Álgebra I Práctica 3 - Números enteros (Parte 1)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Álgebra I Práctica 3 - Números enteros (Parte 1)"

Transcripción

1 FCEyN - UBA - Curso de Verao 016 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c y b c, ii 4 a a, iii a b a ó b, iv 9 a b 9 a ó 9 b, v a b + c a b ó a c, vi a c y b c a b c, vii a b a b, viii a b a b, ix a b + a a b, x a b a b, N.. Hallar todos los N tales que i , ii 3 5 8, iii , iv Hallar todos los Z tales que Sea a, b Z. i Probar que a b a b para todo N y a b Z. (c.f. Ejercicio 5 Práctica. ii Probar que si es u úmero atural par y a b, etoces a + b a b. iii Probar que si es u úmero atural impar y a b, etoces a + b a + b. 5. Sea a u etero impar. Probar que + a 1 para todo N. 6. Sea N. Probar que i si 1 y ( 1! + 1 etoces es primo ii si es compuesto, etoces 1 es compuesto. (Los primos de la forma p 1 para p primo se llama primos de Mersee, por Mari Mersee, moje y filósofo fracés, Se cojetura que existe ifiitos primos de Mersee, pero aú o se sabe. Hasta hoy, abril 015, se cooce 48 primos de Mersee. El más grade producido hasta ahora es , que tiee dígitos, y es el úmero primo más grade coocido a la fecha. iii si + 1 es primo, etoces es ua potecia de. (Los úmeros de la forma F = + 1 se llama úmeros de Fermat, por Pierre de Fermat, juez y matemático fracés, Fermat cojeturó que cualquiera sea N {0}, F era primo, pero esto resultó falso: los primeros F 0 = 3, F 1 = 5, F = 17, F 3 = 57, F 4 = 65537, so todos primos, pero F 5 = = Hasta ahora o se cooce más primos de Fermat que los 5 primeros mecioados Probar que i El producto de eteros cosecutivos es divisible por! ( ii es divisible por, iii. (i 1 es divisible por! iv i=1 ( que ( ( = ( + ( ( + 1. es divisible por + 1 (sugerecia: probar que ( + 1 ( ( = ( y observar 1

2 Álgebra I Práctica 3 Págia 8. Probar que las siguietes afirmacioes so verdaderas para todo N i , ii , iii , iv Calcular el cociete y el resto de la divisió de a por b e los casos i a = 133, b = 14, ii a = 13, b = 111, iii a = 3b + 7, b 0, iv a = b 6, b 0, v a = + 5, b = + ( N, vi a = + 3, b = + 1 ( N. 10. Sabiedo que el resto de la divisió de u etero a por 18 es 5, calcular el resto de i la divisió de a 3a + 11 por 18, ii la divisió de a por 3, iii la divisió de 4a + 1 por 9, iv la divisió de a + 7 por 36, v la divisió de 7a + 1 por 8, vi la divisió de 1 3a por i Determiar todos los a, b Z coprimos tales que b + 4 a + 5 b Z. ii Determiar todos los a, b Z coprimos tales que 9a b + 7a b Z. iii Determiar todos los a Z tales que a + 3 a a + Z. 4 ( 1k iv Determiar todos los k N tales que divide a 1k Máximo comú divisor y ecuacioes diofáticas ( 3k E cada uo de los siguietes casos calcular el máximo comú divisor etre a y b y escribirlo como combiació lieal etera de a y b:. i a = 53, b = 63, ii a = 5335, b = 110, iii a = 131, b = 3, iv a = + 1, b = + ( N. 13. Determiar, cuado exista, todos los (a, b Z que satisface i 5a + 8b = 3, ii 7a + 11b = 10 iii 4a + 14b = 7, iv 0a + 16b = 36 v 39a 4b = 6. vi 1555a 300b = Determiar todos los (a, b Z que satisface simultáeamete 4 a, 8 b y 33a + 9b = Si se sabe que cada uidad de u cierto producto A cuesta 39 pesos y que cada uidad de u cierto producto B cuesta 48 pesos, cuátas uidades de cada producto se puede comprar co 135 pesos? 16. Sea a, b Z. Sabiedo que el resto de dividir a a por b es 7 y que el resto de dividir b por 7 es 1, calcular (a : b. 17. i Cuátas veces hay que aplicar el algoritmo de divisió para calcular mediate el algoritmo de Euclides el máximo comú divisor (F +1 : F etre dos úmeros de Fiboacci cosecutivos? ii Existe úmeros b a N co b F que requiera más aplicacioes del algoritmo de divisió que los del iciso (i para calcular su máximo comú divisor (a : b? iii Dados b a N, cuál es la catidad máxima de veces que hay que aplicar el algoritmo de divisió para calcular (a : b mediate el algoritmo de Euclides, e térmios de b? FCEyN - UBA - Curso de Verao 016

