Movimiento ondulatorio

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Movimiento ondulatorio"

Transcripción

1 Movimiento ondulatorio 1. Introducción Se llama onda a la propagación de energía sin transporte neto de la materia. En cualquier caso se cumple que: - Una perturbación inicial se propaga sin transporte neto de materia. - Existe un desfase entre el instante de la perturbación inicial y el instante en que la perturbación alcanza los puntos del medio. - La mayoría de las ondas necesitan un medio material para propagarse. Tipos de ondas: - Mecánicas. Si la perturbación inicial es de tipo mecánica y necesitan de un medio material elástico para propagarse (ondas sonoras, cuerdas de guitarra...). Además si la energía mecánica que se propaga es originada por un movimiento armónico simple, las ondas reciben el nombre de ondas armónicas. - Electromagnéticas: se propaga energía electromagnética mediante campos oscilatorios eléctricos y magnéticos y no necesitan de un medio material para propagarse (rayos x, luz, microondas, ondas de radio...). Ondas mecánicas Las ondas mecánicas pueden clasificarse según la dirección de la propagación de la onda y el número de dimensiones en que se propaga la energía. - Según la dirección de propagación Se denomina onda transversal a aquella en la que la dirección de propagación es perpendicular a la dirección de vibración de las partículas. Se caracterizan por la presencia de zonas elevadas llamadas crestas y zonas deprimidas llamadas valles. Se denomina onda longitudinal a aquella en la que la dirección de propagación y de vibración de las partículas del medio son paralelas. - Según el número de dimensiones en que se propaga la energía Ondas unidimensionales. La energía se propaga en una dimensión. Por ejemplo la onda que se propaga en una cuerda. 1

2 Ondas bidimensionales. La energía se propaga en un plano. Por ejemplo las ondas que se propagan por la superficie del agua. Ondas tridimensionales. La energía se propaga en 3 dimensiones. Por ejemplo el sonido. 3. Magnitudes características de las ondas Son las producidas por una perturbación inicial en un medio elástico por un m.a.s. Tienen las siguientes magnitudes: - Amplitud: elongación máxima elongación de las partículas del medio. - Longitud de onda (λ) : distancia mínima entre dos puntos del medio que se encuentran en la misma fase o estado de vibración. - Periodo ( T ). Es el tiempo que tarda la cuerda en recorrer la longitud de onda. Puesto que la velocidad de propagación además es constante para una onda armónica se tiene que: λ = vt - Frecuencia ( f ). Es el número de ondas que pasa por un punto en 1 s. Se mide en Hz. f = 1 T - Número de onda ( k ). Es el número de longitudes de ondas comprendidas en una distancia π. Se mide en m 1. k = π λ = π v / f = π f v = ω v 4. Ecuación de las ondas armónicas unidimensionales En primer lugar atenderemos a la definición de onda armónica como aquella producida en un medio elástico por un m.a.s. El estado de vibración de una partícula cualquier del medio (que también se moverá con m.a.s) depende de la posición x de dicha partícula y del tiempo. Además supondremos que la onda se propaga en el sentido positivo del eje x.

3 y = f (x,t) = ψ (x,t) Sea y(t) = Asen(ωt + ϕ) la ecuación del m.a.s que origina la onda. Un punto p situado a una distancia x del punto dónde se origina el m.a.s recibirá la perturbación con un retraso de t ' = x v siendo v la velocidad de propagación (que recordemos que es constante). Por tanto, la perturbación del punto P en el instante t es la correspondiente al origen del m.a.s en el tiempo t t ', es decir: y(x,t) = Asen(ω(t t ') + ϕ 0 ) = Asen(ωt ωt '+ ϕ 0 ) = Asen(ωt ω x v + ϕ 0 ) = Asen(ωt kx + ϕ 0 ) = Asen(π ft π λ x + ϕ 0 ) = Asen(ωt kx) En el caso en que la onda se propagase en sentido negativo del eje x, la ecuación quedaría como: y(x,t) = Asen(ωt + kx) Periodicidad de la función de ondas La función de onda y(x,t) es doblemente periódica: - Es periódica en distancia con periodo λ, es decir, el estado de vibración de la partícula x se repite en todos los puntos cuyas distancias a dicha partícula sean múltiplos de la longitud de onda. - Es periódica en el tiempo con periodo T. Es decir, la elongación de una partícula determinada x toma el mismo valor en los tiempos t,t + T,t + T... Además, los puntos que vibran con un número entero de periodos se dice que están en fase. Velocidad y aceleración de la onda Se llama velocidad transversal a la velocidad de vibración de las partículas del medio: v = dy dt = Aω cos(ωt kx + ϕ 0 ) siendo la velocidad máxima igual a: v max = Aω La aceleración de las partículas por tanto queda definida como: a = dv dt = Aω sen(ωt kx + ϕ 0 ) = ω y 3

