Propiedades Una distribución pertenece a la familia exponencial si su función de densidad puede expresarse como:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Propiedades Una distribución pertenece a la familia exponencial si su función de densidad puede expresarse como:"

Transcripción

1 Familia Exponencial Propiedades Una distribución pertenece a la familia exponencial si su función de densidad puede expresarse como: f (y; θ) = s(y)t(θ)exp[a(y)b(θ)] = exp[a(y)b(θ)+c(θ)+d(y)] (1) con s(y) = exp[d(y)] y t(θ) = exp[c(θ)]. La distribución depende de un solo parámetro, a θ se le conoce como parámetro de la familia.

2 Si a(y) = y se dice que la distribución está expresada en forma CANÓNICA y a b(θ) se le conoce como el PARÁMETRO NATURAL. Si hay otros parámetros se les considera como de ruido y se tratan como si fueran conocidos.

3 f (y; θ) = 1 Si derivo d/dθ f (y; θ)dy = 0 Si f permite intercambiar el signo de derivación e integración df (y; θ)dy/dθ = 0 Si vuelvo a derivar d/dθ df (y; θ)dy/dθ = d 2 f (y; θ)dy/dθ 2 = 0 Usando la expresión (1)

4 df (y; θ)/dθ = f (y; θ)[a(y)b (θ) + c (θ)] = 0 (2) y ahora integrando [a(y)b (θ) + c (θ)]f (y; θ)dy = 0 Ahora distribuyo la multiplicación b (θ) a(y)f (y; θ)dy + c (θ) f (y; θ)dy Y tengo una expresión para la esperanza de E(a(y)) E(a(y)) = c (θ)/b (θ) (3)

5 Para llegar a una expresión para la Var(a(y)) haremos un desarrollo semejante d 2 f (y; θ)/dθ 2 = f (y; θ)[a(y)b (θ)+c (θ)]+f (y; θ)[a(y)b (θ)+c (θ)] usando la expresión para f (y; θ) = f (y; θ)[a(y)b (θ) + c (θ)] + f (y; θ)[a(y)b (θ) + c (θ)] 2 Ahora trabajo el cachito [a(y)b (θ)+c (θ)] 2 = [b (θ)[a(y)+c (θ)/b (θ)]] 2 = b (θ) 2 [a(y) E(a(y))] 2

6 Integrando = b (θ) +[b (θ)] 2 d 2 f (y; θ)/dθ 2 a(y)f (y; θ)dy + c (θ) f (y; θ)dy [a(y) E(a(y))] 2 f (y; θ)dy = 0 Var(a(y)) = b (θ)c (θ) c (θ)b (θ) [b (θ)] 3 (4)

7 Logverosimilitud Esta es la expresión para la log verosimilitud Se llama score statistic a U l(θ; y) = a(y)b(θ) + c(θ) + d(y) U(θ; y) = dl(θ; y)/dθ = a(y)b (θ) + c (θ) = U U depende de y y se le puede ver como una variable aleatoria, entonces calcularemos su esperanza: E(U) = E(a(y)b (θ) + c (θ)) = b (θ)e(a(y)) + c (θ) usando la expresión (3) E(U) = b (θ)[ c (θ)/b (θ)] + c (θ) = 0

8 Y para su varianza usamos la expresión (4) Var(U) = Var(a(y)b (θ) + c (θ)) = [b (θ)] 2 Var(a(y)) = b (θ) c (θ)/b (θ) c (θ) = I También se tiene, Var(U) = E[(U 0) 2 ] = E[U 2 ] = I

9 Calculando U U = du/dθ = a(y)b (θ) + c (θ) y E(U ) = b (θ)e(a(y)) + c (θ) = b (θ)[ c (θ)/b (θ)] + c (θ) = Var(U) = I La I es la matriz de información. En el caso de que U sea univariadad y para n grande U/ (I) se distribuye aproximadamente como N(0, I) Desde luego cuando generalizamos y θ es un vector de la forma (β 0, β 1,..., β p ), se tiene normalidad en cada una de sus entradas.

10 Modelo Lineal Generalizado 1. Componente aleatoria. La variable respuesta Y i tiene una distribución que pertenece a la familia exponencial (en forma canónica) f i = f (y i ; θ i ) = exp[y i b(θ i ) + c(θ i ) + d(y i )] Todas las Y i son independientes. 2. Componente sistemática. Un vector η i = (η 1,..., η n ) que se relaciona con las variables explicativas X = (X 1,..., X k ) a través de η i = x i β 3. Función liga. Existe una función g, diferenciable y monótona (y por tanto tiene inversa), tal que g(µ i ) = g(e(y i )) = x i β. A g se le conoce como función liga y x i = (x i1,..., x ik ) es el vector de variables explicativas X

11 Estimación Para cada y i l i = y i b(θ) + c(θ i ) + d(y i ) La logverosimilitud es E(y i ) = µ i = c (θ i )/b (θ i ) Var(y i ) = b (θ i )c (θ i ) c (θ i )b (θ i ) [b (θ i )] 3 g(µ i ) = x i β = η i l = l i = i = 1 y i b(θ i ) + i = 1 c(θ i ) + i = 1 d(y i ) i = 1

12 Para maximizar derivo: l β j = U j = La derivada parcial 1 [ ] li = β j i = 1 l i θ i = i 1 }{{} 1 θ i µ i }{{} 2 µ i β j }{{} 3 l i θ i = y i b (θ i ) + c (θ i ) = y i b (θ i ) b (θ i )µ i = b (θ i )(y i µ i )

