! 1 3 <1 la serie converge (y confirma a n! 0 ). a n. x 2 >0; f 0 (x)<0 si x>1; R 1 f (x)dx = 1 2 e x2 1 = 1 2e. ) Convergente. n! 0 ) Convergente.
|
|
- Alfonso Maestre Saavedra
- hace 3 años
- Vistas:
Transcripción
1 Solucios d los roblmas d Matmáticas (07-08) {a } acotada ifriormt or 0 (los a so ositivos) y dcrcit us + + <, > )9líma a ) a a ) a0 Como a + a < la sri covrg (y cofirma a 0 ) a) (a ) / Divrgt (O orqu {a } 0) c) ( ) ( ) Gométrica ) (+) (+) + > ) Divrgt d) 00 b) +cos +cos Divrgt divrg, 00 covrg ) Divrgt 0 ó / 0 ) Covrgt O tambié: f () >0; f 0 ()<0 si >; R f ()d f) 00 ( ) a + a ( ) ) Covrgt g) +( ) +, +( ) + al +, d igual covrgcia qu ) ( ) ) a o tid a 0 ) Divrgt i) (+) ( + ) 0 ) Divrgt Raíz o dcid: j) (l) / /(log) 0y divrg ) divrg k) ) Covrgt a l) ( ) ( ) ( ) 0 y dcrcit ( ) > + (+), +>0 m) + ) ñ) s +cos a + / s dcir a < ) covrg s al, / +cos / y / + Z d (l) (log) y ) covrg log < ) covrg covrgt ) covrg covrgt ) Covrg (absolutamt) / o) ( + ) Covrgt +) O bi: S a) Si cal0, {a } 0 y divrg Si c>0 covrg (Libiz): c 0 y dcrcit b) Si c > ó c <, a divrg (y lo ac la sri) Si c, +7 c) (+) c (+)(+)(+) r <, cal d) (c ) c gométrica: <, <c<5 ) + < ( ) covrg ) covrg si lo ac c +, c <: divrg Si c, ( ) +7 covrg c c (+ ) / f) Divrg ara c lím ( ccos ) 0 Covrg ara c cos(/) / y si c,a 0 Gométrica: covrg, a a <, a a+>0 [8a] y a a (a+)(a )<0, a(,) La suma d la sri ara sos a s: (a a )/ a a+ E articular, si a, suma a ( a ) /a /a a(a ), si la sri gométrica covrg, a <, a > a(a ) si a, Sólo la raíz cuml qu >, co lo qu la suma s sólo si a 08 al al 0 (+) < si + 9, así qu sgú Libiz ( ) (+) al al a] Es la sri dl arco tagt: S + arcta >> 9 5 O bi: 0 ( ) 7 ya aroima la suma co sa rcisió Sri d Libiz + 0 y dcrcit : S + 5 > 8 > 9 5 ( 0>7 ) " último térmio sumado gativo b] Es falso, us la sri divrg a us s comorta como la divrgt a : / / arcta + 0 I
2 si < 8 a) El límit utual d f s f () + / si discotiua si ± 0 si > Como las f so cotiuas [0,], la covrgcia o ud sr uiform b) g () utualmt 8R Lo ac uiformmt [0,] us: + al + < si grad, ara todo [0,] c) () covrg utualmt todo R a ()0 9 a) 0 al0 0 Covrg uiformmt (,0] Pro o [0,), us las s sal todas d la bada ( ) b) cos / f f f 0 g g g 0 arcta() 5 al / 5 8 y ( 5 ) gométrica covrgt Wirstrass ) covrg uiformmt R c) b al,8 R y covrgt ) covrgcia uiform (y utual) R (Wirstrass) covrg 0 ) covrg 8 R E [ 7,7] lo ac uiformmt (Wirstrass) us 7 [O orqu u torma asgura qu las d otcias lo ac los crrados cotidos l itrvalo d covrgcia] d) (5) ( +) + 0 ( 5 + ) gométrica; covrg si 5 <, (, ) [ (,) [ (,) + E [5,], al + < ; como covrg la sri s uiformmt covrgt (Wirstrass) 0 i) f (0)0, f () > 0 si > 0 ) Vmí 0 f()( 0 ) ) Vmá f ( ) ii) f () al ) f [0,) 0 uiformmt, y como covrg, f lo ac uiformmt a) R 7 ; si 7, divrg ( + ); si q b) covrg < ) Y si, ( ) c) covrg (Libiz) Si, divrg > divrg, us 0 tambié divrg, us a o ti límit: ars, imars Si, + + divrg: a / y + + divrg 8 ) covrg < divrg > La d, ( ) + +, covrg or Libiz, us a + 0 y dcrc claramt + d) / a 0 R Sólo covrg si ) b + b +, + b Si f) b + b (+) () (+) (+) / (+ ) / ) covrg si <, << divrg si >, quda ( ) +, qu covrg or Libiz + 0 y claramt dcrc alal + + g) b + b ) (+)(+) 0 ) covrg 8R covrg si </ divrg si >/ b i [ / ] [+/ ] / Si ± quda + qu covrg, us /( +) / y covrg, ) Covrg si a + 9 <, s dcir, si < 9 Y divrg si > 9 Si / divrg, us a / i) Lo más corto, raíz: b (/ ) 0 ) covrg 8 b Cocit más largo: + b (+) (+) + 0, us (+)/ / ++ (+) / + / j) b + b 9+ 9 log(+) (+) log(+) + 9 ) covrg si </ divrg si >/ log(+) log(+) /(+) /(+) + + Si ± quda log(+) qu covrg, us /( log(+)) / 0y covrg, II
3 + arcta(+) arcta / / ó )covrg si <, << (arcta) / (/) 0 y divrg si > ) ara 0 divrg y ara covrg Si, ( ) arcta divrg, us a f 0 () ) covrg si < divrg si > ( R radio d covrgcia) Para quda la divrgt La d, ( ), covrg or Libiz sri gométrica qu covrg actamt si << (sguro qu lo acía) Su suma ara sos valors: f 0 () rimr térmio razó (+) lím + + lím / )covrg si < y divrg si > Si ± divrg (a 0) La sri s la drivada térmio a térmio d (), < Su suma s d d, si < ( ) a + a (+)(+) (+)(+), a + / + 5 Por tato, covrg si < y divrg si > Para y quda y ( ) +, ambas divrgts ( a 0 ) Covrg si (,) Como s+ + > (térmios todos ositivos), o 5/ / >, la sri divrg ara s valor a) 8 c) ( ) 8( ) + 9( ) + 0 d) 7 a) R () al (+) : cos b) ( ) (+) 0 0 +[ + +] b) R () al (+) : c) R ( ) al + d) R ( ) al + 7 : log(+ ) ( ) + (+) s + + : log(+ + ) ) R () al Muco más corto utilizado qu log log + log 09 8 ( + ) /5 +( 5 ) ( /5)( /5) , si <, < f ( ) , co rror mor qu (sri altrada dcrcit): 00 < a) cos [ + cos ] ( ) (), 8 b) [ ] , si < + c) log(+) d) ( ) + ( )( ) + +, si < ) sc s, 8 f) cos a a + a a + a 0 ; a 0 0,a ; a a + a 0 0,a 5 ) cos g) [+] / , < [ / ] , < d d [arcs][ / ] y arcs0 0 ) arcs , < ) cos(s) s + s ( + ) a] f () cos(/) Por sr f 00 (0) l coficit d dl dsarrollo, f 00 (0) Y como l d + s 0, f (07) (0)0 b] 0/0,L0 H s 0 0 [El dsrrollo atrior o os sirv d ada ara st cálculo ] III
4 arcta, <0 arcta f () +arcta, >0 a] lím 0 / lím f () lím + arctat 0 + t b] arcta + y admás la sri dic qu f 0 (0 )0 0 f () Ambos límits coicid co f (0) ) cotiua f () f (0) Si >0, arcta 0 + f 0 (0 + ) f 0 (0 )0 ) o drivabl Cotiua 0 : ++ Co la dfiició: /( ) + 0 ( ) /+ + 0 g0 (0) Co la sri d Taylor d g() (cocit o comosició) ) g0 (0) Más largo s calcular (usado Taylor o ôital) l límit cuado 0 d la drivada g 0 () ( ) ( ) a) cos s ( ) / b) ta [+ arcta +o( )] +o( ) 0 ; ta /(+ ) + cos c) log(+s ) + d) (cos) / log(cos)/, us log(cos) s + + f) log ( )log log ( ) log / log+ / / /+/ g) +log (+log) +/ (+log) + / i) +s +cos + s + cos (or o s llga a ada) k) log(+ ), us log(+ / ) a) s+arctaa + +a a + cos ) /( ) +/( ) / 9 cos ( ) / ( ) / s ( ) / log(+s ) s log ) cos s ó log ( )+ ( ) + ) ( ) + ( ) + j) lím ta lím tat t0 + t (+a) ( +a ) + ) si a>, f si a<, f si a, f b) + +(+ )+ (+ ) , log(+)+ ( a)+ + +, si a Si a<, ± Si a>, 0 0 ± 0 ± 5 a) + arcta ) f () 