CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 1 de Junio de x + x 2 y + y 3 =0, 2y + x 3 + xy 2 =0.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 1 de Junio de x + x 2 y + y 3 =0, 2y + x 3 + xy 2 =0."

Transcripción

1 ÁLULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 1 de Junio de 4 Ejercicio 1. Hallar los extremos absolutos de f (x, y) x + y e xy en el conjunto D (x, y) R : x + y 1 ª. Solución: Para obtener los puntos críticos del interior de D, resolvemos el sistema f x (x, y)xe xy + x y + y 3 e xy x + x y + y 3 e xy, f y (x, y)ye xy + x 3 + xy e xy y + x 3 + xy e xy. Dado que e xy >, el sistema es equivalente a x + x y + y 3, y + x 3 + xy. Si a la primera ecuación le restamos la segunda, obtenemos (x y) x y x y obien x + y. Los puntos solución de la ecuación x + y pertenecen al exterior de D, por lo que necesariamente x y. Entonces x + x 3 + x 3 x 1+x, es una ecuación que tiene x como única solución real. En consecuencia, el único punto interior de D candidato a extremo es P 1 (, ). La frontera de D se define con la restricción g (x, y) x +y 1. Usando el criterio de los multiplicadores de Lagrange, determinamos los puntos solución del sistema f (x, y) λ g (x, y), resolviendo x + x y + y 3 e xy λx, y + x 3 + xy e xy λy, x + y 1. Usando la tercera ecuación, obtenemos las igualdades x + x y + y 3 x + y x + y x + y, y + x 3 + xy y + x x + y y + x, que implican que las dos primeras ecuaciones del sistema son (x + y) e xy λx, (y + x) e xy λy. 1

2 Si a la primera ecuación le restamos la segunda, obtenemos (x y) e xy λ (x y) x y obien e xy λ. En el caso de que x y, la tercera ecuación implica que x 1, por lo que µ 1 P, 1, P 3 µ 1, 1 son dos puntos de la frontera de D candidatos a extremos. Si e xy λ entonces x + y x implica y x, que con la tercera ecuación proporciona los puntos µ 1 P 4, 1 µ, P 5 1, Los valores de la función en dichos puntos son 1. f (P 1 ), f (P )f (P 3 )e 1/, f (P 4 )f (P 5 )e 1/. Entonces, el máximo absoluto se alcanza en P y P 3, mientras que el mínimo absoluto se alcanza en P 1.

3 Ejercicio. positivamente. Sea la cardioide de ecuación r a (1 + cos θ) orientada (a) alcular la integral de línea I h x + y ax a x + y 1 i ds, usando el resultado para obtener la longitud de. (b) alcular la integral de línea I ydx xdy, y utilizarla para deducir el área de la región encerrada por. Solución: La cardioide se parametriza mediante x r cos θ a cos θ (1 + cos θ), y r sen θ a sen θ (1 + cos θ), donde θ π. En primer lugar, calculamos dx a [sen θ (1 + cos θ)+senθcos θ] dθ, dy a cos θ (1 + cos θ) sen θ dθ. (a) Para calcular la integral de línea del campo escalar dado, evaluamos x + y ax a (1 + cos θ) a cos θ (1 + cos θ) a (1 + cos θ), igualdad que implica x + y ax a x + y 1 h a 4 (1 + cos θ) a a (1 + cos θ) 1i a. Además, tenemos que ds q (dx) +(dy) q a (1 + cos θ) +sen θdθ a +cosθdθ. Entonces I h x + y ax a x + y 1 i Z π ds a 3 +cosθdθ. Para calcular una primitiva, usamos 1+cosθ cos θ +cosθ cos θ 3 ½ cos θ si θ π, cos θ si π θ π.

