Aplicadas a las Ciencias Sociales II. Análisis: Integrales 171. Tema 8. Integrales. , es fácil hallar su derivada F (x) Mtemátics Aplicds ls Ciencis Sociles II Análisis: Integrles 7 Concepto de integrl indefinid Tem 8 Integrles L derivd de un función permite conocer l ts de vrición (el cmio instntáneo) de un determindo

Más detalles

0 PRELIMINARES. NÚMEROS REALES

0 PRELIMINARES. NÚMEROS REALES ACCESO A LA UNIVERSIDAD MATEMÁTICAS VOLUMEN II PRELIMINARES. NÚMEROS REALES. El conjunto de los número reles L representción más común de hce ver l conjunto como un líne rect del plno.,, 4, 8,.7,... 3

Más detalles

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE: IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

5. Aplicación de la Integral de Riemann

5. Aplicación de la Integral de Riemann Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 8-2 Ingenierí Mtemátic Universidd de Chile SEMANA 9: APLICACIONES DE LA INTEGRAL 5. Aplicción

Más detalles

Sean dos funciones f y g de variable real definidas en un dominio DŒÑ Definición g es una primitiva de f si f(x)=g (x) "x D

Sean dos funciones f y g de variable real definidas en un dominio DŒÑ Definición g es una primitiva de f si f(x)=g (x) x D INTEGRAL DE RIEMANN 1- Primitivs e integrl indefinid - Integrl de Riemnn 3- Interpretción geométric de ls integrles de Riemnn 4- Propieddes de ls integrles de Riemnn 5- Cmio de vrile en ls integrles de

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles