(3) Bosqueje la gráfica de una función que cumpla las siguiente condiciones:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "(3) Bosqueje la gráfica de una función que cumpla las siguiente condiciones:"

Transcripción

1 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E00 A) Primer parcial ) Sean las funciones: f) + & g) +. Obtener: D f, D g,f g)) & D f g. ) Sea la función: + si ; f) si, ) ; si. Obtener el dominio, raíces y especifique los intervalos donde: f) > 0; f) < 0; f) crece; f) decrece. Hallar su gráfica. ) Una caja rectangular con tapa y base cuadrada tiene un área de todas sus caras ) igual a 600 cm. Eprese el volumen de la caja como una función de, donde es la longitud de un lado de la base. B) Segundo parcial ) Muestre que la función h) 5 + 5, tiene al menos una raíz en los números reales. ) Sea f) +. Aplique la definición de la derivada para encontrar f a), con a D f ) Bosqueje la gráfica de una función que cumpla las siguiente condiciones: lím f) ; lím f) 5; lím f) 4; + f0) 0; lím f) ; lím f) +. 0 lím f) ; lím f) ; + + 4) Sea la función f) + 6. a) Encontrar el dominio y raíces de la función b) Clasificar sus discontinuidades c) Encuentre las asíntotas verticales y horizontales d) Bosquejar la gráfica de la función [, + ). canek.azc.uam.m: / / 006.

2 EVALUACIÓN GLOBAL E00 C) Tercer parcial ) Hallar la ecuación de la recta tangente a la curva y y y +, en el punto 0, ). ) Con qué razón aumenta el área de un triángulo equilátero cuando su base mide 0 cm y está aumentando a razón de 0.5 cm/s? El área del triángulo equilátero se calcula aplicando el teorema de Pitágoras.) ) Se construye un recipiente cilíndrico, sin tapa, con un volumen de m. La parte cilíndrica del recipiente se fabrica con aluminio y la base con cobre. El cobre es cinco veces más caro que el aluminio. Qué dimensiones minimizarían el costo total del recipiente? 4) Para la función f) 9 a) Encontrar el dominio, raíces y paridad b) Encontrar los intervalos en los cuales f es creciente o decreciente c) Halle los valores máimos y mínimos locales de f d) Encuentre los intervalos de concavidad hacia arriba y hacia abajo; y puntos de infleión e) Encuentre las asíntotas verticales y horizontales f) Bosquejar la gráfica de la función

3 Respuestas EVALUACIÓN GLOBAL E00 A) Primer parcial ) Sean las funciones: f) + & g) +. Obtener: D f, D g,f g)) & D f g. Vemos que: i) D f { R + 0 } { R } [ ), + ; ii) D g { R } { } + 0 R R { }; ) ) iii) f g)) f[g)] f ; iv) { } { } D f g D g g) D f g) D f { } +. Resolvemos la desigualdad )+ +) 0 0 +) ) +) & +> 0 o bien + 0 & +< 0; & > o bien & < ; [ ), o bien, ) ; [ ) [, +, ) R, ). ) Sea la función: + si ; f) si, ) ; si. Obtener el dominio, raíces y especifique los intervalos donde: f) > 0; f) < 0; f) crece; f) decrece. Hallar su gráfica. El dominio: D f R. Las raíces: {,, }. a) f) > 0si, ), ), );

4 4 EVALUACIÓN GLOBAL E00 b) f) < 0si, ) [, ); c) f) crece en, ), en, 0) y en, ); d) f) decrece en, ) y en 0, ). La gráfica de f) con las condiciones epresadas es: f) ) Una caja rectangular con tapa y base cuadrada tiene un área de todas sus caras ) igual a 600 cm. Eprese el volumen de la caja como una función de, donde es la longitud de un lado de la base. Usamos la figura y y El área de todas la caras es El volumen de la caja es A +4y 600 cm. V y cm. Esta función se desea eclusivamente en función de la variable. De la ecuación anterior +4y 600, se tiene que y ) 600 )