4 En consecuencia, Z π a 3 µz π +cosθdθa 3 cos θ Z π dθ cos θ dθ La longitud de la cardioide dada es I l () ds a 3 Ã sen θ Z π π π sen θ π a +cosθdθ8a. π! 8a 3. (b) La integral de línea del campo vectorial dado es I Z π h ydx xdy a sen θ (1 + cos θ) a cos θ (1 + cos θ) i dθ Z π Z π a (1 + cos θ) dθ a 1+cosθ +cos θ dθ Z π µ a 1+cosθ + 1+cosθ dθ a 3θ +senθ + sen θ π 3πa. El área de la región encerrada por la cardioide es a 1 I xdy ydx 3πa. 4

5 Ejercicio 3. onsideremos el sólido V (x, y, z) R 3 : x, z y, x + y 4 ª, yseas la superficie cerrada que limita a V. (a) alcular el área de la parte cilíndrica S 1 de la superficie S. (b) alcular directamente el flujo de salida del campo vectorial F (x, y, z) (x, y, z) atravésdelasuperficie cerrada S. (c) alcular el flujo citado aplicando el teorema deladivergencia. Solución: (a) La parte cilíndrica de la superficie S se define mediante S 1 (x, y, z) R 3 : x, z y, x + y 4 ª. Usando coordenadas cilíndricas x r cos θ, y r sen θ, z z, obtenemos S 1 (θ, z) (cosθ, senθ, z), θ π, z senθ. El producto vectorial fundamental es (S 1 ) θ (S 1 ) z senθ cosθ 1 (cosθ, senθ, ), y tiene la norma k(s 1 ) θ (S 1 ) z k 4. Entonces, el área Z π/ Z senθ Z π/ a (S 1 ) ds dz dθ 4senθdθ[ 4cosθ] π/ 4. S 1 (b) alculamos el flujodesalidadelcampoatravésdelascuatropartesde S, que son la parte cilíndrica S 1, la tapa superior S, el triángulo lateral S 3, ylabases 4. En el punto S 1 (, ) (,, ), el producto (S 1 ) θ (S 1 ) z (, ) (,, ), por lo que tiene la dirección exterior. El flujo de salida a través de S 1 es Z π/ Z senθ F NdS ( cos θ, senθ, z) ( cos θ, senθ, ) dz dθ S 1 Z π/ Z senθ 4 dz dθ 5 Z π/ 8senθdθ[ 8cosθ] π/ 8.

6 La tapa superior S verifica x + y 4, z y, y x. Una parametrización es S (x, y) (x, y, y) donde (x, y) D, siendo D (x, y) R : x, y, x + y 4 ª. alculamos el vector (S ) x (S ) y 1 (, 1, 1), 1 1 que tiene la dirección exterior al plano. El flujodesalidaatravésdes es F NdS (x, y, y) (, 1, 1) dx dy. S D El triángulo lateral S 3 está contenido en el plano x yverifica las desigualdades y, z y. Parametrizamos S 3 (y, z) (,y,z), luego (S 3 ) y (S 3 ) z 1 (1,, ), 1 que tiene la dirección interior al plano (cambiamos el signo). Entonces Z Z y F NdS (,y,z) (1,, ) dz dy. S 3 La base S 4 está contenido en z, verificando x + y 4, y, y x. Una parametrización es S 4 (x, y) (x, y, ) donde (x, y) D. El producto vectorial fundamental es (S 4 ) x (S 4 ) y 1 1 (,, 1), que tiene la dirección interior al plano (cambiamos el signo). Entonces F NdS (x, y, ) (,, 1) dx dy. S 4 D En consecuencia, el flujodesalidadelcampof atravésdes es F NdS8. S 6

7 (c) El teorema de la divergencia de Gauss afirma que el flujodesalidadel campo F a través de S coincide con la integral triple de la divergencia de F, es decir Z F NdS div Fdxdydz. S alculamos div F 3, y usando coordenadas cilíndricas V n(r, θ, z) R 3 : r θ π o, z r sen θ. V omo el jacobiano del cambio de variables es r, la integral triple pedida verifica Z Z π/ Z Z r sen θ Z π/ Z div Fdxdydz3 rdzdrdθ3 r sen θdrdθ V Z π/ r3 3 sen θ dθ 3 [ 8cosθ] π/ 8. Z π/ 8senθdθ 7

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003 CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de Ejercicio 1. Calcular el volumen del elipsoide x a + y b + z c 1. Probar que el elipsoide de volumen máximo,