4 siendo la aceleración máxima: a max = Aω 5. Energía de una onda Cuando una partícula del medio es alcanzada por una onda, está sometida a un m.a.s y tendrá energía mecánica, suma de la energía cinética y de la potencial. La forma más sencilla de calcular la Energía Mecánica del sistema será calcular la energía cinética máxima, es decir: E m = E c,max = 1 mv max = 1 ma ω = 1 ma 4π f = π ma f Finalmente la potencia de la onda queda definida como: P = E t = π ma f t 6. Intensidad de una onda - Se denomina frente de onda al lugar geométrico de los puntos que en un instante dado están en fase. - A la dirección de propagación de la onda se le denomina rayo y en los medios homogéneos es perpendicular al frente de onda. En función del frente de onda, las ondas se pueden clasificar como: - Planas, si el frente de onda es una superficie plana. - Circulares, si el frente de onda es una circunferencia. - Esféricas, si el frente de onda es una esfera. - Se denomina intensidad de una onda a la energía por unidad de tiempo que atraviesa la unidad de superficie perpendicular a la dirección de propagación de la onda medida en W / m I = E t S = P S En el caso de dos ondas esféricas con radios R 1 y R la intensidad queda como: I 1 = I = E t S 1 = E t S = E t 4π R 1 E t 4π R Por tanto: 4

5 I 1 = R I R 1 Además como la intensidad es proporcional al cuadrado de la amplitud se tiene que: I 1 = A 1 I A A 1 A = R 1 R A 1 = R 1 A R 1 7. El sonido El sonido es una perturbación mecánica de un cuerpo que se propaga en forma de ondas en un medio material elástico. Las ondas de propagación de sonido se llaman ondas sonoras. El oído humano capta sonidos comprendidos entre 0 y Hz. Los sonidos por debajo de 0 Hz se denominan infrasónicos y por encima de Hz se llaman ultrasónicos. Las ondas sonoras son ondas longitudinales y se caracterizan por compresiones y dilataciones de las partículas del medio. Cualidades del sonido - Intensidad física u objetiva es la energía por unidad de tiempo que atraviesa la unidad de superficie perpendicular a la dirección de propagación de la onda. I = E t S = P S W / m - Intensidad fisiológica o subjetiva la definimos como la sensación de mayor o menor intensidad que percibe el oído humano. El intervalo de intensidad para el oído humano va desde I 0 = 10 1 W / m (intensidad umbral) hasta I max = 1W / m llamada intensidad de dolor. - Para medir la intensidad se toma una escala logarítmica y se mide en decibelios (db) β = 10log I I 0 8. Interferencia de ondas Cuando dos o más ondas concurren en un mismo punto la perturbación resultando es igual a la suma de las perturbaciones que produciría cada onda por separado. Interferencia de ondas coherentes Diremos que dos ondas armónicas son coherentes si están en fase o la diferencia de fase es constante. Para estudiar el fenómeno de interferencia de ondas supondremos dos ondas con la misma frecuencia y la misma longitud de onda o número de onda. 5

6 Por ejemplo, sean y 1, y dos ondas que van a interferir de ecuaciones: y 1 = Asen(ωt kx 1 ); y = Asen(ωt kx ); La interferencia por tanto queda como: y 1 + y = Asen(ωt kx 1 ) + Asen(ωt kx ) = A(sen(ωt kx 1 ) + sen(ωt kx ) = = Asen ωt kx + ωt kx 1 cos ωt kx (ωt kx ) 1 = Acos kx kx 1 sen ωt k x + x 1 Por tanto la onda resultante tiene la misma frecuencia y la misma longitud de onda que las ondas que interfieren. La amplitud resultante queda como: A' = Acos kx kx 1 La interferencia será totalmente constructiva cuando la amplitud resultante sea máxima, es decir, cuando: cos kx kx 1 = ±1 k x x 1 = nπ π λ x x 1 = nπ x x 1 = nλ Es decir, la interferencia será totalmente constructiva cuando la diferencia de caminos recorrida sea un número entero de longitudes de onda. Este resultado también puede expresarse de la siguiente forma: La diferencia de fase entre las dos ondas iniciales es: Δϕ = ( ωt kx 1 ) ( ωt kx ) = k( x x 1 ) Y por tanto la amplitud de la nueva onda se puede expresar como: A' = Acos Δϕ Y por tanto la amplitud será máxima cuando: Δϕ = nπ Δϕ = nπ Así que la interferencia será totalmente constructiva también si la diferencia de fase es un número par de π. La interferencia de dos ondas es totalmente destructiva cuando la amplitud resultante es nula, es decir: 6

7 cos kx kx 1 = 0 k(x x ) 1 = (n + 1) π x x = (n + 1) λ 1 ; o lo que es lo mismo cos Δϕ = 0 Δϕ = (n + 1)π Δϕ = (n + 1)π Es decir, la interferencia será totalmente destructiva cuando la diferencia de caminos recorrida es un número impar de semilongitudes de onda o cuando la diferencia de fase es un número impar de π. Interferencia de ondas estacionarias Es la interferencia de ondas idénticas que se propagan en sentidos contrarios, es decir: y 1 = Asen( ωt kx); y = Asen(ωt + kx); Y por tanto: y(x,t) = y 1 + y = Asen( ωt kx) + Asen( ωt + kx) = Asen Acos kx sen ωt ( ) = Acos kx La amplitud queda como: ( )sen ωt ( ) = A'sen( ωt) A' = Acos(kx) ωt kx + ωt + kx cos ωt kx ωt kx = Atendiendo al resultado podemos ver como el resultado de la interferencia de dos ondas estacionarias NO es una onda, porque la elongación no depende de x y t a la vez. La amplitud será máxima (vientres) cuando: cos( kx) = ±1 kx = nπ π λ x = nπ x = n λ = n λ 4 La amplitud por tanto será máxima cuando la distancia al foco emisor sea un número par de cuartos de longitud de onda. La amplitud será mínima (nodos) cuando: cos( kx) = 0 kx = (n + 1) π π λ x = (n + 1)π x = (n + 1) λ 4 Es decir la amplitud será mínima cuando la distancia al foco emisor sea un número impar de cuartos de longitud de onda. 7