5 EVALUACIÓN GLOBAL E00 5 Sustituyendo en el volumen obtenemos la función deseada: V ) ) ). B) Segundo parcial ) Muestre que la función h) 5 + 5, tiene al menos una raíz en los números reales. Valuando en dos puntos pertinentes, tenemos: f0) 5 < 0&f) > 0. Tenemos, una función f) continua en R y un intervalo [0, ], en los etremos del cual la función tiene valores con signo distinto. Usando el teorema del Valor Intermedio se sabe que eiste al menos un valor c 0, ) tal que fc) 0, que es lo que se quería mostrar. ) Sea f) +. Aplique la definición de la derivada para encontrar f a), con a D f [, + ). Así: Calculamos el cociente diferencial del cual obtendremos el límite: f) fa) + a + + a + ++ a + a a a ++ a + +) a +) a) ++ a +) a) a) ++ a +) si a 0, esto es, si a. ++ a + f f) fa) a) lím a a a ++ a + lím a ++ a + a +. a + Esta última epresión sólo tiene sentido si a +> 0, es decir, si a>. Vemos que D f pero ahí la función f no es derivable, de hecho ni siquiera está definida a la izquierda de. ) Bosqueje la gráfica de una función que cumpla las siguiente condiciones: lím f) ; lím f) 5; lím f) 4; + f0) 0; lím f) ; lím f) +. 0 lím f) ; lím f) ; + + Una posible gráfica de la función f) con las condiciones enunciadas es:

6 6 EVALUACIÓN GLOBAL E00 f) 5 4 4) Sea la función f) + 6. a) Encontrar el dominio y raíces de la función Vemos que f) + 6 ) +) + ) ) + + si 0, esto es si. Dominio: D f R {, }. Raíces:. b) Clasificar sus discontinuidades es un discontinuidad removible, ya que + lím f) lím ; es una discontinuidad esencial infinita. c) Encuentre las asíntotas verticales y horizontales es una asíntota vertical. Vamos a calcular los límites laterales:. En este caso < +< Entonces, lím f) lím +) ) 4 + ; En este caso > +> Entonces: puesto que lím f) lím +) lím f) lím +) ± ± + tenemos que y es la única asíntota horizontal. ) 4 ; ) lím ± +,

7 EVALUACIÓN GLOBAL E00 7 d) Bosquejar la gráfica de la función La gráfica de f) es: f) C) Tercer parcial ) Hallar la ecuación de la recta tangente a la curva y y y +, en el punto 0, ). Vamos a derivar suponiendo que tenemos una función y). y y y y + y + y y )y + y y + y. Calculamos la pendiente de la recta tangente, valuando esta derivada y 0, ). La ecuación de la recta tangente solicitada es y 0 y +. ) Con qué razón aumenta el área de un triángulo equilátero cuando su base mide 0 cm y está aumentando a razón de 0.5 cm/s? El área del triángulo equilátero se calcula aplicando el teorema de Pitágoras.) Usamos la figura h /

8 8 EVALUACIÓN GLOBAL E00 De la figura vemos que: El área del triángulo es h + ) h + 4 h 4 h A h 4. Ya que el lado es una función del tiempo, tenemos que. At) 4 t). Derivando con respecto a la variable independiente t: A t) 4 t) t) t) t). Usando los datos del enunciado se sabe que en un momento, digamos t 0, se tiene que t 0 ) 0 cm y que t 0 ) 5 cm/s. La variación del área en ese instante es: 0 A t 0 ) cm /s. ) Se construye un recipiente cilíndrico, sin tapa, con un volumen de m. La parte cilíndrica del recipiente se fabrica con aluminio y la base con cobre. El cobre es cinco veces más caro que el aluminio. Qué dimensiones minimizarían el costo total del recipiente? Usando esta figura r h y considerando que el volumen del cilindro es de m, es decir, que V πr h, el área del recipiente sin tapa es A πr +πrh. El costo de este cilindro con los datos proporcionados es C 5πr +πrh.