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen de 1 de Septiembre de 2009 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen de 1 de Septiembre de 2009 Primera parte ÁLULO Primer curso de ngeniero de Telecomunicación Examen de de Septiembre de 9 Primera parte Ejercicio. En un círculo de radio a se toma un diámetro POQ. Sobre la perpendicular al círculo en el punto

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 3 de Julio de 2001 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 3 de Julio de 2001 Primera parte ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. de Julio de Primera parte Ejercicio. Se considera la función definida por la determinación principal del arco tangente, es decir f (x) =

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte ÁLULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 000 Primera parte Ejercicio 1. Entre todos los rectángulos del plano YOZ,inscritos en la parábola z = a y (siendo a>0) yconbaseenelejeoy

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2007 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2007 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 6 de Junio de 7 Primera parte Ejercicio. Determinar los puntos de máxima y mínima pendiente de la gráfica de la función y = +x, x. Solución.

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2005 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2005 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 005 Primera parte Ejercicio 1. Un espejo plano de dimensiones 80 cm y 90 cm, se rompe por una esquina según una recta. De

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 4 de Julio de 2002 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 4 de Julio de 2002 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 4 de Julio de Primera parte Ejercicio. Se considera el recinto plano R := ½(x, y) R : x 3, y x3 3 Otener los volúmenes de los sólidos

Más detalles

Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 14 de Junio de 2000

Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 14 de Junio de 2000 ÁLULO Primer curso de ngeniero de elecomunicación egundo Examen Parcial. de Junio de Ejercicio. Hallar los extremos absolutos de la función f (x, y, z) =x + y + z, en el conjunto A = (x, y, z) R 3 : x

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de 4 Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico con semieje orizontal a

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen del 14 de Septiembre de 2000 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen del 14 de Septiembre de 2000 Primera parte ÁLULO Primer curso de Ingeniero de Telecomunicación Examen del de Septiembre de Primera parte Ejercicio. Un flan tiene forma de tronco de paraboloide de revolución, siendo r y r losradiosdesusbasesyh su

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. Cálculo III, Examen Final. Semestre Primavera 1 Tiempo: 11 min. Problema 1 [1,5 puntos] La curvatura de una trayectoria

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral 8 de junio de (Soluciones) Cuestiones C Sí se puede asegurar que es integrable, como consecuencia del teorema 4. de los apuntes: Llamamos W y f : W R a la esfera y a la

Más detalles

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre:

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre: Nombre: Santiago, julio 6 del 26. Tercera Solemne Cálculo Varias Variables. 1. La temperatura en un punto (x, y) sobre una placa metalica es T (x, y) 4x 2 4xy + y 2. Una hormiga camina sobre la placa alrededor

Más detalles

Solución y Pautas de Corrección

Solución y Pautas de Corrección Universidad de los Andes Departamento de Matemáticas MATE127 Cálculo Vectorial Examen Final (1/12/29) 1 Prob. 1 2 3 4 5 Valor 1 1 1 1 1 5 Puntos Nombre: Código: Sección: Escriba todo su análisis si desea

Más detalles

Capítulo 5. Integrales sobre curvas y superficies

Capítulo 5. Integrales sobre curvas y superficies Capítulo 5. Integrales sobre curvas y superficies 5.1. Integrales de funciones escalares sobre curvas 5.2. Integrales de campos vectoriales sobre curvas 5.3. Teorema de Green 5.4. Integrales sobre superficies

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral de junio de 11 (Soluciones) Cuestiones C 1 La respuesta es que la función es integrable, como consecuencia del Teorema 1.1 de los apuntes, o el Teorema del Capítulo 5 del

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Sea S = F r(w ) una supercie cerrada que limita una región en el espacio W R 3

Sea S = F r(w ) una supercie cerrada que limita una región en el espacio W R 3 4.3 Teorema de la ivergencia Gauss) ea = F r ) una supercie cerrada que limita una región en el espacio R 3 El teorema de la divergencia tambien conocido como teorema de Gauss) es una generalización del

Más detalles

6. El teorema de la divergencia.

6. El teorema de la divergencia. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. Lección. Cálculo vectorial. 6. El teorema de la divergencia. Ya vimos una versión del teorema de Green en el plano que expresa la igualdad entre la integral doble

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

FACULTAD DE CIENCIAS DEL MAR. FUNDAMENTOS MATEMÁTICOS II. Convocatoria Extraordinaria de Diciembre de 2002.