8 La distancia entre dos vientres consecutivos será: d v = n λ 4 (n ) λ 4 = λ La distancia entre dos nodos consecutivos será: d v = (n + 1) λ 4 (n 1) λ 4 = λ Y la distancia entre un vientre y un nodo consecutivos será: d vn = n λ 4 (n 1) λ 4 = λ 4 8

9 Formulario Velocidad de propagación λ = v p T Ecuación de una onda armónica y(x,t) = Asen(ωt ± kx + ϕ 0 ) Cuando la onda se propaga en sentido positivo del eje x la fórmula lleva el signo - y cuando se propaga en sentido negativo se usa el signo +. A = amplitud (m) ω = π f = pulsación (rad / s) k = π λ = número de onda ( m 1 ) ϕ 0 = fase inicial T= 1 f = periodo (s) λ = longitud de onda, que es la distancia mínima entre dos puntos que están en fase ( tienen el mismo estado de vibración ). Si dos puntos están en fase d =πn = nλ Si dos puntos están en oposición de fase d = (n + 1)π = (n + 1) λ Energía de una onda mecánica E c = 1 mv E p = 1 ky E m = π ma f = 1 mω A Potencia de una onda I = P S = E S t En el caso de ondas esféricas se tiene que I = P 4π R y además: 9

10 I 1 = R I R 1 A 1 A = R R 1 Diferencia de fase entre dos puntos Δϕ = (ωt kx 1 + ϕ 0 ) (ωt kx + ϕ 0 ) = k(x x 1 ) Medida de la intensidad sonora Se establece una escala logarítmica y el nivel se mide en decibelios (db) β = 10log I I 0 β = nivel de intensidad sonora (db) I = Intensidad del sonido ( W / m ) I 0 = intensidad umbral por debajo de la cual los sonidos no se oyen. Para el oído humano I 0 = 10 1 W / m Interferencia de ondas coherentes Dos ondas armónicas son coherentes si están en fase o la diferencia de fase es constante. y 1 = Asen(ωt kx 1 ) y = Asen(ωt kx ) = A'sen ωt k x + x 1 con A'=Acos k x x 1 La interferencia será totalmente constructiva cuando la diferencia de caminos recorrida sea un número entero de longitudes de onda o la diferencia de fase sea un número par de π. x x 1 = nλ Δϕ = nπ La interferencia será totalmente destructiva cuando la diferencia de caminos recorrida sea un número impar de semilongitudes de onda o cuando la diferencia de fase sea un número impar de π. x x 1 = (n + 1) λ Δϕ = (n + 1)π Interferencia de ondas estacionarias 10

11 Es la interferencia de ondas idénticas que se propagan en sentidos contrarios: ( ) y 1 = Asen ωt kx y = Asen(ωt + kx) = A'sen( ωt) con A'=Acos(kx) Nótese que el resultado de la interferencia no es una onda puesto que la elongación no depende de x y para ser onda debe depende de x y t. La amplitud será máxima (vientres) cuando: x = n λ 4 La amplitud será mínima (nodos) cuando x = (n + 1) λ 4 La distancia entre dos vientres consecutivos es: d v = λ La distancia entre dos nodos consecutivos es: d n = λ La distancia entre un nodo y un vientre consecutivo es: d vn = λ 4 11

TEMA 5- MOVIMIENTOS ONDULATORIOS

TEMA 5- MOVIMIENTOS ONDULATORIOS TEMA 5- MOVIMIENTOS ONDULATORIOS 5.1.- Movimiento ondulatorio: ONDAS. Un movimiento ondulatorio es una forma de transmisión de energía y movimiento por el medio, sin transporte neto de materia. Ø Perturbación

Más detalles

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s.

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s. Ejercicio 1 Soluciones Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal

Más detalles

Bárbara Cánovas Conesa. Concepto de Onda

Bárbara Cánovas Conesa. Concepto de Onda Bárbara Cánovas Conesa 637 720 113 www.clasesalacarta.com 1 Movimientos Armónicos. El Oscilador Armónico Concepto de Onda Una onda es una forma de transmisión de la energía. Es la propagación de una perturbación

Más detalles

FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO RESUMEN CARACTERÍSTICAS GENERALES DE LAS ONDAS

FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO RESUMEN CARACTERÍSTICAS GENERALES DE LAS ONDAS Física º Bachillerato Movimiento Ondulatorio - FÍSICA - º BACHILLERATO MOVIMIENTO ONDULATORIO RESUMEN CARACTERÍSTICAS GENERALES DE LAS ONDAS. Una onda es una perturbación que se propaga de un punto a otro

Más detalles

OSCILADOR ARMONICO: partícula con M.A.S. ECUACION DEL M.A.S: x = A sen (ω t+ φ 0 )

OSCILADOR ARMONICO: partícula con M.A.S. ECUACION DEL M.A.S: x = A sen (ω t+ φ 0 ) ONDAS. M.A.S: Tipo de movimiento oscilatorio que tienen los cuerpos que se mueven por acción de una fuerza restauradora: F=-k x OSCILADOR ARMONICO: partícula con M.A.S ECUACION DEL M.A.S: x = A sen (ω

Más detalles

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo.