3 Álgebra I Práctica 3 Págia Sea a Z. i Probar que (5a + 8 : 7a + 3 = 1 o 41. Exhibir u valor de a para el cual da 1, y verificar que efectivamete para a = 3 da 41. ii Probar que (a + 3a 1 : 5a + 6 = 1 o 43. Exhibir u valor de a para el cual da 1, y verificar que efectivamete para a = 16 da Sea a, b Z coprimos. Probar que 7a 3b y a b so coprimos. 0. Sea a, b Z co (a : b =. Probar que los valores posibles para (7a + 3b : 4a 5b so y 94. Exhibir valores de a y b para los cuales da y para los cuales da Sea a, b Z o ambos ulos. Probar que: i (c a : c b = c (a : b, c Z co c 0, ii (a : b = 1 y (a : c = 1 (a : bc = 1, iii (a : b = d y (a : c = 1 (a : bc = d, iv si (a : b = 1 etoces (a : b = 1, v (a : b = 1 (a : b m = 1,, m N, vi (a : b = d (a : b = d, N.. Sea N. Probar que i ( + 7 : 7 = 1, ii ( : = 3 ó 9, y dar u ejemplo para cada caso. iii ( : = ó 14, y dar u ejemplo para cada caso. 3. Sea a, b Z. Probar que si (a : b = 1 etoces (a b 3 : a + b = Sea a, b Z tales que (a : b = 5. i Calcular los posibles valores de (ab : 5a 10b y dar u ejemplo para cada uo de ellos. ii Para cada N, calcular (a 1 b : a + b. 5. Sea N coprimo co 10. Probar que existe u múltiplo de de la forma Sea a Z, a > 1 y sea, m N. i Probar que si r es el resto de la divisió de por m, etoces el resto de la divisió de a 1 por a m 1 es a r 1. ii Probar que (a 1 : a m 1 = a (:m El algoritmo de Euclides biario es ua variate del algoritmo de Euclides que sólo utiliza divisioes por, lo que resulta vetajoso si se opera co úmeros escritos e el sistema biario (como sucede e ua computadora, ya que e ese caso la divisió por es muy simple (cf. Ej. 54. i Sea a, b Z o ambos ulos. Probar las siguietes igualdades (a : b = a si b = 0 ( a : b si a es par y b es par ( a : b si a es par y b es impar ( a : b si a es impar y b es par ( a b : b si a es impar y b es impar FCEyN - UBA - Curso de Verao 016

4 Álgebra I Práctica 3 Págia 4 ii Diseñar u algoritmo para calcular el máximo comú divisor etre dos úmeros positivos e base a las idetidades ateriores, y probar que siempre termia (la correctitud está dada por el iciso (i. Por ejemplo, para calcular el máximo comú divisor etre 60 y 4, el algoritmo fucioaría de la maera siguiete: (60 : 4 = (30 : 1 = (1 : 15 = (3 : 15 = (15 : 3 = (6 : 3 = (3 : 3 = (0 : 3 = (3 : 0 = 3 = 6. (Si a y b está escritos e base, y es la catidad de bits del mayor de los dos úmeros, este algoritmo requiere a lo sumo del orde de operacioes bit, ya que e cada paso se divide u úmero por, y las restas y las divisioes por requiere recorrer todos los bits. Primos y factorizació 8. i Probar que u úmero atural es compuesto si y sólo si es divisible por algú primo positivo p. ii Determiar cuáles de los siguietes eteros so primos: 91, 09, 307, 791, 1001, iii Hallar todos los primos meores o iguales que Probar que existe ifiitos primos co resto 3 e la divisió por Probar que para todo N, 19( o es primo. 31. Decidir si existe eteros a y b o ulos que satisfaga i a = 8b, ii a = 3b 3, iii 7a = 11b. 3. Sea N,. Probar que si p es u primo positivo etoces p / Q. 33. i Calcular las máximas potecias de 3 y de 9 que divide a 77! ii Calcular la máxima potecia de 0 que divide a 81! iii Calcular la máxima potecia de 4 que divide a 81! iv Determiar e cuátos ceros termia el desarrollo decimal de 81! v Determiar e cuátos ceros termia el desarrollo e base 16 de 0! 34. Sea p u úmero primo y N. Sea p α la mayor potecia de p que divide a!. Probar que α = i=1 p i (la suma sólo tiee u úmero fiito de térmios o ulos. 35. Sea N y p u primo impar tal que 3 < p. Probar que p o divide a ( 36. Sea p y q primos positivos distitos y sea N. Probar que si p q a etoces p q a. ( p 37. Sea p primo positivo. Probar que si 0 < k < p, etoces p divide a. k 38. Sea p u primo positivo. Probar que p es múltiplo de p, para todo N. 39. Sea p u primo impar. Probar que si p a b, etoces p a p b p para todo N. 40. Teras Pitagóricas, S. VI A.C. So las teras (a, b, c de úmeros aturales que satisface a + b = c, o sea que se correspode co las logitudes de los catetos e hipoteusa de triágulos rectágulos co lados eteros.. FCEyN - UBA - Curso de Verao 016

