CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º"

Transcripción

1 SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) TEMA Ejercicio ( puntos) Dada la función f(x) = a sen(x + π). Hallar el valor de la constante a R sabiendo que f ( π ) = a + Se sabe que f ( π ) = a + Por otro lado f ( π ) = a sen (π + π) = a sen (3π ) = a( ) = a a + = a a + a = a + a = a = 3 a = 3 El valor de la constante es a = 3 Ejercicio (3 puntos) El gráfico muestra el área encerrada entre las gráficas de las funciones f(x) = x +, g(x) = x + x Calcular el valor del área sombreada.

2 SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) Primero debemos hallar los puntos en donde se cruzan las gráficas de las funciones. f(x) = g(x) x + = x + x x + + x x = 0 x 6x + = 0 Hallamos las raíces de la cuadrática x 6x + = 0 x, = ( 6) ± ( 6) = 6 ± 6 = 6 ± Para hallar el valor de y de los puntos donde se cruzan evaluamos en cualquiera de las dos funciones. f() = () + = 3 f() = () + = Los puntos donde se cruzan las funciones son: (; 3), (; ), el área es área = ( x + x) ( x + ) dx = x + x + x dx = x + 6x dx = x =, x = = ( x x x) = ( x x x) = ( ) ( ) = 3 3 Ejercicio 3 ( puntos) Hallar él o los puntos del gráfico de la función para los cuales la recta tangente sea horizontal f(x) = e x 3x El dominio de la función es el conjunto de todos los números reales. Debemos hallar los puntos de la forma (x 0 ; f(x 0 )) donde la recta tangente sea horizontal, es decir, donde la pendiente de la recta es nula. Sabemos que la pendiente de la recta tangente al gráfico de la función en el punto (x 0 ; f(x 0 )) es igual a la derivada de la función evaluada en x 0., debemos hallar los valores del dominio de la función donde su derivada se anule. La derivada de la función es: f (x) = e x 3x (x 3) f (x 0 ) = 0 e x 0 3x 0 (x 0 3) = 0 x 0 3 = 0 x 0 = 3 (recordar que la función exponencial no se anula). Para dar el punto debemos hallar el valor de f ( 3 )

3 SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) El punto del gráfico de la función es ( 3 ; e 9 ) f ( 3 ) = e(3 ) 3( 3 ) = e (9 9 ) = e 9 Ejercicio (3 puntos) Dada la función g(x) = ln (x 3a), hallar el valor de a R si se sabe que el conjunto de negatividad de la función es el intervalo ( 3 ; ). Hallar el dominio de la función teniendo en cuenta el valor hallado de la constante a. Sabemos que el conjunto de negatividad de la función ln (t) es el intervalo (0; ), si 0 < x 3a < 3a < x < + 3a 3a < x < + 3a El conjunto de negatividad de la función es el intervalo ( 3a ; +3a ) y por otro lado es igual a (3 ; ) 3a = 3 a = + 3a = + 3a = 3a = 3 a = g(x) = ln (x 3) El dominio de la función serán aquellos valores de x para los cuales x 3 > 0 x > 3 x > 3 Dominio de la función es el intervalo ( 3 ; + ) 3

4 SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) TEMA Ejercicio ( puntos) Dada la función h(x) = 3 sen (x π ), hallar los valores x R para los cuales h(x) = Nos piden hallar los valores x R para los cuales h(x) =, que es lo mismo que pedir 3 sen (x π ) = 3 sen (x π ) = 3 sen (x π ) = Sabemos que sen(t) = si y solo si t = π + kπ, x π = π + kπ x = π + π + kπ x = π + kπ Los valores de x R para los cuales se verifica que h(x) = son los de la forma x = π + kπ, con. Ejercicio (3 puntos) El gráfico muestra el área encerrada entre las gráficas de las funciones f(x) = x, g(x) = x y la recta x = Calcular el valor del área sombreada.