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo. 1. CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través de los sentidos de la vista y del oído. Ambos son estimulados por medio de ondas de diferentes

Más detalles

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia:

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia: y : posición vertical www.clasesalacarta.com 1 Concepto de Onda ema 8.- Movimiento Ondulatorio. Ondas Mecánicas Onda es una forma de transmisión de la energía. Es la propagación de una perturbación en

Más detalles

MOVIMIENTO ONDULATORIO EL SONIDO

MOVIMIENTO ONDULATORIO EL SONIDO transparent www.profesorjrc.es MOVIMIENTO ONDULATORIO EL SONIDO 15 de enero de 2017 TIPOS DE ONDAS { MECÁNICAS ENERGÍA PROPAGACIÓN ELECTROMAGNÉTICAS { LONGITUDINALES DIRECCIÓN PROPAGACIÓN y VIBRACIÓN TRANSVERSALES

Más detalles

Un movimiento ondulatorio, una onda, es la propagación de una perturbación, sin transporte

Un movimiento ondulatorio, una onda, es la propagación de una perturbación, sin transporte Movimiento Ondulatorio 1 Movimiento Ondulatorio Un movimiento ondulatorio, una onda, es la propagación de una perturbación, sin transporte neto de materia, pero con transporte de energía. 2 Clases de Ondas

Más detalles

ONDAS. José Luis Rodríguez Blanco

ONDAS. José Luis Rodríguez Blanco ONDAS José Luis Rodríguez Blanco MOVIMIENTO ONDULATORIO Propagación de una perturbación con transferencia de energía y momento lineal, pero sin transporte de materia Los puntos alcanzados por la perturbación

Más detalles

BLOQUE II: VIBRACIONES Y ONDAS

BLOQUE II: VIBRACIONES Y ONDAS BLOQUE II: VIBRACIONES Y ONDAS TEMA 7: MOVIMIENTO ARMÓNICO SIMPLE Una partícula tiene una MAS cuando oscila alrededor de una posición de equilibrio bajo la acción de fuerzas restauradoras que son proporcionales

Más detalles

F2Bach 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. E cuac ó ió d n e l as on as arm

F2Bach 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. E cuac ó ió d n e l as on as arm F Bach Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales i 4. Propiedad importante de la

Más detalles

FISICA 2º BACHILLERATO MOVIMIENTO ONDULATORIO

FISICA 2º BACHILLERATO MOVIMIENTO ONDULATORIO A) Movimiento Ondulatorio. Características El movimiento ondulatorio es la propagación de un movimiento oscilatorio en el seno de un medio elástico a través de sus partículas, las cuales, oscilan y obligan

Más detalles

ONDAS Y SONIDO JUNIO 1997: 1.- SEPTIEMBRE

ONDAS Y SONIDO JUNIO 1997: 1.- SEPTIEMBRE ONDAS Y SONIDO JUNIO 1997: 1.- Explica el efecto Doppler. SEPTIEMBRE 1997: 2.- La ecuación de una onda que se propaga por una cuerda es y(x,t) = 5 sen (0.628t 2.2x), donde x e y vienen dados en metros

Más detalles

2. Movimiento ondulatorio (I)

2. Movimiento ondulatorio (I) 2. Movimiento ondulatorio (I) Onda Pulso Tren de ondas Según la energía que propagan Tipos de onda Número de dimensiones en que se propagan: unidimensionales, bidimensionales y tridimensionales Relación

Más detalles

Unidad 8. J.M.L.C. - Chena - IES Aguilar y Cano. Vibraciones y ondas. Movimiento ondulatorio.

Unidad 8. J.M.L.C. - Chena - IES Aguilar y Cano. Vibraciones y ondas. Movimiento ondulatorio. Unidad 8 Vibraciones y ondas chenalc@gmail.com Una onda consiste en el movimiento de la propagación de una perturbación sin que exista transporte neto de materia. En una onda se propaga energía pero no

Más detalles

PROBLEMAS. Una onda transversal se propaga por una cuerda según la ecuación:

PROBLEMAS. Una onda transversal se propaga por una cuerda según la ecuación: PROBLEMAS Ejercicio 1 Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 1. Descripción física y clasificación de los fenómenos ondulatorios. 2. Ondas monodimensionales armónicas. 3. Ecuación del movimiento ondulatorio. 4. Intensidad de una onda. 5. Fenómenos

Más detalles

ONDAS MECANICAS. Docente Turno 14: Lic. Alicia Corsini

ONDAS MECANICAS. Docente Turno 14: Lic. Alicia Corsini ONDAS MECANICAS Docente Turno 4: MOVIMIENTO ONDULATORIO: CONSTRUCCION DEL MODELO: MATERIA DEFORMABLE O ELASTICA POR DONDE SE PROPAGAN LAS ONDAS MECANICAS Las ondas de agua las ondas sonoras son ejemplos

Más detalles

BACHILLERATO FÍSICA 6. MOVIMIENTO ONDULATORIO. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA 6. MOVIMIENTO ONDULATORIO. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA 6. MOVIMIENTO ONDULATORIO R. Artacho Dpto. de Física y Química 6. MOVIMIENTOS ONDULATORIO Índice CONTENIDOS 1. Concepto de onda 2. Propagación de ondas mecánicas 3. Ondas armónicas

Más detalles

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 ONDAS 1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 Å. a) Calcular la longitud de onda; b) Escribir la ecuación de onda correspondiente. (1 Å = 10-10 m; v sonido = 340

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 1. Ondas. 2. Propagación de ondas mecánicas. 3. Parámetros del movimiento ondulatorio. 4. Ondas armónicas. 5. Energía del movimiento ondulatorio. 6. El sonido. Física 2º Bachillerato

Más detalles

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física.