5 Álgebra I Práctica 3 Págia 5 i Probar que si (a, b, c es ua tera pitagórica, etoces (ka, kb, kc es ua tera pitagórica, k N. ii Probar que si existe k N que divide a dos de los térmios, etoces divide tambié al tercero. iii Probar que existe ifiitas teras pitagóricas primitivas (aquellas dode a, b y c so coprimos que satisface que c = b + 1, como por ejemplo (3, 4, 5, (5, 1, 13 y (7, 4, 5. (Sug: Probar que el cojuto {1 0, 1, 3,... } coicide co el cojuto de los úmeros aturales impares, y cosiderar e él los cuadrados de los impares. iv Sea m > N. Probar que la siguiete es ua tera pitagórica a = m, b = m, c = m +. Probar que es primitiva si y solo si m y so coprimos, uo de los dos es impar y el otro par. v Caracterizació de todas las teras pitagóricas primitivas: (a Probar que c tiee que ser impar obligatoriamete (sug: tomar cogruecia módulo 4, y que etre a y b hay uo que es par y el otro que es impar. (b Sea a el impar y b el par. Probar que (c a : c + a = y de b = c a = (c a(c + a, deducir que c a = y c + a = m para algú < m N. Cocluir. 41. Determiar cuátos divisores positivos tiee 9000, y Y cuátos divisores e total? 4. Hallar la suma de los divisores positivos de y de Hallar el meor úmero atural tal que 655 sea u cuadrado. 44. Hallar todos los N tales que i ( : 945 = 63, ( : 1176 = 84 y 800, ii ( : 160 = 70 y tiee 30 divisores positivos. iii ( : 360 = 8, tiee 1 divisores positivos, y Hallar el meor úmero atural tal que ( : 3150 = 45 y tega exactamete 1 divisores positivos. 46. Hallar todos los N tales que i [ : 130] = 60. ii [ : 40] = Hallar todos los a, b Z tales que i (a : b = 10 y [ a : b ] = ii 3 a, (a : b = 0 y [a : b] = Hallar u úmero divisible por 13, cuya mitad sea u cuadrado perfecto, su tercera parte sea u cubo perfecto y su cuarta parte sea ua potecia cuarta perfecta. 49. Sea u etero. i Probar que o es etero. Sugerecia: cosiderar la mayor potecia de meor o igual a. ii Probar que o es etero. Sistemas de umeració 50. i Hallar el desarrollo e base de FCEyN - UBA - Curso de Verao 016

6 Álgebra I Práctica 3 Págia 6 (a 1365, (b 800, (c 3 13, (d ii Hallar el desarrollo e base 7 de 8575 iii Hallar el desarrollo e base 16 de 4074, 4064 y Sea a N 0. Probar que si el desarrollo e base 10 de a termia e k ceros etoces el desarrollo e base 5 de a termia e por lo meos k ceros. 5. i Cuáles so los úmeros aturales más chico y más grade que se puede escribir co exactamete dígitos e base d > 1? ii Probar que a N 0 tiee a lo sumo [log (a] + 1 bits cuado se escribe su desarrollo biario. (Para x R 0, [x] es la parte etera de x, es decir el mayor úmero atural (o cero que es meor o igual que x. 53. i Sea k = Calcular la catidad de cuetas que hay que hacer para calcular a k adaptado el algoritmo dividir y coquistar.(sugerecia: escribir k e base. ii Cuál es la máxima catidad de cuetas que hay que hacer para calcular a k para k N cualquiera, siguiedo ese mismo algoritmo? iii Cuál es la máxima catidad de cuetas que hay que hacer para calcular el -ésimo úmero de Fiboacci F de esta forma (co el modelo del Ejercicio 58 de la Práctica? 54. Sea a = (a d a d 1... a 1 a 0 u úmero escrito e base (o sea escrito e bits. Determiar simplemete cómo so las escrituras e base del úmero a y del úmero a/ cuado a es par, o sea las operacioes multiplicar por y dividir por cuado se puede. Esas operacioes se llama shift e iglés, o sea corrimieto, y so operacioes que ua computadora hace e forma secilla (comparar co el Ej. 37 de la Práctica Euciar y demostrar criterios de divisibilidad por 8, 9 y Sea f : N N ua fució defiida recursivamete por f(1 = 1, f(3 = 3, y para 1, 3 f( si es par f( = f( +1 1 f( 4 si 4 1 3f( 1 3 f( 4 si 4 3. Determie el úmero de eteros positivos 047 para los que f( =. 57. i Escribir a 10 e base y e base 5 para = 1,, 3, 4, 5 y 6. Qué feómeo observa? ii Hallar e fució de N la catidad de cifras del desarrollo de 10 e base y e base 5. iii Co la ayuda del ejercicio 53 de la Práctica, probar el feómeo observado e el item (i. 58. Probar que i o divide a!. ii si 1! etoces es potecia de. FCEyN - UBA - Curso de Verao 016