9 EVALUACIÓN GLOBAL E00 9 Nos piden minimizar este costo con la condición dada sobre el volumen. Vamos a despejar la variable h de la condicion del volumen y vamos a sustituir en el costo. Obtenemos así: h πr Cr) 5πr + r. De esta última función, que ahora depende sólo de r, es de la que vamos a calcular su mínimo. Derivamos Calculamos la segunda derivada C 0πr r. C 0π + 4 r > 0. Segunda derivada siempre positiva. El valor crítico que encontraremos será un mínimo. Para encontrar los valores críticos, igualamos a cero la derivada 0πr ) r 0 0πr 0 0πr 0 r. r 5π Vamos a encontrar el valor de h que hace mínimo el costo h 5 ) π 5π 5π 5π ) ) 5 5r. 5π 4) Para la función f) 9, a) encontrar el dominio, raíces y paridad Dominio: Raíces: 0. Paridad: La función es par, puesto que D f { R 9 0 } R {, }. f ) ) 9 ) 9 f). b) Encontrar los intervalos en los cuales f es creciente o bien decreciente Derivamos f): f ) 9 ) ) 9 ) 4 9 ) ;

10 0 EVALUACIÓN GLOBAL E00 El signo de la primera derivada lo proporciona, de aquí hallamos que: f ) > 0si, 0),f) es creciente en, ) yen ), 0 ; f ) < 0si 0, ),f) es decreciente en 0, ) ) yen, +. c) Halle los valores máimos y mínimos locales de f El único punto crítico en el dominio de f es 0. Por lo anterior se comprueba que es un máimo local puesto que la función pasa de ser creciente a ser decreciente es este punto. d) Encuentre los intervalos de concavidad hacia arriba o bien hacia abajo; y puntos de infleión Calculamos la segunda derivada: f ) 4 9 ) 9 )8 4 9 ) 6 9 ) 4 9 ) ) ). El signo de la segunda derivada la proporciona g) 9. Ésta es una cuadrática cuyas raíces son &, las cuales dividen la recta en tres intervalos, ),, ) ) &, +. Siendo una función continua, la función tiene el mismo signo dentro de estos intervalos. Elegimos puntos arbitrarios dentro de los mismos: g )8> 0 f ) > 0en, ) ; g0) < 0 f ) < 0en, ) ; ) g) 8 > 0 f ) > 0en,,. Concluimos entonces que: La función f) es cóncava hacia arriba si, ) ),,. La función f) es cóncava hacia abajo si, ). e) Encuentre las asíntotas verticales y horizontales ± son las dos asíntotas verticales de f). Para calcular la asíntota horizontal obtenemos: lím f) ± lím ± 9 lím ± 9 9. Así y 9 es la única asíntota horizontal de f).

11 f) Bosquejar la gráfica de la función. La gráfica de f) es: EVALUACIÓN GLOBAL E00 f) y 9

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0500, 9 ENERO 2001, 19H

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0500, 9 ENERO 2001, 19H CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0500, 9 ENERO 00, 9H ) Para la función f) +, determine a) Dominio, raíces, paridad b) Intervalos de crecimiento y de decrecimiento c) Intervalos

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E MAYO-2001, 13 H

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E MAYO-2001, 13 H CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0700 2-MAYO-200, H () Dada la función definida por f() = 2, determinar: Intervalos de crecimiento y de decrecimiento; máimos y mínimos locales;

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E ENERO-2001, 10 H.

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E ENERO-2001, 10 H. CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0600 9-ENERO-00, 0 H. Para la función f =, determine: a Dominio, raíces, paridad b Intervalos de crecimiento y de decrecimiento c Intervalos

Más detalles

x 3 si 10 <x 6; x si x>6;

x 3 si 10 <x 6; x si x>6; CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000 A Primer parcial + 1 +8 1 a Trace su gráfica b Determine su dominio, rango y raíces Sean si 10 < 6; f

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E2200 TRIMESTRE 02-O FECHA: DICIEMBRE 18 DE 2002 HORARIO: 13:00-15:00 H

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E2200 TRIMESTRE 02-O FECHA: DICIEMBRE 18 DE 2002 HORARIO: 13:00-15:00 H CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E00 TRIMESTRE 0-O FECHA: DICIEMBRE 8 DE 00 HORARIO: :00-5:00 H (A) Primer parcial () Si se lanza una pelota hacia arriba desde la azotea de un edificio

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E0100, TRIMESTRE 01-I, 05/04/2001

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E0100, TRIMESTRE 01-I, 05/04/2001 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E0100, TRIMESTRE 01-I, 0/0/001 A) Primer parcial 1) Una compañía que fabrica escritorios los vende a $00 cada uno. Si se fabrican y venden escritorios

Más detalles

s(t) = 5t 2 +15t + 135

s(t) = 5t 2 +15t + 135 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000, 1-1-000 (A) Primer parcial (1) Se lanza una pelota hacia arriba a una velocidad de 15 m/seg desde el borde de un acantilado a 15 m arriba del suelo.