FACULTAD DE CIENCIAS DEL MAR. FUNDAMENTOS MATEMÁTICOS II. Convocatoria Extraordinaria de Diciembre de 2002. FAULTAD DE IENIAS DEL MAR. FUNDAMENTOS MATEMÁTIOS II. onvocatoria Extraordinaria de Diciembre de. xydx x y dy a lo largo de la elipse.- alcular + ( ) contrario al de las agujas del reloj. x y + = recorrida

Más detalles

Soluciones de los ejercicios del examen final de la primera convocatoria

Soluciones de los ejercicios del examen final de la primera convocatoria Matemáticas III GI, curso 2015 2016 oluciones de los ejercicios del examen final de la primera convocatoria EJERIIO 1. De un campo escalar fx, y, z se sabe que es de clase R 3 y que su gradiente en el

Más detalles

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002.

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002. Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso -. Examen de Septiembre. 6 de Septiembre de. Primera parte Ejercicio. Un canal abierto cuya sección es un trapecio isósceles de bases horizontales,

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas III GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Considera la integral doble π π ibuja la región del plano XY en la que se está integrando. Usa el teorema

Más detalles

Integración sobre curvas

Integración sobre curvas Problemas propuestos con solución Integración sobre curvas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Integral de línea de campos escalares 1

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

Primer curso de Ingeniero de Telecomunicación Examen de 12 de Septiembre de 2006 Primera parte

Primer curso de Ingeniero de Telecomunicación Examen de 12 de Septiembre de 2006 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen de 2 de Setiembre de 2 Primera arte Ejercicio. A medianoche, el barco Arrow se encuentra situado a kilómetros en dirección este del barco Blue.

Más detalles

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8 ANALISIS MATEMATIO II (iencias- 2011) Integrales sobre curvas (o de línea) Trabajo Práctico 8 1. Evaluar las siguientes integrales curvilíneas γ f ds. (a) f(x, y, z) = x + y + z ; r(t) = (sen t, cos t,

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico, con semieje horizontal a,

Más detalles

Matemáticas III Tema 6 Integrales de superficie

Matemáticas III Tema 6 Integrales de superficie Matemáticas III Tema 6 Integrales de superficie Rodríguez ánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba,. 214. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative Commons Attribution- NonComercial-hareAlike

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-112-4-V-1--217 CURSO: SEMESTRE: Primero CÓDIGO DEL CURSO: 112 TIPO DE EXAMEN: Examen Final Parcial FECHA DE

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green ANÁLISIS MATEMÁTIO II - Grupo iencias 018 Práctica 9 ampos conservativos - Teorema de Green A. ampos conservativos 1. Mostrar que F x, y) = y cos x) i + x sen y) j no es un campo vectorial gradiente..

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

Certamen 2 - Mate 024 (Pauta)

Certamen 2 - Mate 024 (Pauta) Certamen - Mate 4 (Pauta) noviembre 6, 14 1. Calcular γ x 4 + y 4 1 dx + y 3 x 4 + y 4 1 dy en cada uno de los siguientes casos: a) γ es la curva x + y = 1 4 y se recorre en sentido positivo. b) γ es la

Más detalles

Soluciones de los ejercicios del primer examen parcial

Soluciones de los ejercicios del primer examen parcial Matemáticas III (GIC, curso 2015 2016) Soluciones de los ejercicios del primer examen parcial EJERCICIO 1. Determina en qué ecuación se transforma la ecuación en derivadas parciales z yy + 3z xy + 2z xx

Más detalles

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código:

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código: UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Examen Final de Cálculo Vectorial MATE 1207 PREGUNTAS ABIERTAS TEMA A Diciembre 6 de 2017 Este es un examen individual, no se permite el uso de libros,

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 álculo diferencial e integral 4 Guía 4 1. alcular la divergencia y el rotacional de los siguientes campos vectoriales: a) V (x, y, z) = yzi + xzj + xyk. b) V (x, y, z) = x 2 i + (x + y) 2 j + (x + y +