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

Álgebra I Práctica 4 - Números enteros (Parte 1)

Álgebra I Práctica 4 - Números enteros (Parte 1) Divisibilidad y úmeros primos Álgebra I Práctica 4 - Números eteros (Parte 1) 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z: i) a b c a c y b c, ii) 4 a 2 2 a, iii) 2 a b 2 a ó

Más detalles

Álgebra I Práctica 2 - Números Naturales e Inducción

Álgebra I Práctica 2 - Números Naturales e Inducción FCEyN - UBA - Verao 07 Sumatoria Álgebra I Práctica - Números Naturales e Iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria: (a) + + 3 + 4 +... + 00 (b) + + 4 + 8 + 6 +...

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) Divisibilidad Álgebra I Práctica 3 - Números enteros (Parte 1 1. Decidir cuáles de las siguientes afirmaciones son verdaderas para todo a, b, c Z i a b c a c y b c, ii 4 a a, iii a b a ó b, iv 9 a b 9

Más detalles

Álgebra I Práctica 2 - Números naturales e inducción

Álgebra I Práctica 2 - Números naturales e inducción FCEyN - UBA - Segudo Cuatrimestre 203 Álgebra I Práctica 2 - Números aturales e iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria (a) + 2 + 3 + 4 + + 00, (b) + 2 + 4 + 8

Más detalles

Aritmética. Introducción. De la definición anterior se pueden deducir las siguientes propiedades:

Aritmética. Introducción. De la definición anterior se pueden deducir las siguientes propiedades: Aritmética Itroducció Bautizo: Decimos a divide a b (a factor de b, a es divisor de b, b es múltiplo de a, b es divisible por a) si existe u etero c tal que b=ac Lo aterior se simboliza como a b, e caso

Más detalles

ALGEBRA I - Práctica N 4 (Primera parte) - Primer cuatrimestre de Números enteros

ALGEBRA I - Práctica N 4 (Primera parte) - Primer cuatrimestre de Números enteros ALGEBRA I - Práctica N 4 (Primera parte) - Primer cuatrimestre de 2002 Números enteros Ejercicio. Dados a, b y c números enteros, decidir cuáles de las siguientes afirmaciones son verdaderas y cuáles son

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

Eje I: Números y Operaciones

Eje I: Números y Operaciones Colegio Provicial de Educació Secudaria Nº Gregorio Álvarez Maestro Patagóico C I C L O Eje I: Números y Operacioes L E C T I V O 0 1 8 ALUMNO: PROFESORA: MARÍA ELISA PALMAS Eje I: Números y Operacioes

Más detalles

Álgebra I Práctica 3 - Números Naturales e Inducción

Álgebra I Práctica 3 - Números Naturales e Inducción FCEyN - UBA - er cuatrimestre 06 Sumatoria Álgebra I Práctica 3 - Números Naturales e Iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria (a) + + 3 + 4 + + 00, (b) + + 4 +

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS

UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS I.E.S. Ramó Giraldo UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS. NÚMEROS REALES.. NÚMEROS NATURALES =,,, 4,... Operacioes iteras (el resultado es u úmero atural) - Suma y producto Operacioes eteras (el resultado

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común:

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común: PERIODO I FACTORIZACIÓN Factorizar es escribir o represetar ua expresió algebraica como producto de sus factores: Ejemplo: x 4 = (x + ) (x ) = (x + ) (x + ) (x ) Ua expresió queda completamete factorizada

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile 12.4. Raíces de la uidad Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Itroducció al Álgebra 08-1 Importate: Visita regularmete http://www.dim.uchile.cl/~algebra.

Más detalles

Hoja de Problemas Tema 3. (Sucesiones y series)

Hoja de Problemas Tema 3. (Sucesiones y series) Depto. de Matemáticas Cálculo (Ig. de Telecom.) Curso 23-24 Hoja de Problemas Tema 3 (Sucesioes y series) Sucesioes de úmeros reales. Sea {a } N, {b } N sucesioes de úmeros reales. Demostrar o refutar

Más detalles

Notas de Teórico. Sistemas de Numeración

Notas de Teórico. Sistemas de Numeración Departameto de Arquitectura Istituto de Computació Uiversidad de la República Motevideo - Uruguay Sistemas de umeració Arquitectura de Computadoras (Versió 4.3b - 6) SISTEMAS DE UMERACIÓ. Itroducció E

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS

PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS. Qué es cierto: 3 < 3 o 3 < 3? 2. Sea a 2 R tal que a 3 2a 2 0a = 20.