0 0 ac, s 0 0 o admit dsarrollo d Taylor 0 lím f () lím + s lím st t0 + t arcta o s arc a su dsarrollo d Taylor b) , f () c) 8 [jmlo d auts] + + Más largo: lím f () 0/0 ( ) 0/0 lím cos lím lím f () ( 0+lím ) /(+ ) s [ ( ) ] 0 +cos [ ] 9 si lím 0 [+cos 9 si ] (/)+ ( lím f () lím ( ) /) +(s 0 [us la ocial tid a 0 y l so stá acotado] /) d) + ) arcta 0 0 y ( +cos) s cotiua 0 Por tato lím f ()(0 + cos0) 0 Si,, cos o ti límit (ro stá acotado) y arcta(/ ) 0 Por tato: lím f () lím arcta + cos arcta arctat lím t + 0 t0 + t lím +o(t ) t0 + t IV
5 E 0 dsarrollamos s ( arcta o s ud), y ifiito, lo cotrario: a i ) /+ arcta 0 / a ii)ya iii ): s arcta, us lím ± ± arcta arctat lím t0 ± t b i ) s + ( 8 ), (+ ) / + (/)( /) + ( ) (si < ), arcta (si <) ) f () +( b ii )yb iii ) + c i ) arcta(s)s / arcta s s 0 0 ±/ ± s + c ii ) o stá dfiida c iii ) arcta(s) log(+ ) 0, lím ) +( o( ) ) log(+ ) lím d i ) (+ + ) d ( + ) ii) lím k() 0 d iii) k() 9 ) + +o( ) +o( ) /(+ ) ) lím () s 0 0, us 5 7 f () 0 si b<0 y f () +b + + b b + b 0 b± ) b 8 a) Como (+) / + +, a + + O bi + ++ i b) b arcta arcta, us arcta y f () log + /(+ ) 0 0 f 0 log + (0)lím 0 lím /(+ ) 0 0 f 0 () log +, 0 f 00 + (0)lím log Muco más corto: f () 5 +, si < ) f 0 (0)0, f 00 (0) f ()<0, < f () f ± 0 (úico trmo calculabl actamt) lím f () lím /(+ ) ± ± 0 ) f () 0 ) f ( f ()) 0 f cotiua 0 0 f () f () [ + /+o( )] 0 f 0 (0) lím lím f ()[ôital] lím f 0 () + f ()0( ) f >0 8 y f cotiua 8 ) imag (0,) + < 0 8 ) f dcrcit todo R, us g()+ <0 8 g(0)0, g 0 () ositivo si <0 y gativo si >0 ) g gativa si <0 y si >0 O a artir dl dibujo d + y (so tagts 0 y s + al sr [ ) f () ( ) + + (+) + ) f () ( ) (0) (+) ( ) (+) E articular, f (00) (0) 0 y f 0 (0) V
Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas
Uivrsidad d Purto Rico Rcito Uivrsitario d Mayagüz Dpartamto d Cicias Matmáticas Eam III Mat - Cálculo II d abril d 8 Nombr Númro d studiat Scció Profsor Db mostrar todo su trabajo. Rsulva todos los problmas.
1.- a) Hallar a y b para que la siguiente función sea continua en x = 1:
.- a) Hallar a y b para qu la siguit fució sa cotiua = : b L( ) < f = a = > L b) Para sos valors d a y b, studiar la drivabilidad d f =. Solució: a) f s cotiua l puto = lim f = f() E st caso f () = a lim
Universidad de Costa Rica. Instituto Tecnológico de Costa Rica. Determinar si las integrales impropias convergen o divergen.
Uivrsidad d Costa Rica Istituto Tcológico d Costa Rica Tma: Itgrals impropias. Objtivos: Clasificar las itgrals impropias sgú su spci: primra, sguda o trcra spci. Calcular itgrals impropias utilizado su
UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS
UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit límit si ist: f f ' lím sigifica lo mismo.
a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.
(Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar
TALLER 4: Preparación parcial final. Cálculo Integral. UdeA Profesor: Jaime Andrés Jaramillo.