13 La derivada parcial 2 µ i θ i θ i = 1/ µ i µ i θ i = [ c (θ i )/b (θ i ) ] [ c (θ i )b (θ i ) c (θ i )b (θ) = [b (θ i ) 2 ] = b (θ i )Var(y i ) ]

14 la derivada parcial 3 µ i β j = µ i η j η j β j = µ i η j x ij Reuniendo esto U j = (y i µ i )b 1 (θ i ) b (θ i )Var(y i ) µ i x ij = η j i = 1 i = 1 (y i µ i ) µ i x ij Var(y i ) η j

15 Solo se presentará la matriz de Información I = [E(U j U k )] I jk = i = 1 E[(y i µ i ) 2 ] Var(y i ) 2 2 µ i x ik x ij = η j i = 1 x ik x ij Var(y i ) [ µi η j ] 2 Esta expresión es así de sencilla debido a que las observaciones son independientes (E[(y i µ i )(y s µ s )] = 0)

16 Método de Newton-Raphson Para cualquier función t(x) si se desea encontrar el punto x tal que t(x) = 0 se puede hacer lo siguiente: Si se considera que la distancia entre x m 1 y x m es pequeña [ dt dx ] = t (x m 1 ) = t(x m ) t(x m 1 ) x=x x m x m 1 m 1 Si x m es la solución a t(x) = 0 entonces t (x m 1 ) = 0 t(x m 1 ) x m x m 1 x m = x m 1 t(x m 1 ) t (x m 1 )

17 (x 2)^2 6 * (x 2) x(m 1) x(m) t(x) x

18 Entonces regresando al tema de estimación de β, lleva a encontrar el cero de U, y se conoce esto como método score y la podemos estimar con: ˆβ m = ˆβ m 1 Um 1 U m 1 ˆβ m 1 Um 1 E(U m 1 ) = ˆβ m 1 + Um 1 I m 1 También es válido usar I m 1 ˆβ m = I m 1 ˆβ m 1 + U m 1 (5) Basta entonces tener una solución inicial ˆβ (0) = ( ˆβ o (0), ˆβ (0) 1,, ˆβ p (0) )y después iterar con esta fórmula que depende de U y de I

19 Para cualquier modelo GLM las fórmulas para U j y I jk son: y U j = x ij (y i µ i ) ( µ i ) Var(y i ) η i I jk = x ij x ik Var(y i ) ( µ i η i ) 2 otra forma de escribir la información es: I jk == X WX donde W es una matriz diagonal de n n con w ii = 1 Var(y i ) [ µi η j ] 2

20 El lado derecho de 5 es un vector y puede escribirse como donde z i = p k=1 X Wz x ik β (m 1) k y con µ i y µ i η i evaluadas en β (m 1). + (y i µ i )( η i µ i )

21 finalmente 5 puede escribirse como X WX β (m) = X Wz Y tiene la forma de un sistema de ecuaciones normales para un modelo lineal obtenido por mínimos cuadrados ponderados, excepto porque z y W dependen de β. La mayoría de los paquetes utiliza un algoritmo basado en 5.

22 Ejemplo del modelo logístico La variable y i se distribuye como binomial B(n i, p i ), de ahí que E(y i ) = n i p i ; la función liga es el logit de p i, esto es: ( ) pi η i = log = β 0 + β 1 x 1i β k x ki (1 p i ) Para estimar a β se maximiza la verosimilitud L(β) = n ( ni p i ) p y i i (1 p i ) n i y i ésta depende de p i que a su vez depende de β

23 log(l(β)) = = usando que {log {log se tiene que = ( ni p i ( ni p i ) + y i log(p i ) + (n i y i ) log(1 p i )} ) p i + y i log( ) + n i log(1 p i )} 1 p i e η i = p i 1 p i 1 + e η i = 1 + p i 1 p i = 1 1 p i {log log(1 + e η i ) = log(1 p i ) ( ni p i ) + y i η i n i log(1 + e η i )}

24 Como η i = n β jx ji con x 0i = 1 y calculando la derivada se tiene: U j = log(l(β))/ β j = (l(β))/ β j = y i x ij n i x ij e η i (1 + e η i ) U j = (y i x ij n i p i x ij ) = (x ij (y i n i p i )) = x ij (y i µ i )

25 Ahora para calcular I jk = E(U j U k ) E(U j U k ) = E( x ij (y i µ i ) x ik (y i µ i )) = Usando el hecho que las observaciones son independientes, es decir que E[(y i µ i )(y s µ s )] = 0 finalmente se tiene: E(U j U k ) = = x ij x ik E(y i µ i ) 2 = x ij x ik Var(y i ) x ij x ik n i p i (1 p i ) = I jk Ya se tienen las expresiones de U y de I para poder usar el método de Newton Raphson.