Más detalles

t si t 2. x 2 + xy + y 3 = 1 8.

t si t 2. x 2 + xy + y 3 = 1 8. CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E000 () Una pelota se deja caer desde un edificio. La posición de la pelota en cualquier instante t (medido en segundos) está dada por s(t).5

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0100. (1) Obtener la ecuación de la recta tangente a la curva x 3 + y 3 6xy =0

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0100. (1) Obtener la ecuación de la recta tangente a la curva x 3 + y 3 6xy =0 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0100 (1) Obtener la ecuación de la recta tangente a la curva x + y 6xy =0 en el punto, 8 ). (2) A un depósito cilíndrico de base circular de

Más detalles

f(x) tiene una discontinuidad removible en x =0; f(x) = 2;

f(x) tiene una discontinuidad removible en x =0; f(x) = 2; CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0800 (1) Dibujar una función f() que cumpla las condiciones siguientes: lím f() =+ ; lím f() = ; 2 3 f() tiene una discontinuidad removible

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I GLOBAL E1400. (B) Segundo parcial

CÁLCULO DIFERENCIAL E INTEGRAL I GLOBAL E1400. (B) Segundo parcial CÁLCULO DIFERENCIAL E INTEGRAL I GLOBAL E1400 (A) Primer parcial (1) Un supermercado se encuentra con grandes eistencias de manzanas que debe vender rápidamente. El gerente sabe que si las manzanas se

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0400, P-01

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0400, P-01 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0400, P-01 (1) Considere la función f() ( 4) y determine: (a) El dominio, raíces e intervalos de continuidad (b) Asíntotas verticales y horizontales

Más detalles

(A) Primer parcial. si z>2; 2 2z +4 siz< 2.

(A) Primer parcial. si z>2; 2 2z +4 siz< 2. CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E900 (A) Primer parcial () 685 7 () Para las funciones f() & g() +, f determinar f + g,, f g, g f y sus respectivos dominios g () Graficar la siguiente

Más detalles

(b) Monotonía, máximos y mínimos locales y absolutos.

(b) Monotonía, máximos y mínimos locales y absolutos. CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E1400 1) Sea fx) = x 3 x 3 Encontrar: a) Dominio, raíces y paridad b) Monotonía, máximos y mínimos locales y absolutos, y el rango c) Concavidad

Más detalles

(A) Primer parcial. (3) Encuentre gráfica, dominio, rango, intervalos de monotonía y paridad de la función: x 2 + x 2, x = parte entera de x.

(A) Primer parcial. (3) Encuentre gráfica, dominio, rango, intervalos de monotonía y paridad de la función: x 2 + x 2, x = parte entera de x. CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E3000 ) ) + + < 0. 5+4. A) Primer parcial 3) Encuentre gráfica, dominio, rango, intervalos de monotonía y paridad de la función: f) = +3, 0. 4) Determine

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1200, 98I

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1200, 98I CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E00, 98I ) x > x +. ) Sea la función y x ) 4 x. Encuentre la ecuación de las rectas tangente y normal a la gráfica en el punto 0,). ) Sea la

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E P, 11-NOVIEMBRE 2000, 13H

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E P, 11-NOVIEMBRE 2000, 13H CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1100 00P, 11-NOVIEMBRE 000, 1H 1) Determinar los valores de para los cuales está definida la función f) = 9 y obtener también el intervalo formado

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E1000. (1) Sea f(x) una función cuya derivada es

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E1000. (1) Sea f(x) una función cuya derivada es CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E000 ) Sea f) una función cuya derivada es f ) = 3 3 4 3+) 50 + 6 y con dominio igual al de su derivada. Determine los intervalos de monotonía

Más detalles

(B) Segundo parcial (1) Una función f se dice que es acotada si existe M 0 tal que f(x) M para toda x en dominio de f.