TALLER : Prparació parcial fial Cálculo Itgral UdA 5- Profsor: Jaim Adrés Jaramillo jaimaj@cocptocomputadorscom Sucsios Mustr los primros cuatro térmios d la sucsió y dtrmi si s covrgt o divrgt: a) d)
TALLER 4: Preparación parcial final. Cálculo Integral. UdeA Profesor: Jaime Andrés Jaramillo.
TALLER : Prparació parcial fial Cálculo Itgral UdA - Profsor: Jaim Adrés Jaramillo jaimaj@cocptocomputadorscom Sucsios Mustr los primros cuatro térmios d la sucsió y dtrmi si s covrgt o divrgt: a) d) +
al siguiente límite si existe: . Se suele representar por ( x )
UNIDAD : DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit it si ist: f f ' sigifica lo mismo. f. S sul rprstar por f D
E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación
E.T.S.I. Idustrils y Tlcomuicció Curso 00-0 Grdos E.T.S.I. Idustrils y Tlcomuicció Asigtur: Cálculo I Tm : Sucsios y Sris Numérics. Sris d Potcis. Ejrcicios propustos Obtr los cutro primros térmios, sí
TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS
Tma Sucsios Matmáticas I º Bach. TEMA SUCESIONES SUCESIONES Y TÉRMINOS EJERCICIO : Si l térmio gral d ua sucsió s a 0 Halla l térmio sgudo y l décimo. b) Hay algú térmio qu valga? Si hay dcir qu lugar
Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,...
TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN S llama sucsió a u cojuto d úmros dados ordadamt d modo qu s puda umrar: primro, sgudo, trcro,... Los lmtos d la sucsió s llama térmios y s
1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,...
TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mil: imozs@lx.ud.s http://tlfoic.t/wb/imm EJERCICIOS DE SERIES NUMÉRICAS PROPUESTOS EN EXÁMENES.- Estudi l cráctr d l sri uméric. (Fbrro 00, x. or.) Solució.- Pusto
es divergente. es divergente.
.- Dtrmir l cráctr d l sri sgú los vlors d = +. Solució: sido = + = Si = = lim = s divrgt. = Si < < lim = s divrgt. = Si = = lim = s divrgt. = Si >, plicdo l critrio d D`Almrt: + ( + ) ( + ) + lim = lim
TEMA 5: LÍMITE DE FUNCIONES. CONTINUIDAD.ASÍNTOTAS
Dpartamto d Matmáticas. IE.S. Ciudad d Arjoa º Bach Socials. LÍMITES Propidads: TEMA : LÍMITE DE FUNCIONES. CONTINUIDAD.ASÍNTOTAS. LÍMITES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES. RESOLUCIÓN DE INDETERMINACIONES.
Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin
Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,
1 Realizar los ejercicios resueltos números 1 y 2 del tema 3 de Integración de. 2 Terminar los ejercicios de la práctica realizada este día.
Est documto coti las actividads o prscials propustas al trmiar la clas dl día qu s idica. S sobrtid qu tambié s db ralizar l studio d lo plicado clas auqu o s icluya sa tara st documto. Clas 5 d ovimbr
SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA 1: Problema Nº 5.34 Oppenheim
SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA : Problma Nº 5.3 Opphim Obsrv l siguit sistma: Dtrmi y() Solució: El traycto d arriba produc, al multiplicar por Cos(/), traslació dl spctro
INTEGRAL INDEFINIDA. Derivación. Integración
TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA. F() s ua primitiva d f() si F ()= f(). Esto s prsa así: f() = F'() = F() La itgració s la opració ivrsa a la drivació, d modo qu: FUNCIONES
PROBLEMAS TEMA 4 EJERCICIO 1 (Ej 9.15 de Fernández Abascal)
PROLMAS TMA JRCICIO j 9.5 d Frádz Abascal La cotizació olsa d u cirto título s cosidra ua variabl alatoria ormalmt distribuida co arámtros dscoocidos, ro s diso d la siguit iformació: a ist u,5% d robabilidad
TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García
TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes
INTEGRAL INDEFINIDA. Derivación. Integración
TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA F() s ua primitiva d f() si F ()= f(). Esto s prsa así: La itgració s la opració ivrsa a la drivació, d modo qu: f() F'() F() FUNCIONES PRIMITIVAS
( ) 1.8 CRITERIOS DE CONVERGENCIA PARA SERIES (1.8_CvR_T_061, Revisión: , C8, C9, C10) INTRODUCCIÓN. Forma general de una serie: + a 1