Análisis de datos Categóricos

Análisis de datos Categóricos Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores

Más detalles

Modelos lineales generalizados

Modelos lineales generalizados GoBack Modelos lineales Guillermo Ayala Gallego Universidad de Valencia 20 de enero de 2009 1 / 57 Verosimilitud de Ajuste de un GLM mediante Fisher Scoring Method s de un modelo lineal generalizado Identifica

Más detalles

Modelos Lineales Generalizados

Modelos Lineales Generalizados Modelos Lineales Generalizados 1 DefinicióndeunMLG Y1,Y2,...,Yn,conmediasµ1,µ2,...,µn,Yi, i=1,...,n,tienefdpmiembrodela familia exponencial a un parámetro, con las siguientes propiedades: 1.LadistribucióndecadaunodelosYi,paratodoi,estáenlaformacanónica,i.e.:

Más detalles

Estimación Bayesiana en el modelo lineal generalizado

Estimación Bayesiana en el modelo lineal generalizado Estimación Bayesiana en el modelo lineal generalizado Hernando Alvarado Quintero and Fabian Guillermo Rojas Rodríguez Universidad Nacional de Colombia halvaradoq@unal.edu.co and fgrojasro@unal.edu.co July

Más detalles

Estimación Máxima Verosimilitud

Estimación Máxima Verosimilitud Estimación Máxima Verosimilitud Microeconomía Cuantitativa R. Mora Departmento of Economía Universidad Carlos III de Madrid Outline Motivación 1 Motivación 2 3 4 5 Estrategias generales de estimación Hay

Más detalles

Auxiliar 9. MNL y MLE. Daniel Olcay. 21 de octubre de 2014 IN4402. Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de / 13

Auxiliar 9. MNL y MLE. Daniel Olcay. 21 de octubre de 2014 IN4402. Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de / 13 Auxiliar 9 MNL y MLE Daniel Olcay IN4402 21 de octubre de 2014 Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de 2014 1 / 13 Índice Modelos no lineales Probabilidad lineal Probit Logit Máxima verosimilitud

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

1. Modelos para conteos

1. Modelos para conteos 1. Modelos para conteos En esta sección se modelarán conteos, que resultan de diversas situaciones, por ejemplo: el número de accidentes en una carretera, el número de caries que tiene una persona, el

Más detalles

UNIVERSIDAD AUTÓNOMA METROPOLITANA UNIDAD IZTAPALAPA CASA ABIERTA AL TIEMPO

UNIVERSIDAD AUTÓNOMA METROPOLITANA UNIDAD IZTAPALAPA CASA ABIERTA AL TIEMPO UNIVERSIDAD AUTÓNOMA METROPOLITANA UNIDAD IZTAPALAPA CASA ABIERTA AL TIEMPO Análisis de las Primas de Riesgo en Seguros de Automóviles: Una Aplicación de los Modelos Lineales Generalizados Tesis que presenta:

Más detalles

Introduccion a los Modelos de Regresion

Introduccion a los Modelos de Regresion (wsosa@udesa.edu.ar) Universidad de San Andres Referencias Hayashi (2000) Capitulo 1, pp. 3-46. Cualquier texto basico de econometria (con matrices!!!) Introduccion Modelo lineal: y i = β 1 + β 2 x 2i

Más detalles

Algunos Problemas y Soluciones en el Análisis de Experimentos Ajustados con MLG s.

Algunos Problemas y Soluciones en el Análisis de Experimentos Ajustados con MLG s. Algunos Problemas y Soluciones en el Análisis de Experimentos Ajustados con MLG s. Víctor Aguirre Torres Departamento de Estadística, ITAM. Seminario de Estadística, CIMAT. 5 de Nov 2007. Créditos Trabajo

Más detalles

1. Análisis de Conglomerados

1. Análisis de Conglomerados 1. Análisis de Conglomerados El objetivo de este análisis es formar grupos de observaciones, de manera que todas las unidades en un grupo sean similares entre ellas pero que sean diferentes a aquellas

Más detalles

Modelo Lineal Generalizado GAMMA. Distribución gamma: Otra parametrización mediante el parámetro de forma y la media:

Modelo Lineal Generalizado GAMMA. Distribución gamma: Otra parametrización mediante el parámetro de forma y la media: Modelo Lineal Generalizado GAMMA Distribución gamma: Otra parametrización mediante el parámetro de forma y la media: La distribución gamma es de tipo exponencial: 1 Supongamos que se dispone de r subpoblaciones

Más detalles

Modelos de suavizado, aditivos y mixtos

Modelos de suavizado, aditivos y mixtos Carmen Armero 1 de junio de 2011 Introducción Introducción Modelos lineales, LM Modelos aditivos, AM Modelos lineales generalizados, GLM GAM I Un modelo lineal generalizado (GAM) es un modelo lineal generalizado

Más detalles

Transformaciones y esperanza

Transformaciones y esperanza Capítulo 3 Transformaciones y esperanza 3.1. Introducción Por lo general estamos en condiciones de modelar un fenómeno en términos de una variable aleatoria X cuya función de distribución acumulada es

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

Introducción al modelo de regresión logística

Introducción al modelo de regresión logística Introducción al modelo de regresión logística JOSÉ R BERRENDERO DEPARTAMENTO DE MATEMÁTICAS UNIVERSIDAD AUTÓNOMA DE MADRID INTRODUCCIÓN Y MOTIVACIÓN El modelo de regresión logística se utiliza para investigar

Más detalles

Mathias Bourel. 2 de octubre de 2016

Mathias Bourel. 2 de octubre de 2016 Regresión Logística Mathias Bourel IMERL - Facultad de Ingeniería, Universidad de la República, Uruguay 2 de octubre de 2016 M.Bourel (IMERL, UdelaR) Regresión Logística 2 de octubre de 2016 1 / 28 Introducción

Más detalles

Análisis de Datos Categóricos. Leticia Gracia Medrano

Análisis de Datos Categóricos. Leticia Gracia Medrano Análisis de Datos Categóricos Leticia Gracia Medrano ii Contents 1 Modelo Logístico 1 1.1 Estimación de parámetros.................... 1 1.2 Interpretación de los parámetros................. 2 1.3 Ejemplo..............................