Más detalles

Tarea 8. (xdy ydx) (1) A = 1 2. Por lo tanto el área es; [(Rcos(θ))(Rcos(θ)) (Rsin(θ))(Rsin(θ))] dθ (2) Reduciendo la expresiónnalmentese obtiene;

Tarea 8. (xdy ydx) (1) A = 1 2. Por lo tanto el área es; [(Rcos(θ))(Rcos(θ)) (Rsin(θ))(Rsin(θ))] dθ (2) Reduciendo la expresiónnalmentese obtiene; Tarea 8 1. Encuentre el área de el disco de radio R usando el teoréma de Green. e acuerdo con el teorema de Green, el área de la región es; A = 1 (xdy ydx) (1) Como es un discmo con centro en (, ) de radio

Más detalles

Soluciones de los ejercicios del examen de Análisis Matemático Primer curso de Ingeniería Informática - Febrero de 2005

Soluciones de los ejercicios del examen de Análisis Matemático Primer curso de Ingeniería Informática - Febrero de 2005 Soluciones de los ejercicios del examen de Primer curso de Ingeniería Informática - Febrero de 25 Ejercicio. A Dados los puntos A, y 2,2, calcula el camino más corto para ir de A a pasando por un punto

Más detalles

Lección 3. Cálculo vectorial. 5. El teorema de Stokes.

Lección 3. Cálculo vectorial. 5. El teorema de Stokes. GRADO DE INGENIERÍA AEROESPAIAL. URSO. 5. El teorema de Stokes. En esta sección estudiaremos otro de los teoremas clásicos del análisis vectorial: el teorema de Stokes. Esencialmente se trata de una generalización

Más detalles

Ejercicios típicos del segundo parcial

Ejercicios típicos del segundo parcial Ejercicios típicos del segundo parcial El segundo examen parcial consiste en tres ejercicios prácticos y dos teóricos, aunque esta frontera es muy difusa. Por ejemplo, el primer ejercicio de esta serie,

Más detalles

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ,

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ, egundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de 216 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. ecuerde apagar

Más detalles

Matemáticas III Tema 5 Integrales de ĺınea

Matemáticas III Tema 5 Integrales de ĺınea Matemáticas III Tema 5 Integrales de ĺınea Rodríguez Sánchez, F.J. Muñoz Ruiz, M.L. Merino órdoba, S. 2014. OW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia reative ommons Attribution- Nonomercial-ShareAlike

Más detalles

CAPÍTULO 11. Teoremas Integrales.

CAPÍTULO 11. Teoremas Integrales. CAPÍTULO 11 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

Matemáticas III Tema 5 Integrales de línea

Matemáticas III Tema 5 Integrales de línea Matemáticas III Tema 5 Integrales de línea Rodríguez Sánchez, F.J. Muñoz Ruiz, M.L. Merino órdoba, S. 14. OW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia reative ommons ttribution- Nonomercial-Sharelike

Más detalles

S-25: Extremos Absolutos

S-25: Extremos Absolutos S-25: Extremos Absolutos P3) Estudia los extremos absolutos y relativos de la función f x, y = x 4 + xy 2 y 3 en el conjunto A = x, y R 2 : y 2, y x 2 Solución Frontera de A y 2 Interior de A A y x 2 2

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

Planos y Rectas. 19 de Marzo de 2012

Planos y Rectas. 19 de Marzo de 2012 el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos

Más detalles

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =

Más detalles

CÁLCULO III (0253) EXAMEN DE REPARACIÓN 30/06/09. 3t 3t 3 3

CÁLCULO III (0253) EXAMEN DE REPARACIÓN 30/06/09. 3t 3t 3 3 CÁLCULO III (05) 0/06/09 a Estudie la curva de ecuación vectorial t t r(t) =,, + t + t tomando en cuenta: dominio, cortes con los ejes, signo, simetrías, asíntotas, puntos asintóticos, tangentes, puntos

Más detalles

7. Cambio de variables en integrales triples.

7. Cambio de variables en integrales triples. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. Lección. Integrales múltiples. 7. Cambio de variables en integrales triples. El teorema del cambio de variables para integrales triples es análogo al de integrales