.8 CRITERIOS DE COVERGECIA PARA SERIES (.8_CvR_T_6, Revisió: -9-6, C8, C9, C).8.. ITRODUCCIÓ. Forma geeral de ua serie: S = = a = a + a + a +...+ a Suma de térmios. Si es fiito, la suma (S ) tambié es
7ma Guía de Estudio 2do Parcial Estudio de Series de Potencia SOLUCIONARIO Guía Complementaria No.07
álculo tgrl (MAT, Scc.67 r Trimstr, do Smstr doprcil 7mGuíEstudio Documto lordo : M.Sc. g. Julio ésr Lóz Zró H6 7m Guí d Estudio do Prcil Estudio d Sris d Potci SOLUONAO Guí omlmtri No.7 omtrios Grls Ést
11 INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS)
INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS) Los sistmas o lials pud llgar a tr comportamitos ralmt sorprdts alguos casos: por u lado pud llgar a tr diámicas totalmt difrts sgú l valor qu
El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )
Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con
CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 1. ACTIVIDADES 1.11 A 1.22
CALCULO GRADO EN INGEN INFORM DEL SOFTWARE - TEMA ACTIVIDADES A Sa ( 0 / 0 0 a Es drivabl por la drca n 0? Es drivabl por la izquirda n 0? Es drivabl n 0? Razonar las rspustas b Obtnr la unción drivada
DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.
DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada
Tema 8. Limite de funciones. Continuidad
. Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito asítota horizotal... 8.
2.- Pruebe, la convergencia de las siguientes sucesiones: b n. 4.- Investigar la convergencia de la sucesión dada por la formula recursiva :
UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE MATEMATICAS APLICADAS MATEMATICAS IV TRIMESTRE Eero- Abril 004 PRACTICA DE SUCESIONES Y SERIES.- Ivestigue si las siguietes sucesioes so o o covergete. Si coverge,
6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES
6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,
EJERCICIOS PROPUESTOS. rectángulos obtenidos tomando como base la longitud de cada subintervalo y como altura la ordenada del extremo derecho.
6 Itgral dfiida Ejrcicio rsulto EJERCICIOS PROPUESTOS Obté, co l método visto, l ára dl trapcio limitado por la rcta y +, l j X y las vrticals y Calcula l ára gométricamt y compara los rsultados S divid
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) La función y : a) Tin una
Tema 11. Limite de funciones. Continuidad
Tma. Limit d fucios. Cotiuidad. Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito
MATEMÁTICA D Módulo I: Análisis de Variable Compleja. Teoría de Residuos
Matmática D MATEMÁTIA D Módulo I: Aálisis d Variabl omplja Uidad Toría d siduos Mag. María Iés Baragatti Sigularidads S dic qu s ua sigularidad aislada d f( si f( o s aalítica pro sí s aalítica u toro
x a es una serie de la forma que el radio de convergencia de la serie geométrica es el intervalo abierto
ERIE DE POTENCIA ERIE DE POTENCIA. Diició. U sri d pocis c s u sri d l orm c c c c... c... Por jmplo. i c y l sri d pocis om l orm....... Por jmplo. i c y l sri d pocis om l orm....... TEOREMA. El cojuo
una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:
Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes
Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b
Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr
SOLUCIONES A LOS EXÁMENES DE ANÁLISIS
SOLUCIONES A LOS EXÁMENES DE ANÁLISIS CURSO 0-0 º.- (,5 puntos) Dtrmina la función f : 0, R tal qu f '' gráfica tin una tangnt horizontal n l punto P,. f ( ) ln( ) y su º.- Sa f la función dfinida por
61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS
Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr
SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43
TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a a 8 + ( ); Y fialmete: a 7 8 + (7 ) 86 0 7 + 0. S 0 Págia 7 [ ( 7 + 9 5) ] 95. a) 6 : pero 0 : 6,6 o es PG b) 6 : ( ) : 6 :
TEMA 1: CALCULO DIRECTO DE LÍMITES
INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Rsolució Nº 88 d ovimbr.8/ ScrtariaD Educació Distrital REGISTRO DANE Nº-99 Tléfoo Barrio Bastidas Sata Marta DEPARTAMENTO DE MATEMATICAS ACTIVIDAD ESPECIAL
SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43
TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a Págia. a) Es la sucesió de los úmeros impares:, 5, 7 b) Se suma al valor absoluto del úmero y se cambia de sigo: 7, 0, c) Se
8 Derivadas. Página 239. Página 247. Función derivada
8 Derivadas Págia 9 Fució derivada E el itervalo (a, b ), f () es decreciete. Por tato, su derivada es egativa. Es lo que le pasa a g () e (a, b ). La derivada de f e b es 0: f ' (b ) 0. tambié es g (b
Política Fiscal. Gobiernos de coalición o de intereses geográficos dispersos
Política Fiscal Goiros d coalició o d itrss oráficos disrsos Goiros d coalició o d itrss oráficos disrsos Escario olítico dod l oiro stá comusto or dos artidos coalició:. Partidos ti rfrcias distitas sor
TALLER DEL CENTRO DE APRENDIZAJE DE MATEMÁTICAS
TALLER DEL CENTRO DE APRENDIZAJE DE MATEMÁTICAS Series Ifiitas de Números y Fucioes Guillermo Romero Melédez Departameto de Actuaría, Física y Matemáticas ü 1. SERIES DE NÚMEROS ü La serie =0 a = a 0 +
Teoría de Sistemas y Señales
Toría d Sistmas y Sñals Trasparias: Aálisis ruial d sñals TD Autor: Dr. Jua Carlos Gómz Aálisis ruial d Sñals Timpo Disrto. Sri d ourir d Sñals Timpo Disrto Sa () ua sñal priódia o príodo, s dir: ( ) +
MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O 1
MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O Fcios aalíticas Dmostrar q s aalítica todo l plao complo Z. Siglaridads d a ció Estdiar las siglaridads d las sigits cios calclado límit: a b c 9 cos d 7 Trasormació
7 L ímites de funciones. Continuidad
7 L ímits d funcions. Continuidad Página 05 f () = + Pinsa y ncuntra límits a) + ; + ; + + ; ; ; ; 9 0; 0; 0 ) 0; 0; 0 f ) + ; + ; 0 g) + ; + h) ; f () = a) 0 0, Página 0 a) a) f () = ; f () = ; f () =
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I.
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL Enro d 008 APELLIDOS: NOMBRE: D.N.I. GRUPO (A/B/C): CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada rspusta
EJERCICIOS RESUELTOS TEMA 1: PARTE 3
Ejrcicios rsultos Tma part III): Límits d uncions º BCN EJERCICIOS RESUELTOS TEMA : PARTE 3 LÍMITES DE FUNCIONES. CONTINUIDAD Ejrcicios rsultos Tma part III): Límits d uncions º BCN ) Dada la guint unción:
El error con ese presupuesto será aproximadamente del 3,1% Ejercicio 8.2
EJERCICIO 8.1 U ivstigador dispo d 0.000 para ralizar las trvistas d ua custa ua gra ciudad. El custioario s admiistrará mdiat trvistas tlfóicas, sido l cost d cada trvista d 0. Qué marg d rror dbrá asumir
2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:
Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada
OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis
MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES
6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS
Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. 6. SUCESIONES Y SERIES NUMÉRICAS 6... Sucesioes de úmeros reales 6.. SUCESIONES NUMÉRICAS Se llama sucesió de úmeros reales a cualquier
Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2
Eamn. ª valuación //8 Opción A Ejrcicio. Puntuación máima: puntos Obtnr l valor dl siguint límit: lim + t ln t dt 5 Aplicación dl torma fundamntal dl cálculo intgral: Si f s continua n [, ] f t dt s drivabl
Unidad 11 Derivadas 4
Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no
EJERCICIOS Y PROBLEMAS DE SUCESIONES Y SERIES
EJERCICIOS Y PROBLEMAS DE SUCESIONES Y SERIES EDDY ABREU, AIDA MONTEZUMA Y JAIME RANGEL Uivrsidd Mtropolit, Crcs, Vzul, 7 Hcho l dpósito d Ly Dpósito Lgl: ISBN: Formto:, X 7,9 cms. Nº d págis: 7 Rsrvdos
CAPITULO 17 FUNCIONES EXPONENCIALES Y LOGARITMICAS
Capítlo 17. Drivada d las Fcios Epocial, Logarítmica. CAPITULO 17 FUNCIONES EXPONENCIALES Y LOGARITMICAS Ejrcicio. Dibja la gráfica d la fció =, para sto lla la sigit tabla: 0 1 3 4-1 - -3-4 Vamos l sigit
Examen de Febrero de 2005 de Cálculo I. Soluciones.