Más detalles

Mínimos cuadrados generalizados y máxima verosimilitud

Mínimos cuadrados generalizados y máxima verosimilitud CAPíTULO 9 Mínimos cuadrados generalizados y máxima verosimilitud 9.1. Introducción En el marco del modelo clásico, los supuestos de homocedasticidad, E(u 2 i ) = σ2 u (i = 1, 2,... n), y ausencia de autocorrelación,

Más detalles

EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD)

EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) Fortino Vela Peón fvela@correo.xoc.uam.mx FVela-0 Objetivo Introducir las ideas básicas del principio de máxima verosimilitud. Problema Considere el experimento

Más detalles

(x) = 1 si P (Y = 1 X = x) P (Y = 0 X = x) P (Y = 0 X = x) > P (Y = 1 X = x) P (X = x Y = 0)P (Y = 0) > P (X = x Y = 1)P (Y = 1)

(x) = 1 si P (Y = 1 X = x) P (Y = 0 X = x) P (Y = 0 X = x) > P (Y = 1 X = x) P (X = x Y = 0)P (Y = 0) > P (X = x Y = 1)P (Y = 1) 1 1. Conceptos generales de clasificación 2. Clasificador k-vecino más cercano 3. Clasificador Bayesiano óptimo 4. Análisis discriminante lineal (LDA) 5. Clasificadores lineales y el Modelo perceptrón

Más detalles

Modelos con variable dependiente limitada

Modelos con variable dependiente limitada Modelos con variable dependiente limitada Universidad Iberoamericana Diciembre 2014 Y es variable aleatoria, toma solo dos valores, uno o cero, asociada a la ocurrencia de un evento (1 ocurre, 0 si no).

Más detalles

Análisis de datos Categóricos

Análisis de datos Categóricos Introducción Universidad Nacional Agraria La Molina 2017-1 Variable cualitativa Variable respuesta cualitativa Variable respuesta y explicativa Variable de conteo y proporción Escalas de medición Una variable

Más detalles

Econometría Aplicada

Econometría Aplicada Econometría Aplicada y función de Verosimilitud Víctor Medina Los objetivos de esta parte del curso principalmente son: 1. Dar algunos ejemplos de decisiones económicas donde la variable dependiente es

Más detalles

El Algoritmo E-M. José Antonio Camarena Ibarrola

El Algoritmo E-M. José Antonio Camarena Ibarrola El Algoritmo E-M José Antonio Camarena Ibarrola Introducción Método para encontrar una estimación de máima verosimilitud para un parámetro ѳ de una distribución Ejemplo simple 24 Si tiene las temperaturas

Más detalles

Tema 3 Normalidad multivariante

Tema 3 Normalidad multivariante Aurea Grané Máster en Estadística Universidade Pedagógica Aurea Grané Máster en Estadística Universidade Pedagógica Tema 3 Normalidad multivariante 3 Normalidad multivariante Distribuciones de probabilidad

Más detalles

Tema 21. Exponencial de una matriz Formas canónicas de Jordan.

Tema 21. Exponencial de una matriz Formas canónicas de Jordan. Tema 21 Exponencial de una matriz En este tema vamos a definir y calcular la exponencial de una matriz cuadrada mediante una expresión formalmente análoga al desarrollo en serie de potencias de la exponencial

Más detalles

Regresión Lineal Múltiple

Regresión Lineal Múltiple Unidad 4 Regresión Lineal Múltiple Javier Santibáñez (IIMAS, UNAM) Regresión Semestre 2017-2 1 / 35 Introducción La idea de la regresión lineal múltiple es modelar el valor esperado de la variable respuesta

Más detalles

Tema 13: Regresión Logística p. 1/20 Tema 13: Regresión Logística Abdelmalik Moujahid, Iñaki Inza y Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del

Más detalles

Clase No. 13: Factorización QR MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 16

Clase No. 13: Factorización QR MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 16 Clase No 13: Factorización QR MAT 251 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) 03102011 1 / 16 Factorización QR Sea A R m n con m n La factorización QR de A es A = QR = [Q 1 Q 2 ] R1 = Q 0 1 R

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

El objetivo es decribir cómo el uso de métodos anticonceptivos varía según la edad, el nivel de educación y el deseo de tener más hijos.

El objetivo es decribir cómo el uso de métodos anticonceptivos varía según la edad, el nivel de educación y el deseo de tener más hijos. Modelo Lineal Generalizado Introducción Comenzaremos con un ejemplo que nos servir para ilustrar el análisis de datos binarios. Nuestro interés se centra en relacionar una estructura estocástica en los

Más detalles

Modelo Lineal Generalizado

Modelo Lineal Generalizado Modelo Lineal Generalizado Propiedades de los Estimadores de Máxima Verosimilitud Recordemos que si la variable aleatoria Y tiene función de densidad o probabilidad puntual f(y, θ), la verosimiltud L(θ,

Más detalles

Taller I Econometría I

Taller I Econometría I Taller I Econometría I 1. Considere el modelo Y i β 1 + ɛ i, i 1,..., n donde ɛ i i.i.d. N (0, σ 2 ). a) Halle el estimador de β 1 por el método de mínimos cuadrados ordinarios. Para realizar el procedimiento

Más detalles

Cálculos de Regresión Logística en R, Caso de una covariable.