(B) Segundo parcial (1) Una función f se dice que es acotada si existe M 0 tal que f(x) M para toda x en dominio de f. CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E00 A) Primer parcial 1) Completando el trinomio cuadrado perfecto, dibujar la gráfica de + 6 = y ) + 6 ) 1 6 4) Sea + si < 1 f) = 4 si < 1 si 1 4 a)

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E1100

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E1100 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E1100 A) Primer parcial 1) Si se lanza verticalmente un objeto hacia arriba desde el nivel del suelo, con una velocidad inicial de 0 pies/s, entonces

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción B Junio, Ejercicio, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva,

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900 (1) La posición vertical de una pelota está dada por h(t) = 128 + 16t 16t 2 en donde t se mide en segundos y h(t) se mide en pies. Durante

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0200

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0200 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E000 () Obtener la ecuación de la recta tangente a la curva x 3 +y 3 =9xy en el punto (, ). () La ley adiabática (sin pérdida ni ganancia de

Más detalles

PAU: Aplicaciones de la derivada MATEMÁTICAS II 1. 2cos. x 0 x 0

PAU: Aplicaciones de la derivada MATEMÁTICAS II 1. 2cos. x 0 x 0 PAU: Aplicaciones de la derivada MATEMÁTICAS II JULIO 0 ESPECÍFICA. Calcule a para que las siguientes funciones: sen a cos f( ) g() tengan el mismo límite en el punto 0. Calculamos cada límite: sen a 0

Más detalles

(B) Segundo parcial (1) Dibuje una gráfica de una función f que satisfaga todas las condiciones siguientes:

(B) Segundo parcial (1) Dibuje una gráfica de una función f que satisfaga todas las condiciones siguientes: CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E1600 (A) Primer parcial (1) Si se lanza una pelota verticalmente hacia arriba con una velocidad de 5 m/seg, entonces su altura después de t segundos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

APLICACIONES DE LA DERIVADA CCSS

APLICACIONES DE LA DERIVADA CCSS APLICACIONES DE LA DERIVADA CCSS Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PAIEP. Valores máximos y mínimos de una función

PAIEP. Valores máximos y mínimos de una función Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Valores máximos y mínimos de una función Diremos que la función f : D R R, alcanza un máximo absoluto en el punto

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I PRIMERA EVALUACIÓN PARCIAL E2100

CÁLCULO DIFERENCIAL E INTEGRAL I PRIMERA EVALUACIÓN PARCIAL E2100 CÁLCULO DIFERENCIAL E INTEGRAL I PRIMERA EVALUACIÓN PARCIAL E100 1) Se lanza una piedra hacia arriba, desde la orilla de la azotea de un edificio de 18 pies de alto. La altura de la piedra con respecto

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)=

1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)= 2 de diciembre de 2008. ) (,6p) Estudia y clasifica las discontinuidades de la función: f()= +4-3 -5 2) (,6p) Halla las ecuaciones de las asíntotas de la siguiente función y estudia la posición relativa:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 017 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

2) (1p) Aplicando la definición de derivada de una función en un punto, halla la derivada de f(x)= x sen x en x=0.

2) (1p) Aplicando la definición de derivada de una función en un punto, halla la derivada de f(x)= x sen x en x=0. 5 de diciembre de 2002. 1) (4p) Teoría: a) Define derivada de una función en un punto. b) Halla la derivada de y=a u, donde a es una constante positiva distinta de 1 y u es una función de. c) Enuncia la

Más detalles

Prueba º Bach C Análisis. Nombre:... 17/05/10. Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible 1 h. 30 min.

Prueba º Bach C Análisis. Nombre:... 17/05/10. Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible 1 h. 30 min. Nota Prueba 3.04 º Bach C Análisis Nombre:... 7/05/0 Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible h. 30 min. OPCIÓN A. a) Calcula los siguientes límites: ln( + ) sen

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS UNIDAD APLICACIONES DE LAS DERIVADAS Página 98 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

Tema: Aplicaciones de derivadas. Sean x e y las dimensiones del rectángulo. Área del rectángulo: A = x y. 36 x. Luego, el área es A(x) =