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física. ONDAS Los fenómenos ondulatorios aparecen en todas las ramas de la Física. El movimiento ondulatorio se origina cuando una perturbación se propaga en el espacio. No hay transporte de materia pero si de

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Una onda consiste en el movimiento de la propagación de una perturbación sin que exista transporte neto de materia. En una onda se propaga energía pero no materia. Pero aunque no sea materia sí puede interaccionar

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

F2 Bach. Movimiento ondulatorio

F2 Bach. Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales 4. Propiedad importante de la ecuación de ondas armónica 5.

Más detalles

Física 2º Bach. Ondas 10/12/04

Física 2º Bach. Ondas 10/12/04 Física º Bach. Ondas 10/1/04 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [6 PTOS.] 1. Una partícula de 600 g oscila con M.A.S. Se toma como origen de tiempos el instante en que pasa por el origen

Más detalles

Necesitan un medio elástico (sólido, líquido o gaseoso) para propagarse.

Necesitan un medio elástico (sólido, líquido o gaseoso) para propagarse. ONDAS Una onda es una perturbación que se propaga desde el punto en que se produjo, a través del espacio transportando energía y no materia. El medio perturbado puede ser de naturaleza diversa como aire,

Más detalles

Física A.B.A.U. ONDAS 1 ONDAS

Física A.B.A.U. ONDAS 1 ONDAS Física A.B.A.U. ONDAS 1 ONDAS PROBLEMAS 1. La ecuación de una onda transversal que se propaga en una cuerda es y(x, t) = 10 sen π(x 0,2 t), donde las longitudes se expresan en metros y el tiempo en segundos.

Más detalles

TEMA: MOVIMIENTO ONDULATORIO

TEMA: MOVIMIENTO ONDULATORIO TEMA: MOVIMIENTO ONDULATORIO C-J-0 Escriba la expresión matemática de una onda armónica unidimensional como una función de x (distancia) y t (tiempo) y que contenga las magnitudes indicadas en cada uno

Más detalles

Movimiento Ondulatorio

Movimiento Ondulatorio Movimiento Ondulatorio 1. El sonido emitido por un altavoz tiene un nivel de intensidad de 60 db a una distancia de 2 m de él. Si el altavoz se considera como una fuente puntual, determine: a) La potencia

Más detalles

FENÓMENOS ONDULATORIOS

FENÓMENOS ONDULATORIOS FENÓMENOS ONDULATORIOS 1.- Halla la velocidad de propagación de un movimiento ondulatorio sabiendo que su longitud de onda es 0,25 m y su frecuencia es 500 Hz. R.- 125 m/s. 2.- La velocidad del sonido

Más detalles

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO 1 INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través

Más detalles

MOVIMIENTO VIBRATORIO MOVIMIENTO ARMÓNICO SIMPLE (MAS)

MOVIMIENTO VIBRATORIO MOVIMIENTO ARMÓNICO SIMPLE (MAS) UD 4 VIBRACIONES Y ONDAS 4.1 MOVIMIENTO VIBRATORIO MOVIMIENTO VIBRATORIO Un movimiento vibratorio es aquel en el que el objeto se mueve de forma regular de un lado a otro sobre la misma trayectoria. Cada

Más detalles

dy v 4 cos 100 t 20 x v 4 ms a 400 sen 100 t 20 x a 400 T 0,686 s f 1,46 s k 2,617 m 2 f 9,173rad s v

dy v 4 cos 100 t 20 x v 4 ms a 400 sen 100 t 20 x a 400 T 0,686 s f 1,46 s k 2,617 m 2 f 9,173rad s v 01. Una onda transversal se propaga a lo largo de una cuerda horizontal, en el sentido negativo del eje de abscisas, siendo 10 cm la distancia mínima entre dos puntos que oscilan en fase. Sabiendo que

Más detalles

FÍSICA. 2º BACHILLERATO. BLOQUE II. VIBRACIONES Y ONDAS. Examen 2

FÍSICA. 2º BACHILLERATO. BLOQUE II. VIBRACIONES Y ONDAS. Examen 2 Examen 2 1. Diga si es cierto o falso y razone la respuesta: La frecuencia con la que se percibe un sonido no depende de la velocidad del foco emisor. 2. Dibujar, superponiendo en la misma figura, dos

Más detalles

EJERCICIOS ONDAS PAU

EJERCICIOS ONDAS PAU EJERCICIOS ONDAS PAU 1 Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y una amplitud de 5 cm. Cuando se añade otra masa, de 300 g, la frecuencia de oscilación es de 0,5

Más detalles

Ondas. 1 El concepto general de movimiento ondulatorio

Ondas. 1 El concepto general de movimiento ondulatorio 1 El concepto general de movimiento ondulatorio Al desplazar un trozo del muelle en sentido longitudinal y soltarlo, se produce una oscilación que se propaga a todas las partes del muelle comenzando a

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

RESUMEN DE FÍSICA - 2º BACH.