Cálculos de Regresión Logística en R, Caso de una covariable. Cálculos de Regresión Logística en R, Caso de una covariable. Carga de datos (Tabla 1.1, Hosmer-Lemeshow): CH=read.table( CHDAGE.txt,header = T) attach(ch) Gráfico de Dispersión: plot(age,chd,xlab= Edad,

Más detalles

Tema 3:Introducción a las variables aleatorias PROBLEMAS PROPUESTOS. 2. La función de densidad de la variable aleatoria X viene dada por la expresión

Tema 3:Introducción a las variables aleatorias PROBLEMAS PROPUESTOS. 2. La función de densidad de la variable aleatoria X viene dada por la expresión Tema :Introducción a las variables aleatorias PROBLEMAS PROPUESTOS. Puede ser la función de densidad de una variable aleatoria continua mayor que uno en algún punto? Sí. La función de densidad de la variable

Más detalles

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación

Más detalles

Suficiencia y Completitud. Estimadores IMVU.

Suficiencia y Completitud. Estimadores IMVU. 1 Suficiencia y Completitud. Estimadores IMVU. Graciela Boente 1 1 Universidad de Buenos Aires and CONICET, Argentina 2 Definición X P θ con θ Θ. Se dice que T = t(x) es suficiente para θ si: la distribución

Más detalles

IDENTIFICACIÓN DE SISTEMAS ESTIMACIÓN ESTOCÁSTICA

IDENTIFICACIÓN DE SISTEMAS ESTIMACIÓN ESTOCÁSTICA IDENTIFICACIÓN DE SISTEMAS ESTIMACIÓN ESTOCÁSTICA Ing. Fredy Ruiz Ph.D. ruizf@javeriana.edu.co Maestría en Ingeniería Electrónica Pontificia Universidad Javeriana 2013 Problema de la estima θ(t): magnitud

Más detalles

Programación: Sistemas unitriangulares inferiores

Programación: Sistemas unitriangulares inferiores Programación: Sistemas unitriangulares inferiores Objetivos. Programar en el lenguaje de MATLAB el método de la sustitución hacia adelante para resolver sistemas de ecuaciones lineales con matrices unitriangulares

Más detalles

Modelo Lineal Generalizado

Modelo Lineal Generalizado Modelo Lineal Generalizado Introducción Comenzaremos con un ejemplo que nos servirá para ilustrar el análisis de datos binarios. Nuestro interés se centra en relacionar una estructura estocástica en los

Más detalles

Tema1. Modelo Lineal General.

Tema1. Modelo Lineal General. Tema1. Modelo Lineal General. 1. Si X = (X 1, X 2, X 3, X 4 ) t tiene distribución normal con vector de medias µ = (2, 1, 1, 3) t y matriz de covarianzas 1 0 1 1 V = 0 2 1 1 1 1 3 0 1 1 0 2 Halla: a) La

Más detalles

Formulación matricial del modelo lineal general

Formulación matricial del modelo lineal general Formulación matricial del modelo lineal general Estimadores MCO, propiedades e inferencia usando matrices Mariana Marchionni marchionni.mariana@gmail.com Mariana Marchionni Formulación matricial del modelo

Más detalles

Economía Aplicada. Modelos con variables dependiente binarias. Departamento de Economía Universidad Carlos III de Madrid

Economía Aplicada. Modelos con variables dependiente binarias. Departamento de Economía Universidad Carlos III de Madrid Economía Aplicada Modelos con variables dependiente binarias Departamento de Economía Universidad Carlos III de Madrid Ver Stock y Watson (capítulo 11) 1 / 28 Modelos con variables dependiente binarias:

Más detalles

MODELOS LINEALES GENERALIZADOS

MODELOS LINEALES GENERALIZADOS MODELOS LINEALES GENERALIZADOS Conceptos básicos Ignacio Méndez Gómez-Humarán imendez@cimat.mx Los Modelos Lineales Generalizados (GLM por sus siglas en inglés) son una familia de modelos estadísticos

Más detalles

El Bootstrap paramétrico y no parametrico y su aplicación en los modelos log-lineal Poisson

El Bootstrap paramétrico y no parametrico y su aplicación en los modelos log-lineal Poisson El Bootstrap paramétrico y no parametrico y su aplicación en los modelos log-lineal Poisson Antonio Bravo Quiroz * Universidad Ricardo Palma 23 de noviembre de 2017 Índice 1. Conceptos Preliminares 6 1.1.

Más detalles

Regresión Simple. Leticia Gracia Medrano. 2 de agosto del 2012

Regresión Simple. Leticia Gracia Medrano. 2 de agosto del 2012 Regresión Simple Leticia Gracia Medrano. lety@sigma.iimas.unam.mx 2 de agosto del 2012 La ecuación de la recta Ecuación General de la recta Ax + By + C = 0 Cuando se conoce la ordenada al origen y su pendiente

Más detalles

Estudio en bloques completos vía regresión Poisson en presencia de sobredispersión. Ana María Torres Blanco

Estudio en bloques completos vía regresión Poisson en presencia de sobredispersión. Ana María Torres Blanco Estudio en bloques completos vía regresión Poisson en presencia de sobredispersión Ana María Torres Blanco Universidad Nacional de Colombia Facultad Ciencias, Departamento de Estadística Bogotá, Colombia

Más detalles

COMPONENTES PRINCIPALES

COMPONENTES PRINCIPALES COMPONENTES PRINCIPALES Jorge Galbiati R. El método de Componentes Principales tiene por objeto reducir la dimensionalidad de un problema de múltiples variables, aplicando una sucesión de transformaciones