Tema: Aplicaciones de derivadas. Sean x e y las dimensiones del rectángulo. Área del rectángulo: A = x y. 36 x. Luego, el área es A(x) = JUNIO 0 GENERAL. Halle el rectángulo de mayor área inscrito en una circunferencia de radio. Sean e y las dimensiones del rectángulo. Área del rectángulo: A y El triángulo ABC es rectángulo, sus lados miden,

Más detalles

ANÁLISIS MATEMÁTICO I (2012)

ANÁLISIS MATEMÁTICO I (2012) ANÁLISIS MATEMÁTICO I (2012) TRABAJO PRÁCTICO 4 Etremos y teorema del valor medio Ejercicio 1. Decir si las siguientes afirmaciones son correctas. En caso contrario, justificar la respuesta. 1. El teorema

Más detalles

Hacia la universidad Análisis matemático

Hacia la universidad Análisis matemático Hacia la universidad Análisis matemático OPCIÓN A. a) Deriva las funciones f( ) = 8, g ( ) =, h ( ) = e. f( ) si 0 b) Indica si la función m ( ) = es continua en =. g ( ) si < c) Escribe la ecuación de

Más detalles

CONCEPTO DE DERIVADA

CONCEPTO DE DERIVADA TASA DE VARIACIÓN MEDIA CONCEPTO DE DERIVADA ACTIVIDADES ) Halla la tasa de variación media de la función f siguientes intervalos: en cada uno de los a), b), c) 0, d), 3 ) Halla la T.V.M. de esta función

Más detalles

4.- a) Enunciar el teorema de Rolle. (0,5 puntos) b) Determinar a, b, c para que la función f, definida por:

4.- a) Enunciar el teorema de Rolle. (0,5 puntos) b) Determinar a, b, c para que la función f, definida por: GMR Nombre: Nota Curso: º Bachillerato Eamen IV Fecha: 9 de Noviembre de 015 La mala o nula eplicación de cada ejercicio implica una penalización de hasta el 5% de la nota. 1.- La línea recta que pasa

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E2000 TRIMESTRE I IV 16 H. (A) Primer parcial

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E2000 TRIMESTRE I IV 16 H. (A) Primer parcial CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000 TRIMESTRE I-000 5-IV 6 H +x x 5x x Considere las funciones fx A Primer parcial x si x [ 0, ] x + six 0, + y g :, 0 [, R dado por gx 5x a Calcular

Más detalles

ANÁLISIS (Selectividad)

ANÁLISIS (Selectividad) ANÁLISIS (Selectividad) 1 Sea f : R R la función definida por f() ln ( +1). (a) Determina los intervalos de crecimiento y decrecimiento y los etremos relativos de la función f (puntos donde se alcanzan

Más detalles

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2 Curso º Bachillerato 16/05/017 Ejercicio 1 a) (1 punto) Calcula las derivadas de las siguientes funciones: f() = 1+3 ; g() = ln(1 5) + e7 b) (1 punto) Estudia la derivabilidad de la función dada por: a)

Más detalles

Aplicaciones de la derivada

Aplicaciones de la derivada Aplicaciones de la derivada º) Calcula los máimos y mínimos de la función f() = Máimo en P( 6, ) ; Mínimo en Q(0, 0) º) Determina el parámetro c para que la función f() = + + c tenga un mínimo igual a

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997)

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997) Matemáticas II. Curso 008/009 de funciones 1 1. Determinar las asíntotas de f () =. Estudiar la concavidad y conveidad. 1 + Determinar los puntos de infleión. (Junio 1997) 1 Por un lado, lim 1 = 0 y =

Más detalles

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..

Más detalles

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. . [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos

Más detalles

Matemática Aplicada y Estadística - Grado en Farmacia - Curso 2011/ HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1

Matemática Aplicada y Estadística - Grado en Farmacia - Curso 2011/ HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1 Matemática Aplicada y Estadística - Grado en Farmacia - Curso 011/01 - HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1 1 Una relación lineal es una epresión de la forma f() = a + b. Si llamamos a la

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS APLICACIÓN DE LAS DERIVADAS

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS APLICACIÓN DE LAS DERIVADAS I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS APLICACIÓN DE LAS DERIVADAS Dada la función f() = + 1 + 4. Calcular la tangente a la gráfica de la función en el punto =. La fórmula de la recta tangente