RESUMEN DE FÍSICA - 2º BACH. pg. 1 de 6 RESUMEN DE FÍSIC - 2º BCH. PRTE I Emiliano G. Flores egonzalezflores@educa.madrid.org Este documento contiene un resumen de los conceptos y expresiones matemáticas más significativas de la materia

Más detalles

TEMA 5.- Vibraciones y ondas

TEMA 5.- Vibraciones y ondas TEMA 5.- Vibraciones y ondas CUESTIONES 41.- a) En un movimiento armónico simple, cuánto vale la elongación en el instante en el que la velocidad es la mitad de su valor máximo? Exprese el resultado en

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO ELVER ANTONIO RIVAS CÓRDOBA MOVIMIENTO ONDULATORIO El movimiento ondulatorio se manifiesta cuando la energía que se propaga en un medio elástico produce movimientos que lo cambian. Para describir una onda

Más detalles

UNIDAD 1 REPASO SOBRE ONDAS ELECTROMAGNETICAS

UNIDAD 1 REPASO SOBRE ONDAS ELECTROMAGNETICAS UNIDAD 1 REPASO 01: DE OSCILACIONES Y ONDAS REPASO SOBRE ONDAS ELECTROMAGNETICAS Una vibración u oscilación es un vaivén en el tiempo. Un vaivén tanto en el espacio como en el tiempo es una onda. Una onda

Más detalles

Movimiento ondulatorio Ondas armónicas

Movimiento ondulatorio Ondas armónicas Ondas armónicas IES La Magdalena. Ailés. Asturias Una onda es una perturbación que se propaga. Con la palabra perturbación se quiere indicar cualquier tipo de alteración del medio: una ondulación en una

Más detalles

(x Vt) ξ 1. = f 1. ξ 2. = f 2. (x Vt)+ f 2 que puede comprobarse que satisface la ecuación diferencial de ondas d 2 ξ dt 2. + ξ 2.

(x Vt) ξ 1. = f 1. ξ 2. = f 2. (x Vt)+ f 2 que puede comprobarse que satisface la ecuación diferencial de ondas d 2 ξ dt 2. + ξ 2. 1 3.5-1 Principio de superposición de ondas Cuando en un medio material no dispersivo se propagan diferentes ondas originadas por focos emisores distintos, sus efectos se superponen y la elongación de

Más detalles

Movimientos vibratorio y ondulatorio.-

Movimientos vibratorio y ondulatorio.- Movimientos vibratorio y ondulatorio.- 1. Una onda armónica, en un hilo tiene una amplitud de 0,015 m. una longitud de onda de 2,4 m. y una velocidad de 3,5 m/s. Determine: a) El período, la frecuencia

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

FENÓMENOS ONDULATORIOS

FENÓMENOS ONDULATORIOS FENÓMENOS ONDULATORIOS 1. Superposición de ondas. 2. Ondas estacionarias. 3. Pulsaciones. 4. Principio de Huygens. 5. Difracción. 6. Refracción. 7. Reflexión. 8. Efecto Doppler. Física 2º Bachillerato

Más detalles

Tema 6: Movimiento ondulatorio.

Tema 6: Movimiento ondulatorio. Tema 6: Movimiento ondulatorio. 1. Ondas: conceptos generales. 2. Estudio cualitativo de algunas ondas. Fenómenos ondulatorios más evidentes en cada una: a) Ondas en una cuerda b) Ondas en la superficie

Más detalles

EJERCICIOS DE SELECTIVIDAD ONDAS

EJERCICIOS DE SELECTIVIDAD ONDAS EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,

Más detalles

FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO - HOJA 1

FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO - HOJA 1 FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO - HOJA 1 1. Una onda transversal se propaga por una cuerda según la ecuación: y( x, = 0,4 cos(100t 0,5x) en unidades SI. Calcula: a) la longitud de onda

Más detalles

ALGUNAS PROPIEDADES DE LAS ONDAS.

ALGUNAS PROPIEDADES DE LAS ONDAS. ALGUNAS PROPIEDADES DE LAS ONDAS. Principio de Huygens. El método de Huygens permite obtener el frente de onda que se produce en un instante a partir del frente de onda que se ha producido en un instante

Más detalles

ONDAS. Modelo Pregunta 2B.- La función matemática que representa una onda transversal que avanza

ONDAS. Modelo Pregunta 2B.- La función matemática que representa una onda transversal que avanza ONDAS Junio 2013. Pregunta 1A.- Una onda transversal, que se propaga en el sentido positivo del eje X, tiene una velocidad de propagación de 600 m s 1 y una frecuencia de 500 Hz. a) La mínima separación

Más detalles

tg φ 0 = sen φ 0 v máx = d A sen(ω t + ϕ 0 )

tg φ 0 = sen φ 0 v máx = d A sen(ω t + ϕ 0 ) PROBLEMAS DE FÍSICA º BACHILLERATO (PAU) Vibración y ondas 4/09/03. Pueden tener el mismo sentido el desplazamiento y la aceleración en un oscilador armónico simple?. En un oscilador armónico que tiene

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: FENÓMENOS ONDULATORIOS GUÍA: 1201 ESTUDIANTE: E-MAIL: FECHA: MOVIMIENTO ARMÓNICO SIMPLE En las preguntas 1 a 10, el enunciado es una afirmación seguida de la palabra

Más detalles

MOVIMIENTO ONDULATORIO.

MOVIMIENTO ONDULATORIO. Síntesis Física º Bach. Ondas. O - MOVIMIENTO ONDULTORIO. Ondas. Una onda es una perturbación que se propaga entre dos puntos sin transporte de materia, pero sí de energía y momento. Supongamos que dicha

Más detalles

TEMA 2. ONDAS. 1. Definición de onda.