Más detalles

Repaso de álgebra de matrices y probabilidad. Javier Santibáñez (IIMAS, UNAM) Regresión Semestre / 58

Repaso de álgebra de matrices y probabilidad. Javier Santibáñez (IIMAS, UNAM) Regresión Semestre / 58 Repaso de álgebra de matrices y probabilidad Javier Santibáñez (IIMAS, UNAM) Regresión Semestre 2017-2 1 / 58 Preliminares Definición (matriz) Una matriz de dimensión m n es un arreglo rectangular de números

Más detalles

TEMA 4 Regresión logística

TEMA 4 Regresión logística TEMA 4 Regresión logística José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Esquema del tema Variable respuesta dicotómica. Ejemplo. El

Más detalles

Econometría Aplicada

Econometría Aplicada Econometría Aplicada Inferencia estadística, bondad de ajuste y predicción Víctor Medina Intervalos de confianza Intervalos de confianza Intervalos de confianza Intervalos de confianza La pregunta que

Más detalles

Distribuciones multivariadas

Distribuciones multivariadas Distribuciones multivariadas Si X 1,X 2,...,X p son variables aleatorias discretas, definiremos la función de probabilidad conjunta de X como p(x) =p(x 1,x 2,...,x k )=P (X 1 = x 1,X 2 = x 2,...,X p =

Más detalles

Capítulo 2. Medidas Estadísticas Básicas Medidas estadísticas poblacionales

Capítulo 2. Medidas Estadísticas Básicas Medidas estadísticas poblacionales Capítulo 2 Medidas Estadísticas Básicas 2.1. Medidas estadísticas poblacionales Sea X una variable aleatoria con función de probabilidad p(x) si es discreta, o función de densidad f(x) si es continua.

Más detalles

Definición Una hipótesis es una afirmación acerca de un parámetro.

Definición Una hipótesis es una afirmación acerca de un parámetro. Capítulo 8 Prueba de hipótesis Existen dos áreas de interés en el proceso de inferencia estadística: la estimación puntual y las pruebas de hipótesis. En este capítulo se presentan algunos métodos para

Más detalles

10.1 Enfoque Bayesiano del problema de la estimación

10.1 Enfoque Bayesiano del problema de la estimación Chapter 10 Estimadores de Bayes 10.1 Enfoque Bayesiano del problema de la estimación puntual Consideremos nuevamente un problema estadístico de estimación paramétrico. Se observa un vector X = X 1,...,

Más detalles

Regresión lineal simple

Regresión lineal simple Regresión lineal simple Unidad 1 Javier Santibáñez IIMAS, UNAM jsantibanez@sigma.iimas.unam.mx Semestre 2018-2 Javier Santibáñez (IIMAS, UNAM) Regresión simple Semestre 2018-2 1 / 62 Contenido 1 Planteamiento

Más detalles

Clasificación y regresión logística

Clasificación y regresión logística Clasificación y regresión logística José R. Berrendero Universidad Autónoma de Madrid Contenidos Planteamiento del problema de clasificación supervisada Regla lineal de Fisher Regresión logística Optimalidad:

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y

Más detalles

Part I. Descripción estadística de dos variables. Estadística I. Mario Francisco. Variable. bidimensional. Distribuciones de frecuencias

Part I. Descripción estadística de dos variables. Estadística I. Mario Francisco. Variable. bidimensional. Distribuciones de frecuencias Part I Descripción de dos variables Introducción Si para un mismo individuo observamos simultáneamente k obtendremos como resultado una variable k-dimensional. Nos ocuparemos del estudio de las variables

Más detalles

Identificación mediante el método de los mínimos cuadrados

Identificación mediante el método de los mínimos cuadrados Ingeniería de Control Identificación mediante el método de los mínimos cuadrados Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos relevantes aprendidos previamente:

Más detalles

Resumen. Recordemos que una cópula es una función C : I 2 I tal que: C(u 2, v 2 ) C(u 2, v 1 ) C(u 1, v 2 ) + C(u 1, v 1 ) 0. (2)

Resumen. Recordemos que una cópula es una función C : I 2 I tal que: C(u 2, v 2 ) C(u 2, v 1 ) C(u 1, v 2 ) + C(u 1, v 1 ) 0. (2) Contenido 1 2 3 Cópula Empírica Cópula Kernel Resumen Recordemos que una cópula es una función C : I 2 I tal que: 1 Para cualesquiera u, v en I := [0, 1] C(u, 0) = 0 = C(0, v), C(u, 1) = u, C(1, v) = v.

Más detalles

Factorización QR Método iterativo de Jacobi

Factorización QR Método iterativo de Jacobi Clase No. 13: MAT 251 Factorización QR Método iterativo de Jacobi Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT

Más detalles

Análisis del Cambio Estructural en los Modelos Lineales

Análisis del Cambio Estructural en los Modelos Lineales UNIVERSIDAD AUTÓNOMA METROPOLITANA Casa abierta al tiempo Iztapalapa Análisis del Cambio Estructural en los Modelos Lineales Trabajo terminal de la Maestria en Ciencias Matemáticas Aplicadas e industriales

Más detalles

Regresión Lineal Múltiple

Regresión Lineal Múltiple Universidad Nacional Agraria La Molina 2011-2 Efectos de Diagnósticos de Dos predictores X 1 y X 2 son exactamente colineales si existe una relación lineal tal que C 1 X 1 + C 2 X 2 = C 0 para algunas