Más detalles

5 APLICACIONES DE LA DERIVADA

5 APLICACIONES DE LA DERIVADA 5 APLICACIONES DE LA DERIVADA La derivada va a ser la herramienta más potente a la hora de dar forma a la representación gráfica de una función. Ella determinará con toda fidelidad el crecimiento, decrecimiento,

Más detalles

Unidad 12 Aplicaciones de las derivadas

Unidad 12 Aplicaciones de las derivadas Unidad 1 Aplicaciones de las derivadas 4 SOLUCIONES 1. La tabla queda: Funciones Estrictamente Creciente Estrictamente Decreciente f( ) 4,,+ = ( ) ( ) 3 = + (,0) (, + ) (0,) f( ) 3 5 f( ) = 5 + 3 R 3 f(

Más detalles

Examen de Matemáticas 2 o de Bachillerato Mayo 2002

Examen de Matemáticas 2 o de Bachillerato Mayo 2002 Eamen de Matemáticas o de Bachillerato Mayo 00 Problema Dada la función f) = 4 se pide:. Dominio y corte con los ejes. Intervalos de crecimiento y decrecimiento; máimos y mínimos. Dibujo aproimado de la

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 000 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio 1, Opción B Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

3 2x +1. 3) Prueba que la ecuación 5 x =8x-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25 donde esté dicha raíz.

3 2x +1. 3) Prueba que la ecuación 5 x =8x-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25 donde esté dicha raíz. 21 de diciembre de 2000. 1 1) Calcula: 0 ln 2) Halla las asíntotas de la función: 5 3 f() 2-2 3 +7 3) Prueba que la ecuación 5 8-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E1100

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E1100 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E00 () Dada la siguiente función: f() ++ 2, determine los intervalos de monotonía de f(), los puntos etremos y grafique esa función. (2) Una

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo:

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Estudio de una función Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Una función f () tiene asíntota vertical en asi f () a Una función f () tiene

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0800

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0800 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0800 (1) Determine la ecuación de la recta tangente a la curva 5 2 y +8 4 y 2 3(y 5 + 3 ) 2 =1 en el punto (1, 1) (2) Cuando se epande aire

Más detalles

Estudio local de una función.

Estudio local de una función. Estudio local de una función. A partir de una cartulina cuadrada de 60 cm de lado, se va a construir una caja de base cuadrada, sin tapa, recortando cuatro cuadrados iguales en las esquinas de la cartulina

Más detalles

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím Matemáticas Empresariales I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES si 0. La función f ( ) sen es continua en = 0 si: p si 0 a) p = ½. b) p = 0. Para que sea continua en = 0 debe cumplirse que

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 07 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

Aplicaciones de la derivada Ecuación de la recta tangente

Aplicaciones de la derivada Ecuación de la recta tangente Aplicaciones de la derivada Ecuación de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. La recta tangente a una curva en un punto

Más detalles

h = 16t t h(t) h(a) t a t a

h = 16t t h(t) h(a) t a t a CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E100 (1) Si se lanza verticalmente un objeto hacia arriba desde el nivel del suelo con una velocidad inicial de 0 pies/s, entonces su distancia h arriba

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 1 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva 1, Ejercicio, Opción B Reserva,

Más detalles

APLICACIONES DE LAS DERIVADAS 2º Bachillerato

APLICACIONES DE LAS DERIVADAS 2º Bachillerato APLICACIONES DE LAS DERIVADAS º Bachillerato RECTA TANGENTE A UNA CURVA EN UN PUNTO. Si f es derivable en el punto, la ecuación de la recta tangente a f en el punto es: y = f + f ' Si f es derivable en

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS APLICACIONES DE LAS DERIVADAS. Monotonía: Crecimiento y decrecimiento de una unción. Determinación de etremos relativos. Optimización de unciones. Curvatura: Concavidad o curvatura de una unción 5. Puntos

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0300

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0300 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0300 x +5 x + x 3 x 3 Sean fx x ; gx 3x yhx determinar: a D [ f, D g & ] D h f b h x, g h fx g Sea fx x3 x x x 3 x 3x determinar: a Dominio