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016 rimer Examen arcial Tema A Cálculo Vectorial Marzo 5 de 016 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. Recuerde apagar y guardar

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

1 Terminar los ejercicios de la práctica realizada el día de hoy

1 Terminar los ejercicios de la práctica realizada el día de hoy Este documento contiene las actividades no presenciales propuestas al terminar la clase del día que se indica. e sobreentiende que también se debe realizar el estudio de lo explicado en clase aunque no

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 10. Cálculo vectorial.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 10. Cálculo vectorial. ÁLULO ngeniería ndustrial. urso 2009-2010. Departamento de Matemática Aplicada. Universidad de evilla. Lección 10. álculo vectorial. Resumen de la lección. 10.1. ntegrales de línea. ntegral de línea de

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE PLANO TANGENTE Y VECTOR NORMAL. AREA DE UNA SUPERFICIE 1) En cada uno de los siguientes ejercicios se presenta una S dada en forma paramétrica,

Más detalles

Soluciones de los ejercicios del examen de Fundamentos Matemáticos I Segundo curso de Ingeniería de Telecomunicación - febrero de 2006

Soluciones de los ejercicios del examen de Fundamentos Matemáticos I Segundo curso de Ingeniería de Telecomunicación - febrero de 2006 Soluciones de los ejercicios del examen de Segundo curso de Ingeniería de Telecomunicación - febrero de 6 ( a) (.5 puntos) Justifica que el campo vectorial F(x,y) = log(x + y ), arctg y ) es conservativo

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

Cálculo Integral (1º de los Grados en Matemáticas y en Física, Universidad de Cantabria) Examen final, 12 de junio de Soluciones.

Cálculo Integral (1º de los Grados en Matemáticas y en Física, Universidad de Cantabria) Examen final, 12 de junio de Soluciones. Examen final, 1 de junio de 17 Soluciones Cuestiones C 1 ) En este caso la condición es necesaria y suciente. Que es necesaria se demuestra en el apartado 3 4 del teorema 1.33. Que es suciente se sigue

Más detalles

Integrales de Superficie.

Integrales de Superficie. CAPÍTULO 9. Integrales de Superficie. Este capítulo cierra los tipos de integrales que estudiamos en el curso. Se practica el concepto de integral de superficie y se dan aplicaciones geométricas y físicas.

Más detalles

Teorema 1 (Cambio de Variable en R n ).

Teorema 1 (Cambio de Variable en R n ). Vamos a estudiar en este segundo capítulo sobre los cambios de variable para funciones de varias variables, algunos de los más habituales: los cambios de coordenadas a coordenadas polares en el plano,

Más detalles

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple El Teorema de Green Una curva dada por r(t) x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) r(d) si c d. urva simple urva no simple urva orientada positivamente La curva

Más detalles

i j k xy yz xz = = Div Rot F = x y z

i j k xy yz xz = = Div Rot F = x y z Div Rot F, si F = ( xy, yz, xz) 1. Hallar: primero, debemos hallar rotor de la función vectorial. i j k Rot ( F ) = ( xy, yz, xz) =,, ( xy, yz, xz) = x y z xy yz xz ( xz) ( yz) ( xy) ( xz) ( yz) ( xy)

Más detalles

Lista de Ejercicios Complementarios

Lista de Ejercicios Complementarios Lista de Ejercicios omplementarios Matemáticas VI (MA-3) Verano. ean α >, β > y a, b R constantes. ea la superficie que es la porción del cono de ecuación z = α x + y que resulta de su intersección con

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

Integrales de Superficie.

Integrales de Superficie. CAPÍTULO 10 Integrales de Superficie. Este capítulo cierra los tipos de integrales que estudiamos en el curso. Se practica el concepto de integral de superficie y se dan aplicaciones geométricas y físicas.