Más detalles

T E S I S M A E S T R O E N C I E N C I A S MIGUEL ANGEL POLO VUELVAS

T E S I S M A E S T R O E N C I E N C I A S MIGUEL ANGEL POLO VUELVAS UNIVERSIDAD AUTÓNOMA METROPOLITANA UNIDAD IZTAPALAPA MAESTRÍA EN CIENCIAS (MATEMÁTICAS APLICADAS E INDUSTRIALES) ANÁLISIS DE MODELOS DE DATOS LONGITUDINALES T E S I S QUE PARA OBTENER EL GRADO DE: M A

Más detalles

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales ETS Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Noviembre

Más detalles

T3. El modelo lineal básico

T3. El modelo lineal básico T3. El modelo lineal básico Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 41 Índice 1 Regresión lineal múltiple Planteamiento Hipótesis

Más detalles

Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato cimat.mx web:

Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato   cimat.mx web: Clase No 12: MAT 251 Factorización QR Dr Alonso Ramírez Manzanares Depto de Matemáticas Univ de Guanajuato e-mail: alram@ cimatmx web: http://wwwcimatmx/alram/met_num/ Dr Joaquín Peña Acevedo CIMAT AC

Más detalles

Introducción. Distribución Gaussiana. Procesos Gaussianos. Eduardo Morales INAOE (INAOE) 1 / 47

Introducción. Distribución Gaussiana. Procesos Gaussianos. Eduardo Morales INAOE (INAOE) 1 / 47 Eduardo Morales INAOE (INAOE) 1 / 47 Contenido 1 2 3 (INAOE) 2 / 47 Normalmente, en los algoritmos de aprendizaje que hemos visto, dado un conjunto de ejemplos de entrenamiento se busca encontrar el mejor

Más detalles

APÉNDICE A ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMATICAS INGENIERIA EN ESTADISTICA E INFORMATICA

APÉNDICE A ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMATICAS INGENIERIA EN ESTADISTICA E INFORMATICA APÉNDICE A ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMATICAS INGENIERIA EN ESTADISTICA E INFORMATICA Nivel de Conocimientos en Estadística de los estudiantes de Ingeniería de la

Más detalles

Estimación MC2E, MVIL en Modelos de Ecuaciones Simultáneas

Estimación MC2E, MVIL en Modelos de Ecuaciones Simultáneas Estimación MC2E, MVIL en Modelos de Ecuaciones Simultáneas Economía Aplicada III (UPV/EHU) OCW 2013 Contents 1 Mínimos Cuadrados en 2 Etapas 2 Mínimos Cuadrados en 2 Etapas El método de Mínimos Cuadrados

Más detalles

Estadística Diplomado

Estadística Diplomado Diplomado HRB UNAM 1 / 25 1 Estimación Puntual Momentos Máxima Verosimiltud Propiedades 2 / 25 1 Estimación Puntual Momentos Máxima Verosimiltud Propiedades 2 Estimación por Intervalos Cantidades Pivotales

Más detalles

Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación

Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación Estadística Tema 3 Esperanzas 31 Esperanza Propiedades 32 Varianza y covarianza Correlación 33 Esperanza y varianza condicional Predicción Objetivos 1 Medidas características distribución de VA 2 Media

Más detalles

Solución de sistemas lineales

Solución de sistemas lineales Solución de sistemas lineales Felipe Osorio http://www.ies.ucv.cl/fosorio Instituto de Estadística Pontificia Universidad Católica de Valparaíso Marzo 31, 2015 1 / 12 Solución de sistemas lineales El problema

Más detalles

Pérdida Esperada. Pérdida Esperada (PE): Valor esperado de pérdida por riesgo crediticio en un horizonte de tiempo determinado.

Pérdida Esperada. Pérdida Esperada (PE): Valor esperado de pérdida por riesgo crediticio en un horizonte de tiempo determinado. Pérdida Esperada Uno de los objetivos de este estudio es construir una función de pérdidas para el portafolio de la cartera de préstamos que ofrece la entidad G&T Continental, basados en el comportamiento

Más detalles

DEPARTAMENTO DE ECONOMÍA APLICADA I UNIVERSIDAD DE SEVILLA BOLETINES DE PROBLEMAS DE MATEMÁTICAS I. (b) f(x) = x2 1 x 2 + 3x + 2 (e) f(x) =

DEPARTAMENTO DE ECONOMÍA APLICADA I UNIVERSIDAD DE SEVILLA BOLETINES DE PROBLEMAS DE MATEMÁTICAS I. (b) f(x) = x2 1 x 2 + 3x + 2 (e) f(x) = BLOQUE I: CÁLCULO IFERENCIAL. Tema 1: Funciones de una variable EPARTAMENTO E ECONOMÍA APLICAA I UNIVERSIA E SEVILLA BOLETINES E PROBLEMAS E MATEMÁTICAS I 1. Estudiar la continuidad de las siguientes funciones:

Más detalles

1. Estimación. f(y) = θ e y θ, y > 0 0, en otro punto

1. Estimación. f(y) = θ e y θ, y > 0 0, en otro punto 1. Estimación Definición: Un estimador es una regla que indica cómo calcular el valor de una estimación con base en las mediciones que contien una muestra. Definición: Si ˆθ es un estimador puntual de

Más detalles

Econometría 1. Karoll GOMEZ Segundo semestre 2017

Econometría 1. Karoll GOMEZ   Segundo semestre 2017 Econometría 1 Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2017 II. El modelo de regresión lineal Esperanza condicional I Ejemplo: La distribución de los salarios