Más detalles

Fracciones. Prof. Maria Peiró

Fracciones. Prof. Maria Peiró Fraccioes Prof. Maria Peiró Recordemos Las partes de ua divisió so Dividedo Residuo divisor Cociete Defiició Ua fracció o querado, es ua divisió de la uidad e u determiado úmero de partes, de las cuales

Más detalles

Capítulo III Teoría de grupos

Capítulo III Teoría de grupos Capítulo III Teoría de grupos Tema 1. Leyes de composició iteras. 1.1 Leyes de composició iteras. Dado u cojuto A, se defie como Ley de composició itera defiida e A a toda aplicació, A A A ( x, y) x y

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA APLICADA. Temas 5 y 6 Sucesiones y Series. Series de Potencias

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA APLICADA. Temas 5 y 6 Sucesiones y Series. Series de Potencias Temas 5 y 6 Sucesioes y Series. Series de Potecias SUCESIONES E los siguietes problemas determie si la sucesió { } ecuetre el límite e caso de ser covergete..- { }.- { } = 5 a.- { } a 5.- { a} = + 9 a

Más detalles

ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 16 de julio de 2015 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:...

ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 16 de julio de 2015 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:... ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 6 de julio de 5 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:... Ejercicio Ejercicio Ejercicio Ejercicio 4 Ejercicio 5 NOTA Todas sus respuestas debe ser justificadas

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

Desigualdad entre las medias Aritmética y Geométrica

Desigualdad entre las medias Aritmética y Geométrica Desigualdad etre las medias Aritmética y Geométrica Jorge Tipe Villaueva Dados reales positivos a 1, a,..., a, defiimos la media aritmética de a 1, a,..., a como el úmero a 1 + a +... + a y la media geométrica

Más detalles

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES Lecció : POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES.1.- POTENCIA DE UNA FRACCIÓN Si se tiee e cueta que las fraccioes so cocietes idicados y que la potecia de u cociete es igual al cociete de potecias, se

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

Guía: Propiedades de las potencias SGUIC3M020MT311-A17V1

Guía: Propiedades de las potencias SGUIC3M020MT311-A17V1 Guía: Propiedades de las potecias SGUICM00MT11-A17V1 TABLA DE CORRECCIÓN PROPIEDADES DE LAS POTENCIAS Ítem Alterativa Dificultad Estimada 1 C Media D Media D Media 4 B Media 5 D Compresió Media 6 E Compresió

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

Álgebra I Práctica 2 - Números Naturales e Inducción

Álgebra I Práctica 2 - Números Naturales e Inducción Sumatoria Álgebra I Práctica - Números Naturales e Iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria (a) + + 3 + 4 + + 00, (b) + + 4 + 8 + 6 + + 04, (c) + ( 4) + 9 + ( 6)

Más detalles

bc (b) a b + c d = ad+bc a b = b a

bc (b) a b + c d = ad+bc a b = b a 1 Cojutos 1 Describa los elemetos de los siguietes cojutos A = { x x 1 = 0 } D = { x x 3 x + x = } B = { x x 1 = 0 } E = { x x + 8 = 9 } C = {x x + 8 = 9} F = { x x + 16x = 17 } Para los cojutos del ejercicio

Más detalles

[ ] ( ) ( ) ( ) ( ) = = RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN a a a RESOLUCIÓN SEMANA 9 TEORÍA DE LOS NÚMEROS NÚMEROS PRIMOS.

[ ] ( ) ( ) ( ) ( ) = = RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN a a a RESOLUCIÓN SEMANA 9 TEORÍA DE LOS NÚMEROS NÚMEROS PRIMOS. SEMAA 9 TEORÍA DE LOS ÚMEROS ÚMEROS PRIMOS. Sea A = 3...( 6) cifras Calcule si A tiee 444 divisores compuestos. A) 3 B) C) D) E) 6 A = 3 6 6 = 6 ( ) A = 3 + A = 3 CD( A) = 444 + 4 CD( A) = 448 ( A) ( )

Más detalles

No negatividad. Definición positiva. Propiedad multiplicativa. Desigualdad triangular. Identidad de indiscernibles. Desigualdad triangular

No negatividad. Definición positiva. Propiedad multiplicativa. Desigualdad triangular. Identidad de indiscernibles. Desigualdad triangular Repaso: Propiedades fudametales del Valor absoluto: x 0 x = 0 x = 0 xy = x y x + y x + y x = x x y = 0 x = y x y x z + z y x y x y No egatividad Defiició positiva Propiedad multiplicativa Desigualdad triagular

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potecias y raíces Tema : Potecias y raíces ESQUEMA DE LA UNIDAD.- Cocepto de potecia..- Potecias de expoete atural..- Potecias de expoete etero egativo..- Operacioes co potecias..- Notació cietífica...-

Más detalles

La sucesión de Lucas

La sucesión de Lucas a sucesió de ucas María Isabel Viggiai Rocha Cosideramos la sucesió umérica { } defiida por: - - si 3 y y 3. Esta sucesió es coocida como la sucesió de ucas y a sus térmios se los llama úmeros de ucas.