TEMA 2. ONDAS. 1. Definición de onda. TEMA 2. ONDAS ÍNDICE 1. Definición de onda. 2. Tipos de ondas. 2.1. Según el medio de propagación. 2.2. Según la forma de propagación. 2.3. Número de dimensiones de propagación. 3. Ondas armónicas. 3.1.

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Unidad Didáctica 6 Movimiento ondulatorio 1.- Concepto de onda. Una onda es la propagación de energía entre dos puntos de un medio, sin que exista transmisión de materia entre dichos puntos. Ejemplos:

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

ONDAS. m s. ; b) 3m; 40π. SOL: a) 100 Hz; 2 π

ONDAS. m s. ; b) 3m; 40π. SOL: a) 100 Hz; 2 π ONDAS. 1. Considere la siguiente ecuación de una onda : y ( x, t ) = A sen ( b t - c x ) ; a. qué representan los coeficientes A, b, c? ; cuáles son sus unidades? ; b. qué interpretación tendría que la

Más detalles

a) Ondas Mecánicas: Son todas aquellas ondas que necesitan de un medio material para propagarse y existir.

a) Ondas Mecánicas: Son todas aquellas ondas que necesitan de un medio material para propagarse y existir. Onda: Propagación de una perturbación a través de un medio material o del vacío, las ondas al propagarse no transportan materia solo transportan energía. Clasificación de la Ondas Las ondas al igual que

Más detalles

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N? FÍSICA 2º DE BACHILLERATO PROBLEMAS DE ONDAS 1.- De las funciones que se presentan a continuación (en las que todas las magnitudes están expresadas en el S.I.), sólo dos pueden representar ecuaciones de

Más detalles

ONDAS. Modelo Pregunta 2A.-

ONDAS. Modelo Pregunta 2A.- ONDAS Modelo 2018. Pregunta 2B.- En el extremo izquierdo de una cuerda tensa y horizontal se aplica un movimiento armónico simple perpendicular a la cuerda, y como consecuencia, por la cuerda se propaga

Más detalles

Tema 12: Movimiento ondulatorio

Tema 12: Movimiento ondulatorio Tema 12: Movimiento ondulatorio FISICA I, 1º, Grado en Ingeniería Electrónica, Robótica y Mecatrónica Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Razona la veracidad o la falsedad de la siguiente proposición: «En el movimiento ondulatorio hay transporte de materia y de energía». La proposición es falsa. En el

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS INTRODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición.

Más detalles

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro.

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro. Movimiento ondulatorio Cuestiones 1) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda, se propaga por una

Más detalles

Ondas. Fisica II para Ing. en Prevención de Riesgos Sem. I 2011 JMTB

Ondas. Fisica II para Ing. en Prevención de Riesgos Sem. I 2011 JMTB Unidad II - Ondas Te has preguntado cómo escuchamos? Cómo llega la señal de televisión o de radio a nuestra casa? Cómo es posible que nos comuniquemos por celular? Cómo las ballenas se comunican entre

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández MAS Estudio dinámico y cinemático 1. (90-J11) Una pequeña plataforma horizontal sufre un movimiento armónico simple en sentido vertical, de 3 cm de amplitud y cuya frecuencia aumenta progresivamente. Sobre

Más detalles

dv a cos(24 t 5 x) a 11,37m s dt

dv a cos(24 t 5 x) a 11,37m s dt Moimientos periódicos 0. Una onda transersal y sent k x tiene una frecuencia de 50 Hz y se desplaza con una elocidad de 0, m/s. En el instante inicial la elocidad de la partícula situada en el origen tiene

Más detalles

Ondas: movimiento y sonido

Ondas: movimiento y sonido FÍSICA UNIDAD 5 Ondas: movimiento y sonido Distinguir los tipos de movimiento ondulatorio. Identificar los elementos de una onda. Describir las características del sonido. Las ondas son perturbaciones

Más detalles

Problemas de Movimiento ondulatorio. Sonido 2º de bachillerato. Física

Problemas de Movimiento ondulatorio. Sonido 2º de bachillerato. Física Problemas de Movimiento ondulatorio. Sonido 2º de bachillerato. Física 1. Una onda transversal se propaga a lo largo de una cuerda horizontal, en el sentido negativo del eje de abscisas, siendo 10 cm la

Más detalles

Ondas Sonoras. Aplicaciones Terapéuticas

Ondas Sonoras. Aplicaciones Terapéuticas Ondas Sonoras. Aplicaciones Terapéuticas Matías Enrique Puello Chamorro www.matiaspuello.wordpress.com 4 de junio de 2014 Índice 1. Ondas 2 2. Clasificación de las ondas 3 2.1. Clasificación Según el medio

Más detalles

Clase Nº 2 PSU Ciencias: Física. Ondas I - Conceptos. Profesor: Cristian Orcaistegui.