Eame de Febrero de 5 de Cálculo I Solucioes Sea la fució f() = e sh + co domiio R a) Hallar los tres primeros térmios o ulos de su desarrollo de Taylor e = b) Probar que eiste su fució iversa f y calcular
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Series
Programa de Acceso Iclusivo, Equidad y Permaecia PAIEP Uiversidad de Satiago de Chile Series Sea {a } N ua sucesió de úmeros reales, etoces a la expresió a + a 2 + a 3 + + a + se le deomia serie ifiita
PARTE I Parte I Parte II Nota clase Nota Final
Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:
C A N D I D A T O S A A Y U N T A M I E N T O S
I N S T I T U T O E L E C T O R A L D E L E S T A D O D E M E X I C O P R O C E S O E L E C T O R A L 2 0 1 8 E L E C C I Ó N O R D I N A R I A D E M I E M B R O S D E L O S A Y U N T A M I E N T O S C
SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.
UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h
RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES
RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES MATE 3032 - DR. UROYOÁN R. WALKER. Sucesioes Teorema.. Sucesioes mootóicas acotadas coverge. Ejemplo.2. Sea {a } la sucesió deida recursivamete
lm í d x = lm í ln x + x 1 H = lm í x + e x 2
Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg
S7: Series numéricas II
Dada la serie S = k= a k, si la suma es fiita diremos que es ua serie covergete y e caso cotrario ua serie divergete. A la siguiete sucesió de úmeros la llamaremos la sucesió de sus sumas parciales: S
Variables aleatorias continuas
Probabilidads y Estadística Comutación Facultad d Cincias Eactas y Naturals. Univrsidad d Bunos Airs Ana M. Bianco y Elna J. Martín 4 Variabls alatorias continuas Distribución Uniorm: Rcordmos qu tin distribución
2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros
.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros 59.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros Variació d parátros U procdiito
Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5
página 1/7 Problmas Tma 1 Solución a problmas d Rpaso d 1ºBachillrato - Hoja 07 - Problmas 2, 4, 5 Hoja 7. Problma 2 Rsulto por Luis Sola Ruiz (sptimbr 2014) 1. Los vértics d un triángulo son A( 2, 1),
Análisis Matemático IV
Aálisis Matemático IV Relació 4. Ejercicios resueltos Ejercicio : Estudiar la covergecia putual y uiforme de las siguietes series fucioales e los cojutos que se idica (i) Σ x =! e x e [0, ] Primero, estudiamos
ACTIVIDADES NO PRESENCIALES
E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Grado e Igeiería Mecáica Este documeto cotiee las actividades o preseciales propuestas al termiar la clase del día que se idica. Se sobreetiede
AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1
AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga
TEMA 8: LÍMITES Y CONTINUIDAD
1. LÍMITE DE UNA FUNCIÓN 1.1. Límite fiito de u fució TEMA 8: LÍMITES Y CONTINUIDAD Decimos que: lim f ( x) L, si x / x ' x f ( x') L x Decimos que: lim f ( x) L, si x / x ' x f ( x') L x 1.2. Límite ifiito
3.8. Ejercicios resueltos
3.8 Ejercicios resueltos 101 3.8. Ejercicios resueltos 3.8.1 Ua sucesió a ) se dice que es cotractiva si existe 0
Cálculo I (Grado en Ingeniería Informática) Examen final, enero de 2014
Cálculo I (Grado e Igeiería Iformática 03-4 Exame fial, eero de 04 PUNTUACIÓN DEL EXAMEN: P. P. P. 3 P. 4 P. 5 P. 6 TOTAL Iicial del primer apellido: NOMBRE: APELLIDOS: D.N.I. O PASAPORTE: FIRMA: Notas
Definición de derivada
Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()
Capítulo IV. Estadísticas cuánticas.
Capítulo I. stadísticas cuáticas. Lcció 6 Itroducció a las stadísticas cuáticas. Partículas distiguibls idistiguibls. stadísticas d Bos-isti y d rmi-dirac. Lcció 7 Gas idal d rmi: lctros mtals. Lcció 8
R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.