Más detalles

2. CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO)

2. CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO) Portal Fueterrebollo Cocurso Primavera Matemáticas: NIVEL IV (BACHILLERATO). CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO) 1. Co las letras de la palabra NADIE podemos formar 10 palabras

Más detalles

, como el cociente = (n k)!k! Propiedades de los números combinatorios: n k = n. k x n k y k +... ( ) Dando valores x=y=1, se obtiene la igualdad n

, como el cociente = (n k)!k! Propiedades de los números combinatorios: n k = n. k x n k y k +... ( ) Dando valores x=y=1, se obtiene la igualdad n NÚMEROS COMBINATORIOS Def:Dado u úmero etero o egativo, se defie el factorial de (! como el producto! = ( 1...1 Def: Dados dos úmeros,k eteros o egativos tales que k, se defie el úmero combiatorio sobre

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ALGEBRA I GUÍA DE PROGRESIONES Y TEOREMA DEL BINOMIO Profesor: David Elal OLivero Primer año Pla Comú de Igeiería Primer Semestre

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

/ n 0 N / D(f) = {n N / n n 0 }

/ n 0 N / D(f) = {n N / n n 0 } Liceo Nº 10 016 SUCESIONES Primera defiició Ua sucesió de úmeros reales es ua fució cuyo domiio es el cojuto de los úmeros aturales (N) y cuyo recorrido está coteido e el cojuto de los úmeros reales (R).

Más detalles

Coeficientes binomiales

Coeficientes binomiales Coeficietes biomiales (Ejercicios Objetivos Defiir coeficietes biomiales y estudiar sus propiedades pricipales Coocer su aplicació e la fórmula para las potecias del biomio y su setido combiatorio (si

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Matemática discreta. a = bc 0 + r 1

Matemática discreta. a = bc 0 + r 1 Matemática discreta Divisibilidad Dados dos úmeros aturales a y b, escribiremos a b y leeremos a divide a b si existe u c N tal que ac = b. E este caso, decimos que a es u divisor de b o que b es divisible

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Trabajo Práctico N 10 Recursividad

Trabajo Práctico N 10 Recursividad Primer Cuatrimestre 0 Trabajo Práctico N 0 Recursividad Ejercicio. Implemete e Pascal las siguietes defiicioes recursivas. a) h ( N) h( N ) h( N ), N, N 0 0 b) 0 g (, y) 0 g(, y ), 0, y 0, 0 y 0 c) f (

Más detalles

Cómo se usa este libro

Cómo se usa este libro Cómo se usa este libro Los capítulos de este libro de actividades desarrolla los coteidos pricipales que vas a estudiar este año. Cada capítulo se iicia co la secció Para empezar, e la que hay que resolver

Más detalles

α, entonces se cumple que: T ( x) α T ( x)

α, entonces se cumple que: T ( x) α T ( x) HÉCTOR ESCOAR Uidad 3 Álgebra Lieal ALGERA LINEAL UNIDAD 3: OPERADORES LINEALES CONCEPTO DE OPERADOR LINEAL: sea V, dos espacios lieales, etoces u operador lieal (trasformació lieal) es ua fució T : V

Más detalles

Matemáticas Discretas Inducción y Recursión

Matemáticas Discretas Inducción y Recursión Coordiació de Ciecias Computacioales - INAOE Matemáticas Discretas Iducció y Recursió Cursos Propedéuticos 00 Ciecias Computacioales INAOE Iducció y recursió Geeralidades Iducció de úmeros aturales Iducció

Más detalles

FACTORIZACIÓN DE POLINOMIOS

FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE OLINOMIOS. VALOR NUMÉRICO Y RAÍCES DE UN OLINOMIO Sea u poliomio y a u úmero real cualquiera. Se llama valor umérico de e = a y se deota por a, al úmero que resulta al sustituir e la variable

Más detalles

X Olimpiada Matemática Valencia 1999

X Olimpiada Matemática Valencia 1999 X Olimpiada Matemática Valecia 999 Fase Autoómica Valecia año 999. CATEGORÍA 4-6 AÑOS PROBLEMA. Números. Halla u úmero de cuatro cifras que cumpla las siguietes codicioes: La suma de los cuadrados de las

Más detalles

Tarea 1 y 2. Problema 1. Calcula el supremo y el ínfimo de los siguientes conjuntos.

Tarea 1 y 2. Problema 1. Calcula el supremo y el ínfimo de los siguientes conjuntos. Cálculo Tarea y Problema. Calcula el supremo y el ífimo de los siguietes cojutos. a) A = {x : 0 x }. Es imediato que sup A = e íf A = 0. b) A = {x : 0 < x < }. Es imediato que sup A = e íf A = 0. c) A

Más detalles

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS POTENCIACIÓN Y RADICACIÓN

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS POTENCIACIÓN Y RADICACIÓN FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS POTENCIACIÓN Y RADICACIÓN Grado 6-7 Taller #7 Nivel II RESEÑA HISTÓRICA SOPHIE GERMAIN (1776-1831) Fue ua matemática autodidacta. Nació