Clase Nº 2 PSU Ciencias: Física. Ondas I - Conceptos. Profesor: Cristian Orcaistegui. Clase Nº 2 PSU Ciencias: Física Ondas I - Conceptos Profesor: Cristian Orcaistegui c.orcaisteguiv@gmail.com Ondas 1. Oscilaciones Se dice que una partícula o cuerpo está oscilando cuando efectúa un movimiento

Más detalles

Ejercicios de Movimiento Ondulatorio de PAU, PAEG y EVAU

Ejercicios de Movimiento Ondulatorio de PAU, PAEG y EVAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO 5 MOVIMIENTO ONDULATORIO 5.. EL MOVIMIENTO ONDULATORIO. Indica cómo podemos comprobar que, cuando una onda se propaga por una cuerda, hay transporte de energía, pero no transporte de materia. Un procedimiento

Más detalles

dy v 4 cos 100 t 20 x v a 400 sen 100 t 20 x amax dt

dy v 4 cos 100 t 20 x v a 400 sen 100 t 20 x amax dt Moimientos periódicos 01. Una onda transersal se propaga a lo largo de una cuerda horizontal, en el sentido negatio del eje de abscisas, siendo 10 cm la distancia mínima entre dos puntos que oscilan en

Más detalles

dv a cos(24 t 5 x) a 11,37m s dt

dv a cos(24 t 5 x) a 11,37m s dt Moimiento ondulatorio 0. Una onda transersal y sent k x tiene una frecuencia de 50 Hz y se desplaza con una elocidad de 0, m/s. En el instante inicial la elocidad de la partícula situada en el origen tiene

Más detalles

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro.

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro. Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

2.- MOVIMIENTO ONDULATORIO

2.- MOVIMIENTO ONDULATORIO .- MOVIMIENTO ONDULATORIO.1- Movimiento ondulatorio En la naturaleza la energía se transmite de dos formas: (1) Mediante cuerpos que se desplazan > transporte de energía y materia: Cuerpo en reposo + energía

Más detalles

ONDAS I. Onda Es una perturbación que viaja a través del espacio o en un medio elástico, transportando energía sin que haya desplazamiento de masa.

ONDAS I. Onda Es una perturbación que viaja a través del espacio o en un medio elástico, transportando energía sin que haya desplazamiento de masa. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-23 ONDAS I La naturaleza que nos rodea la percibimos a través de nuestros sentidos, principalmente del oído y la vista. Al pulsar una cuerda de guitarra o al encender

Más detalles

Tema 10: Movimiento ondulatorio*

Tema 10: Movimiento ondulatorio* Tema 10: Movimiento ondulatorio* Física I Grado en Ingeniería Electrónica, Robótica y Mecatrónica (GIERM) Primer Curso *Prof.Dr. Joaquín Bernal Méndez y Prof.Dra. Ana Mª Marco Ramírez 1 Índice Introducción

Más detalles

ONDAS.- La ecuación de un movimiento ondulatorio transversal que se propaga de derecha a izquierda podría ser: A) y = Asen ( ωt kx) B) y = Asen π ( ωt kx) y = Asen ωt + kx C) ( ) t x D) y = Asen + T λ.-

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

y A sen t, en donde: ; T T

y A sen t, en donde: ; T T Los movimientos periódicos son aquellos en los que cada cierto tiempo se repiten los valores de posición, velocidad y aceleración. A ese intervalo de tiempo se le llama periodo. El movimiento circular

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1. Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

Si se produce una perturbación en un punto: cómo se propaga hacia otros puntos del espacio?

Si se produce una perturbación en un punto: cómo se propaga hacia otros puntos del espacio? 2º Bachillerato: Ondas (generalidades) 1. Concepto de onda Cuando se produce una variación de una magnitud física en un punto del espacio, se produce una perturbación (del equilibrio). Por ejemplo, se

Más detalles

CUESTIONES DE ONDAS. 2) Explique la doble periodicidad de las ondas armónicas e indique las magnitudes que las describen.

CUESTIONES DE ONDAS. 2) Explique la doble periodicidad de las ondas armónicas e indique las magnitudes que las describen. CUESTIONES DE ONDAS 2017 1) Considere la siguiente ecuación de las ondas que se propagan en una cuerda: y(x,t) = A sen (Bt ± Cx). Qué representan los coeficientes A, B y C? Cuáles son sus unidades en el

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Movimiento ondulatorio Física I Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez/Ana Mª Marco Ramírez Curso 013/014 Dpto.Física Aplicada III Universidad de Sevilla Índice

Más detalles

DEPARTAMENTO DE FÍSICA COLEGIO "LA ASUNCIÓN"

DEPARTAMENTO DE FÍSICA COLEGIO LA ASUNCIÓN COLEGIO "LA ASUNCIÓN" 1(8) Ejercicio nº 1 La ecuación de una onda armónica es: Y = 0 02 sen (4πt πx) Estando x e y expresadas en metros y t en segundos: a) Halla la amplitud, la frecuencia, la longitud

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

Vibraciones y ondas. Cap. 11 y 12, 22 Giancoli 6ta- ed-

Vibraciones y ondas. Cap. 11 y 12, 22 Giancoli 6ta- ed- Vibraciones y ondas Cap. 11 y 12, 22 Giancoli 6ta- ed- Contenido Definiciones Clasificación Descripción de las ondas Energía transportada por las ondas Movimiento armónico simple Fenómenos ondulatorios

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Cuestiones Movimiento ondulatorio 1. a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda, λ, se propaga por una

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS PROBLEMAS M.A.S. 1. De un resorte elástico de constante k = 500 N m -1 cuelga una masa puntual de 5 kg. Estando el conjunto en equilibrio, se desplaza

Más detalles

1. Las gráficas nos informan

1. Las gráficas nos informan Nombre y apellidos: Puntuación: 1. Las gráficas nos informan Una partícula de 50 g de masa está realizando un movimiento armónico simple. La figura representa la elongación en función del tiempo. 0,6 0,5

Más detalles