Más detalles

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 Unidades: - Matrices (Bloque Álgebra) - Determinantes (Bloque Álgebra) - Sistemas de ecuaciones lineales (Bloque Álgebra) - Vectores (Bloque

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Análisis de Datos. Regresión logística. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Regresión logística. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Regresión logística Profesor: Dr. Wilfrido Gómez Flores 1 Regresión logística Supóngase que se tiene una variable binaria de salida Y, y se desea modelar la probabilidad condicional P(Y=1

Más detalles

Capítulo 2 Enfoque matricial de la regresión lineal Javier Galán Figueroa. Econometría Aplicada Utilizando R

Capítulo 2 Enfoque matricial de la regresión lineal Javier Galán Figueroa. Econometría Aplicada Utilizando R Capítulo 2 Enfoque matricial de la regresión lineal Javier Galán Figueroa Objetivo Que el usuario conozca las rutinas básicas que son necesarias para estimar los parámetros de la regresión lineal a través

Más detalles

Simulación. La mayoría de los procesos de simulación tiene la misma estructura básica:

Simulación. La mayoría de los procesos de simulación tiene la misma estructura básica: Simulación La mayoría de los procesos de simulación tiene la misma estructura básica: 1 Indentificar una variable de interés y escribir un programa para simular dichos valores Generar una muestra independiente

Más detalles

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESCUELA DE GRADUADOS

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESCUELA DE GRADUADOS PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESCUELA DE GRADUADOS TITULO DE LA TESIS ANÁLISIS DE VOTOS ELECTORALES USANDO MODELOS DE REGRESIÓN PARA DATOS DE CONTEO Tesis para optar el grado de Magíster en

Más detalles

Máster en Ciencias Actuariales y Financieras

Máster en Ciencias Actuariales y Financieras Máster en Ciencias Actuariales y Financieras TRABAJO FIN DE MÁSTER Título: Cuantificación del riesgo de pérdida: Cópulas y Probit Multivariante Autor: Carla de Pedro Cascón Tutor/res: Catalina Bolancé

Más detalles

Prácticas Tema 4: Modelo con variables cualitativas

Prácticas Tema 4: Modelo con variables cualitativas Prácticas Tema 4: Modelo con variables cualitativas Ana J. López y Rigoberto Pérez Departamento de Economía Aplicada. Universidad de Oviedo PRACTICA 4.1- Se dispone de información sobre 16 familias sobre

Más detalles

Por ejemplo, si se desea discriminar entre créditos que se devuelven o que presentan

Por ejemplo, si se desea discriminar entre créditos que se devuelven o que presentan Regresión Logística Introducción El problema de clasificación en dos grupos puede abordarse introduciendo una variable ficticia binaria para representar la pertenencia de una observación a uno de los dos

Más detalles

Técnicas Multivariadas Avanzadas

Técnicas Multivariadas Avanzadas Más alla de la linealidad Universidad Nacional Agraria La Molina 2014-2 Introducción Introducción Las relaciones entre variables casi nunca son lineales. Sin embargo el supuesto de linealidad casi siempre

Más detalles

Cálculo de Geodésicas en Superficies de Revolución

Cálculo de Geodésicas en Superficies de Revolución Cálculo de Geodésicas en Superficies de Revolución Superficies de Revolución Sea S R 3 la superficie de revolución obtenida al girar una curva regular del plano XZ que no corte al eje Z alrededor del mismo.

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 5 Esperanza y momentos Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Modelos Probit y Tobit aplicados al estudio de la oferta laboral de los trabajadores secundarios en el Perú

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Modelos Probit y Tobit aplicados al estudio de la oferta laboral de los trabajadores secundarios en el Perú UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE. ESTADÍSTICA Modelos Probit y Tobit aplicados al estudio de la oferta laboral de los trabajadores secundarios en el Perú

Más detalles

Regresión Lineal. Rodrigo A. Alfaro. Rodrigo A. Alfaro (BCCh) Regresión Lineal / 16

Regresión Lineal. Rodrigo A. Alfaro. Rodrigo A. Alfaro (BCCh) Regresión Lineal / 16 Regresión Lineal Rodrigo A. Alfaro 2009 Rodrigo A. Alfaro (BCCh) Regresión Lineal 2009 1 / 16 Contenidos 1 Regresiones Lineales Regresión Clásica Paquetes estadísticos 2 Estadísticos de Ajuste Global 3

Más detalles

Econometría 1. Karoll GOMEZ Segundo semestre 2017

Econometría 1. Karoll GOMEZ   Segundo semestre 2017 Econometría 1 Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2017 II. El modelo de regresión lineal Esperanza condicional I Ejemplo: La distribución de los salarios

Más detalles

Econometría III Examen. 29 de Marzo de 2012

Econometría III Examen. 29 de Marzo de 2012 Econometría III Examen. 29 de Marzo de 2012 El examen consta de 20 preguntas de respuesta múltiple. El tiempo máximo es 1:10 minutos. nota: no se pueden hacer preguntas durante el examen a no ser que sean

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

MLG Ana M. Bianco FCEyN

MLG Ana M. Bianco FCEyN MLG Ana M. Bianco FCEyN 2008 81 Qué podemos hacer cuando la variable es continua o discreta con muchos valores posibles? El siguiente ejemplo corresponde al TP4 y se ha registrado la variable edad en forma

Más detalles