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje

Más detalles

Campos vectoriales - Parte B

Campos vectoriales - Parte B apítulo 6 ampos vectoriales - Parte B 6.6 Teorema de Green El Teorema de Green relaciona una integral de línea a lo largo de una curva cerrada en el plano, con una integral doble sobre la región encerrada

Más detalles

Soluciones de los ejercicios del del examen final de febrero

Soluciones de los ejercicios del del examen final de febrero Matemáticas II (GIC, curso 5 6) Soluciones de los ejercicios del del examen final de febrero EJERCICIO. Determina el ángulo polar de los puntos con tangente horizontal y los puntos con tangente vertical

Más detalles

Examen Final MATE1207 Cálculo Vectorial (Tema A) 1

Examen Final MATE1207 Cálculo Vectorial (Tema A) 1 Universidad de los Andes Departamento de Matemáticas Examen Final MATE1207 Cálculo Vectorial (Tema A) 1 Instrucciones: Lea cuidadosamente y conteste cada pregunta en la hoja asignada. Escriba con bolígrafo

Más detalles

SERIE # 4 CÁLCULO VECTORIAL

SERIE # 4 CÁLCULO VECTORIAL SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

GUÍA DE EJERCICIOS - INTEGRALES MÚLTIPLES

GUÍA DE EJERCICIOS - INTEGRALES MÚLTIPLES GUÍA DE EJERIIOS - INTEGRALES MÚLTIPLES 1. Escriba la expresión que permite calcular por integrales dobles: a. El área de una región plana R. b. El volumen de un sólido V, de altura z = f(x,y). c. La masa

Más detalles

A) Hallar el volumen del sólido formado cuando la región del primer cuadrante limitada por Z 4. 1 x 4 1 dx. Z b. p (x) h (x) dx.

A) Hallar el volumen del sólido formado cuando la región del primer cuadrante limitada por Z 4. 1 x 4 1 dx. Z b. p (x) h (x) dx. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA I.T.I. Especialidad en Electricidad. Curso 4-5. Soluciones al Segundo Parcial de Fundamentos Matemáticos de la Ingeniería. PROBLEMA.- A) Hallar el volumen del

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

ANALISIS II 12/2/08 COLOQUIO TEMA 1

ANALISIS II 12/2/08 COLOQUIO TEMA 1 ANALISIS II //08 COLOQUIO TEMA Sea f : R R un campo vectorial C y C la curva parametrizada por: γ(t) = (cost, 0, sent) con t ɛ [0, π] Sabiendo que C f ds = 6 y que rot( f( ) = (z, ), calcular la integral

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles

Integral Doble e Integral Triple

Integral Doble e Integral Triple www.cidse.itcr.ac.cr/revistamate Práctica 6 Integral Doble e Integral Triple Cambio de variable con coordenadas polares y coordenadas ciĺındricas. Cálculo Superior Instituto Tecnológico de Costa ica Escuela

Más detalles

Integración múltiple: integrales triples

Integración múltiple: integrales triples Problemas propuestos con solución Integración múltiple: integrales triples ISABEL MARRERO epartamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Integrales iteradas 1. Teorema

Más detalles

Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 26 de Enero de 2000 Primera parte. x 2 a 2 + y2

Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 26 de Enero de 2000 Primera parte. x 2 a 2 + y2 CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 6 de Enero de Primera parte Ejercicio. Se considera la elipse x a + y b =. Determinar, de entre los triángulos isósceles inscritos

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 28 - IV 14 CURSO Opción A 1.- Sean las matrices A = , B =

Apellidos: Nombre: Curso: 2º Grupo: A Día: 28 - IV 14 CURSO Opción A 1.- Sean las matrices A = , B = S Instrucciones: EXAMEN DE MATEMATICAS II 3ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: 8 - IV 4 CURSO 03-4 a) Duración: HORA y 30 MINUTOS. b) Debes elegir entre realizar únicamente los cuatro

Más detalles

Práctica 6. Extremos Condicionados

Práctica 6. Extremos Condicionados Práctica 6. Extremos Condicionados 6.1 Introducción El problema que nos planteamos podría enunciarse del modo siguiente: Sean A R n, f : A R una función de clase C 1 y M A. Consideremos la restricción

Más detalles

Clase 4. Campos Vectorialesy OperadoresDiferenciales

Clase 4. Campos Vectorialesy OperadoresDiferenciales lase 4. ampos Vectorialesy Operadoresiferenciales Un campo vectorial en R n es una función F : R n R n. i F es un campo vectorial, una línea de flujo (línea de corriente o curva integral) para F es una