Más detalles

8 Aplicaciones. de las derivadas. 1. Máximos, mínimos y monotonía. Piensa y calcula. Aplica la teoría

8 Aplicaciones. de las derivadas. 1. Máximos, mínimos y monotonía. Piensa y calcula. Aplica la teoría 8 Aplicaciones de las derivadas. Máimos, mínimos y monotonía Piensa y calcula Dada la gráfica de la función f() = representada en el margen, halla los máimos y los mínimos relativos y los intervalos de

Más detalles

Cálculo Diferencial Agosto 2018

Cálculo Diferencial Agosto 2018 Laboratorio # 1 Desigualdades I.- Encontrar valores de que satisfacen simultáneamente las dos condiciones. 1) [2 3] 9 1 y 2 + 8 + 6 + 3 < 10 2) 3 6 > 1 2 y 2 1 6 3) 1 1 3 y + 1 > 1 4 4) 3 < < 9 y + 5 10

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Universidad Simón Bolıvar. Departamento de Matemáticas puras y aplicadas. MA1111. Tercer Parcial. Sept-Dic 2009 (30 pts).

Universidad Simón Bolıvar. Departamento de Matemáticas puras y aplicadas. MA1111. Tercer Parcial. Sept-Dic 2009 (30 pts). Universidad Simón Bolıvar. Departamento de Matemáticas puras y aplicadas. MA1111. Tercer Parcial. Sept-Dic 2009 (30 pts). Nombre: Carnét: 1. Responda con verdadero o falso, cada una de las siguientes proposiciones,

Más detalles

Solución del Examen Final de Cálculo 1 (2010-2) 1. Dada la función (4 Ptos.) f(x) = 3x 2 e x. 3x 2. f(x) = 3x 2 e x f (x) = 3e x x(2 x),

Solución del Examen Final de Cálculo 1 (2010-2) 1. Dada la función (4 Ptos.) f(x) = 3x 2 e x. 3x 2. f(x) = 3x 2 e x f (x) = 3e x x(2 x), Parte Obligatoria del Eamen Final de Cálculo (00-). Dada la función (4 Ptos.) f() = 3 e esboce la gráfica de f, señalando, si fuera el caso, sus asíntotas, los intervalos de monotonía y los etremos relativos,

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD TEMA. FUNCIONES REALES DE VARIABLE REAL.4. APLICACIONES DE LA DERIVABILIDAD .4. APLICACIONES DE LA DERIVABILIDAD.4.1. Intervalos de crecimiento y decrecimiento.4.. Etremos locales de una función.4.3. Intervalos

Más detalles

CAPÍTULO. Continuidad

CAPÍTULO. Continuidad CAPÍTULO Continuidad. Continuidad en intervalos Una función es continua en un conjunto si es continua en cada punto del conjunto. Entonces, una función es continua en un intervalo abierto.a; b/ si es continua

Más detalles

Opción A. teorema se puede aplicar también si sale /, y cuando x. Como. , la recta x = 0 es una A.V. de la función f.

Opción A. teorema se puede aplicar también si sale /, y cuando x. Como. , la recta x = 0 es una A.V. de la función f. Opción A 1 Ejercicio 1. [ 5 puntos] Sea f la función definida, para 0, por f e. Determina las asíntotas de la gráfica de f. La recta = a es una asíntota vertical (A.V.) de la función f si lim f Veamos

Más detalles

TEMA 9. DERIVADAS. Veamos cómo podemos calcular esa pendiente. Si tenemos una función f(x) y cogemos dos puntos de la misma:

TEMA 9. DERIVADAS. Veamos cómo podemos calcular esa pendiente. Si tenemos una función f(x) y cogemos dos puntos de la misma: TEMA 9. DERIVADAS. DEFINICIÓN DE DERIVADA. Se define la derivada de una función f() en un punto 0 como la pendiente de la recta tangente a f en dico punto, y se designa por f ( 0 ). Veamos cómo podemos

Más detalles

S = x y = x(500 2x) = 500x 2x 2

S = x y = x(500 2x) = 500x 2x 2 .7. OPTIMIZACIÓN 09.7. Optimización Problema 4 Tenemos 500 metros de alambre para vallar un campo rectangular, uno de cuyos lados da a un río. Calcular la longitud que deben tener estos lados para que

Más detalles