R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de
Departamento de Matemáticas
MA5 Clase 3: Series de térmios positivos. Criterios de covergecia. Series de térmios positivos Elaborado por los profesores Edgar Cabello y Marcos Gozález La característica fudametal de ua serie cuyos
IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11
IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como
SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y Series
SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y Series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez 3 Sucesioes
Integral Indefinida o Antiderivada
Dpartamto d Matmática Aplicada Cálculo II (0) Smstr -08 Profsor: José Luis Quitro Marzo 08 FACULTAD DE INGENIERÍA UNIVERSIDAD CENTRAL DE VENEZUELA Itgral Idfiida o Atidrivada. Comprub los siguits rsultados
5 MECÁNICA ESTADÍSTICA CUÁNTICA DE GASES IDEALES
ma 5 MCÁICA SADÍSICA CUÁICA D GASS IDALS stadística d rmi-dirac y stadística d Bos-isti. l límit clásico. Gas idal d rmi: lctros mtals. Gas idal d Bos: fotos y 4H líquido. Codsació d Bos-isti. [RI-9; HUA-8;
LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL
LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES EALES DE UNA VAIABLE EAL.- Estudiar la continuidad, n los puntos y d la función: f ( ) L( ) si / si Solución: f continua n y El dominio d la
Fórmula de Taylor. Si f es continua en [a,x y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) f(x) f(a) f '(c)(x a)
Aproimació de ua fució mediate u poliomio Cuado y=f tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio
Soluciones de los problemas de la HOJA 2B
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Igeiería Idustrial (GITI/GITI+ADE) Igeiería de Telecomuicació (GITT/GITT+ADE) CÁLCULO Curso 5-6 Solucioes de los
TEMA 2 SUCESIONES SUCESIONES Y TÉRMINOS. Solución: a) a 2 = ; a10 =
1 TEMA 2 SUCESIONES SUCESIONES Y TÉRMINOS EJERCICIO 1 : Si el térmio geeral de ua sucesió es a = 2 10 2 a) Halla el térmio segudo y el décimo. b) Hay algú térmio que valga 5? Si hay decir que lugar ocupa
Series alternadas Introducción
Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia
CÁLCULO INTEGRAL APUNTES SERIES
UN I V E R S I D A D MA Y O R FA C U LT A D DE IN G E N I E R Í A SE G U N D O SE M E S T R E 0 CÁLCULO INTEGRAL AUNTES SERIES CRITERIOS. Criterio del -ésimo térmio para la divergecia Si la serie a coverge,
9 Aplicaciones de las derivadas
9 Aplicacions d las drivadas Página 69 Optimización B A P' Q' O Q T P Página 71 r a) y' = 0 x = 0 8 Punto ( 0 0) x = 1 8 Punto ( 1 1) En (0 0) hay un punto d inflxión. En (1 1) hay un máximo rlativo. b)
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad
Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El
Límite y Continuidad de Funciones.
Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por
SERIES POTENCIALES. 1.- Hallar el campo de convergencia de la serie potencial: 3 2 n. n n. 2 n = = ( ) ( 1)
Escuela de Igeieros de Bilbao Departameto Matemática Aplicada SERIES POTENCIALES.- Hallar el campo de covergecia de la serie potecial: ( + ) 3 y Realizado el cambio de variable, + 3 = y, teemos la serie:
Matemáticas Aplicadas a las Ciencias Sociales II. Análisis: Derivadas Tema 6. Derivadas 1. Derivada de una función en un punto
Matmáticas Aplicadas a las Cicias Socials II Aálisis: Drivadas Tma 6 Drivadas Drivada d ua fució u puto Tasa d variació d ua fució S llama tasa d variació mdia d ua fució f (), l itrvalo [a, b], al valor
LECTURA 06: INTERVALOS DE CONFIANZA Y TAMAÑO DE MUESTRA (PARTE II) TEMA 12: INTERVALOS DE CONFIANZA PARA LA PROPORCION POBLACIONAL
Uivridad Católica o Ágl d Chimbot ECTURA 6: ITERVAOS DE COFIAA Y TAMAÑO DE MUESTRA (PARTE II) TEMA : ITERVAOS DE COFIAA PARA A PROPORCIO POBACIOA. ITRODUCCIO Mucha vc la dciio dd d arámtro qu o biario,
Series de potencias Introducción. Temas Series de potencias. Intervalo y radio de convergencia de una serie de potencias.
Sesió 27 Series de potecias Temas Series de potecias. Itervalo y radio de covergecia de ua serie de potecias. Capacidades Coocer y compreder el cocepto de serie de potecias. Determiar el itervalo y el
Listado para la Evaluación 2 Cálculo II (527148)
Uiversidad de Cocepció Facultad de Ciecias Físicas y Matemáticas Departameto de Matemática Área, Volume y Logitud de arco. Listado para la Evaluació Cálculo II (5748). Calcular el área ecerrada por la