Más detalles

Solution: Sea R = r = x 2 +y 2 +z 2. (b) Cálculo directo. 1 x2 +y 2 +z 2 = 1 R. (c) f =

Solution: Sea R = r = x 2 +y 2 +z 2. (b) Cálculo directo. 1 x2 +y 2 +z 2 = 1 R. (c) f = Universidad de los Andes Departamento de Matemáticas MAT7 Cálculo Vectorial Tarea 3 Individual ntregue en clase a su profesor de la MAGISTRAL la semana 5 (Ma. 3 Vi. 6 Dic.). (4 points) [Rotacional, Divergencia,

Más detalles

Tarea 2 - Vectorial

Tarea 2 - Vectorial Tarea - Vectorial 5.. Evaluar las siguientes integrales.. Part : 5. - 7. () sin(x + y ) da, () R donde R es la region del plano xy definida por x + y. (xy) cos(x ) da, donde R [, ] [, ]. R Solución: ()

Más detalles

1. Use el Teorema de Green para calcular el área de la región del. plano xy que satisface las desigualdades y x, x y, 8xy 1.

1. Use el Teorema de Green para calcular el área de la región del. plano xy que satisface las desigualdades y x, x y, 8xy 1. CÁLCULO VECTORIAL (54) SEGUNO PARCIAL (%) 9//9 EPARTAMENTO E APLICAA Use el Teorema de Green para calcular el área de la región del plano xy que satisface las desigualdades y x, x y, 8xy Halle el área

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático Resolución del coloquio de fecha 4/07/18 tema I con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad

Más detalles

a n en las que n=1 s n = n + 1 Solución: a) Utilizando el criterios de D Alembert se obtiene que a n+1 n a n 3 > 1 n=1

a n en las que n=1 s n = n + 1 Solución: a) Utilizando el criterios de D Alembert se obtiene que a n+1 n a n 3 > 1 n=1 EJERCICIO DE FUNDAMENTO MATEMÁTICO eries. Estudia el carácter de las series (a El término general es a n en las que (b la suma parcial n-sima es a n n n+ 3 n, n,, 3,... s n n, n,, 3,... n + olución: a

Más detalles

Soluciones a los ejercicios del examen final

Soluciones a los ejercicios del examen final Cálculo I Curso 2016/17 19 de junio de 2017 Soluciones a los ejercicios del examen final 1) Se considera la función f : [0, ) R definida por { 1 + x(ln(x) 1) si x > 0, f(x) = 1 si x = 0. (a) Probar que

Más detalles

1. Límites de sucesiones en R n

1. Límites de sucesiones en R n 1. Límites de sucesiones en R n Definición 1 (Límite de una sucesión). Dada {A k } k=1 = {a1 k,... an k } Rn decimos que el límite de A k cuando k tiende a infinito es L si: lím A k = L ε > 0, N N : A

Más detalles

Integrales Múltiples.

Integrales Múltiples. CAPÍTULO 8 Integrales Múltiples. En este capítulo generalizamos las integrales definidas de una variable a dos y tres variables. La interpretación geométrica de las integrales definidas de una variable

Más detalles

1 a 0 a 1 1 F 32 (2) /2

1 a 0 a 1 1 F 32 (2) /2 ESCUELA UNIVESITAIA POLITÉCNICA DE SEVILLA Ingeniería Técnica Industrial. Especialidad en Electricidad. Fundamentos Matemáticos de la Ingeniería Curso 00-006. Soluciones correspondientes al examen de la

Más detalles

Ejercicios Tercer Parcial del curso MA-1003.

Ejercicios Tercer Parcial del curso MA-1003. Ejercicios para MA 1003: álculo III 1 UNIVERIDAD DE OTA RIA FAULTAD DE IENIA EUELA DE MATEMÁTIA DEPARTAMENTO DE MATEMÁTIA APLIADA MA-1003 álculo III I ILO 2018 Ejercicios Tercer Parcial del curso MA-1003.

Más detalles