Más detalles

Sucesiones I Introducción

Sucesiones I Introducción Temas Qué es ua sucesió? Notacioes y coceptos relacioados. Maeras de presetar ua sucesió. Gráfico de sucesioes. Capacidades Coocer y compreder el cocepto de sucesió. Coocer y maejar las diferetes maeras

Más detalles

Fórmula de Taylor. Si f es continua en [a,x y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) f(x) f(a) f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) f(x) f(a) f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado y=f tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

MODELO DE RESPUESTAS. Lim n. Lim

MODELO DE RESPUESTAS. Lim n. Lim Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Lapso 008 - INTEGRAL MATEMÁTICA I (175) FECHA PRESENTACIÓN: 08-11-008 MODELO DE RESPUESTAS OBJ 7 PTA 7 Dadas las sucesioes de térmios

Más detalles

CRIPTO II UT I N 01 BASES TEORICAS I

CRIPTO II UT I N 01 BASES TEORICAS I CRIPTO II UT I N 0 BASES TEORICAS I TEORIA DE NUMEROS cripto-scolik-hecht UT- UNIDAD TEMÁTICA N : Bases Teóricas. Teoría de Números: Aritmética Modular, Logaritmos Discretos. Geeració de úmeros primos.

Más detalles

Guía de estudio para 2º año Medio

Guía de estudio para 2º año Medio Liceo Marta Dooso Espejo Medio Reforzamieto Guía de estudio para º año Medio El propósito de esta guía es hacer ua revisió de los pricipales coteidos tratados e el 1º año Medio durate el año 009. I. Números

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Entrenamiento estatal.

Entrenamiento estatal. Etreamieto estatal. Combiatoria. Coteo. Problemas de caletamieto. 1. Cuátos códigos diferetes de cico dígitos puede hacerse? 2. Si para ir de A a B hay 3 camios, para ir de A a C hay dos camios, Para ir

Más detalles

Raices de Polinomios. Jorge Eduardo Ortiz Triviño

Raices de Polinomios. Jorge Eduardo Ortiz Triviño Raices de Poliomios Jorge Eduardo Ortiz Triviño jeortizt@ual.edu.co http://www.docetes.ual.edu.co/jeortizt/ Defiició U poliomio de grado es ua epresió de la forma: Dode a 0 P() = a + a - - +... +a +

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

OBTENCIÓN DE FACTORES DE LA FORMA (x m b), DE UN POLINOMIO DE GRADO n m

OBTENCIÓN DE FACTORES DE LA FORMA (x m b), DE UN POLINOMIO DE GRADO n m OBTENCIÓN DE FACTORES DE LA FORMA x m b), DE UN POLINOMIO DE GRADO m Ricardo Alberto Idárraga Idárraga Uiversidad de Caldas TEOREMA Método para hallar factores de la forma x m b), com N, m, yb C, de u

Más detalles

Series de potencias Introducción. Temas Series de potencias. Intervalo y radio de convergencia de una serie de potencias.

Series de potencias Introducción. Temas Series de potencias. Intervalo y radio de convergencia de una serie de potencias. Sesió 27 Series de potecias Temas Series de potecias. Itervalo y radio de covergecia de ua serie de potecias. Capacidades Coocer y compreder el cocepto de serie de potecias. Determiar el itervalo y el

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja, que se reproduce

Más detalles

SOLUCIONES DICIEMBRE 2017

SOLUCIONES DICIEMBRE 2017 Págia 1 de 1 SOLUCIONES DICIEMBRE 017 AUTOR: Rafael Martíez Calafat. Profesor jubilado de Matemáticas Diciembre 1: De cuátas formas se puede obteer ua suma de 361 utilizado úmeros de uo o dos dígitos distitos

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

Probabilidades y Estadística (M) Práctica 8 1 cuatrimestre 2012 Convergencias - Ley de los Grandes Números

Probabilidades y Estadística (M) Práctica 8 1 cuatrimestre 2012 Convergencias - Ley de los Grandes Números robabilidades y Estadística (M) ráctica 8 cuatrimestre 22 Covergecias - Ley de los Grades Números. Ua máquia produce artículos de 3 clases: A, B y C e proporcioes 25 %, 25 % y 5 % respectivamete. Las logitudes

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

3.- en la fig. Demostrar que: (a+b) 2 -(a-b) 2 =4ab. 4.- En la fig. Demostrar que: (a+b) 2 +(a-b) 2 =2(a 2 +b 2 )

3.- en la fig. Demostrar que: (a+b) 2 -(a-b) 2 =4ab. 4.- En la fig. Demostrar que: (a+b) 2 +(a-b) 2 =2(a 2 +b 2 ) La factorizació e la resolució de problemas. Co la habilidad para resolver ecuacioes poliomiales por factorizació se puede resolver problemas que Se habría esquivado hasta ahora. Se debe rechazar solucioes

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

Ejercicios de preparación para olimpiadas. Funciones

Ejercicios de preparación para olimpiadas. Funciones Ejercicios de preparació para olimpiadas. Fucioes 5 de diciembre de 04. Fucioes covexas Comezamos estas otas hablado de fucioes covexas. Auque la covexidad de ua fució se puede estudiar por técicas de

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton Estalmat Madrid Miguel Reyes Diámica compleja Cojutos de Julia y Madelbrot Método de Newto Los úmeros complejos Los úmeros complejos so los úmeros de la forma a dode a y b so úmeros reales e i es la uidad

Más detalles

a = n Clase 11 Tema: Radicación en los números reales Matemáticas 9 Bimestre: I Número de clase: 11 Esta clase tiene video

a = n Clase 11 Tema: Radicación en los números reales Matemáticas 9 Bimestre: I Número de clase: 11 Esta clase tiene video Matemáticas 9 Bimestre: I Número de clase: Clase Actividad Esta clase tiee video Tema: Radicació e los úmeros reales Lea la siguiete iformació. Si es u úmero etero positivo, etoces la raíz -ésima de u

Más detalles

Sesión 8 Series numéricas III

Sesión 8 Series numéricas III Sesió 8 Series uméricas III Defiició Serie de Potecias Si a 0, a, a,, a so úmeros reales y x es ua variable, ua expresió de la forma a x, se llama Serie de Potecias. Lo abreviaremos co SP. Alguos ejemplos

Más detalles

Competencia Matemática E. Paenza. Sexta Realización 1991

Competencia Matemática E. Paenza. Sexta Realización 1991 Competecia Matemática E. Paeza Seta Realizació 99 Resolució de los problemas Participate N : Problema. Sea C u cuadrilátero coveo. Si el área del cada uo de los cuatro triágulos determiados por las dos

Más detalles

3 LÍMITE Ejercicios Resueltos

3 LÍMITE Ejercicios Resueltos LÍMITE Ejercicios Resueltos Límites Determiados a) 6 6 6 c) π π se π b) ( ) cos cos e) 0 π + + d) 0 f) e 0 + 5 5 g) 4 64 Idetermiació (0/0) Fucioes Racioales Factorear y Simplificar ( + ) + 6. a). ( ).

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

4. Sucesiones de números reales

4. Sucesiones de números reales 4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...

Más detalles

TEMA 1 NÚMEROS REALES

TEMA 1 NÚMEROS REALES . Objetivos / Criterios de evaluació TEMA 1 NÚMEROS REALES O.1.1 Coocer e idetificar los cojutos uméricos N, Z, Q, I,R, Im O.1.2 Saber covertir úmeros racioales e fraccioes. O.1.3 Redodeo y aproximació

Más detalles

ARITMÉTICA MODULAR. CONGRUENCIAS ENTERAS Carl Friedrich Gauss ( )

ARITMÉTICA MODULAR. CONGRUENCIAS ENTERAS Carl Friedrich Gauss ( ) CONGRUENCIAS ENTERAS Carl Friedrich Gauss (1777 1855) ARITMÉTICA MODULAR Defiició Sea m, a, b. a es cogruete co b módulo m si y sólo si ma b. a b (mód m) La relació de cogruecia es ua relació de equivalecia:

Más detalles

) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen

) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen Criterio de Comparació Si a 0 y b 0. Si existe ua costate C > 0 tal que a Cb etoces la covergecia de b implica la covergecia de a. Ejemplo.- Sabemos que la serie coverge a, pero como (+), etoces la serie

Más detalles

= 2n 4 n distancia a 2 es menor que 0,1. = 4n 1 n distancia a 4 es menor que 0,001. 4n 1 = 3 4 0,01. 4 la sucesión son menores que un millón.

= 2n 4 n distancia a 2 es menor que 0,1. = 4n 1 n distancia a 4 es menor que 0,001. 4n 1 = 3 4 0,01. 4 la sucesión son menores que un millón. IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS 4º ESO ALUMNO: TRABAJO PARA PREPARAR EL EXAMEN DE SEPTIEMBRE: La mayoría de estos ejercicios está hechos e clase o e los aputes. Estúdiate primero los aputes

Más detalles

GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN

GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN FACTOR COMUN 1. FACTOR COMUN MONOMIO: Factor comú moomio: es el factor que está presete e cada térmio del poliomio: Ejemplo N 1: cuál es el factor

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

MATEMÁTICA DISCRETA I Año 2015 PRÁCTICO Calcule Probar que = 3. Probar la igualdad general. n + n n. n 1.

MATEMÁTICA DISCRETA I Año 2015 PRÁCTICO Calcule Probar que = 3. Probar la igualdad general. n + n n. n 1. MATEMÁTICA DISCRETA I Año 5 PRÁCTICO. Calcule 5 5. Probar que =. Probar la igualdad geeral =.... Determiar tal que Resp. = 5 6 5. Cuátos equipos de football se puede formar co 8 persoas? 6. Cuátas líeas

Más detalles