5 SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) Primero debemos hallar el punto en donde se cruzan las gráficas de las funciones f(x) = g(x) x = x 3x = 6 x = Para hallar el valor de y de los puntos donde se cruzan evaluamos en cualquiera de las dos funciones. f() = () = 0 El punto donde se cruzan las rectas es el (; 0), el área es área = (x ) ( x) dx = x + x dx = 3x 6 dx = ( 3x 6x) = ( 3() 6 ) ( 3() 6 ) = 6 Ejercicio 3 ( puntos) Dada la función f(x) = e x x 8 hallar los intervalos de crecimiento y decrecimiento. El dominio de la función es el conjunto de todos los números reales. Para hallar los intervalos de crecimiento y decrecimiento debe analizar el signo del a derivada primera. La derivada de la función es f (x) = e x x 8 (x ) El dominio de la función derivada también es el conjunto de todos los números reales. Buscamos en primer los valores para los cuales se anula la derivada primera de la función f (x) = 0 e x x 8 (x ) = 0 x = 0 x = Analizamos el signo de la derivada primera en los intervalos ( ; ), ( ; + ) En el intervalo ( ; ) la derivada primera es negativa ya que si evaluamos en 0 ( ; ) tenemos que f (0) = e 8 < 0 En el intervalo ( ; + ) la derivada primera es positiva ya que si evaluamos en 3 ( ; + ) tenemos que f (3) = e > 0, la función es creciente en el intervalo, ( ; + ) y decreciente en el intervalo( ; )

6 SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) Ejercicio (3 puntos) Dada la función f(x) = ln (3a x), hallar el valor de a R si se sabe que el conjunto de positividad de la función es el intervalo ( ; ). Hallar el dominio de la función teniendo en cuenta el valor hallado de la constante a Sabemos que el conjunto de positividad de la función ln (t) es el intervalo (; + ), si 3a x > x > 3a x < 3a El conjunto de positividad de la función es el intervalo ( ; 3a ) y por otro lado es igual a ( ; ) 3a = 3a = 0 3a = a = 7 f(x) = ln ( x) El dominio de la función serán aquellos valores de x para los cuales x > 0 x > x < Dominio de la función es el intervalo ( ; ) 6

7 SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) TEMA 6 Ejercicio ( puntos) Dada la función f(x) = sen (x + π ) + hallar todos los valores de x R para los cuales se verifica que f(x) = 3 Nos piden hallar los valores x R para los cuales f(x) = 3, que es lo mismo que pedir sen (x + π ) + = 3 sen (x + π ) = sen (x + π ) = Sabemos que sen(t) = si y solo si t = 3 π + kπ, x + π = 3 π + kπ k Z x = 3 π π + kπ x = π + kπ x = π + kπ Los valores de x R para los cuales se verifica que f(x) = 3 son los de la forma x = π + kπ, con. 7

8 SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) Ejercicio (3 puntos) Hallar el área de la región encerrada por la gráfica de la función f(x) = x, la recta de ecuación x = y el eje de las abscisas. Primero debemos hallar el punto en donde la parábola cruza al eje x f(x) = 0 x = 0 x = Porque el área pedida está en el primer cuadrante donde los valores de x son mayores o iguales a cero., el área es área = (x ) (0) dx = (x ) dx = ( x3 3 x) = ( ()3 ) (()3 3 3 ) = = 3 Ejercicio 3 ( puntos) Dada la función g(x) = x a hallar los valores de a R para los cuales g( ) = 3 6 Debemos hallar los valores para los cuales g( ) = 3 6 Tenemos que g( ) = ( ) a 8

9 SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) ( ) a = = a + 3 = a a = a = a = a = ( ) a = o a = Ejercicio (3 puntos) Dada la función f(x) = ln (a x + x + 3), determinar el valor de a R si f tiene un mínimo cuando x. Hallar en qué intervalo o unión de intervalos f es creciente Si la función tiene un mínimo cuando x = tenemos que Calculamos la derivada de la función f ( ) = 0 f (x) = a x (ax + ) + x + 3 f ( ) = a ( ) (a( ) + ) = 0 + ( ) + 3 a( ) + = 0 a = f(x) = ln ( x + x + 3) La derivada de la función no tiene más ceros, entonces para hallar el conjunto donde la función es creciente debemos analizar en que intervalo la derivada primera es positiva. El dominio de la función es el conjunto de todos los números reales ya que su argumento siempre es positivo (la cuadrática del argumento no tiene ceros). Analizamos el signo de la derivada primera en los intervalos ( ; ), ( ; + ) Recordamos la expresión de la derivada f (x) = x (x + ) + x + 3 En el intervalo ( ; ) la derivada primera es negativa ya que si evaluamos en ( ; ) tenemos que f ( ) < 0 En el intervalo ( ; + ) la derivada primera es positiva ya que si evaluamos en 0 ( ; + ) tenemos que f (0) > 0, la función es creciente en el intervalo, ( ; + ) 9

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) TEMA Ejercicio ( puntos) Hallar él o los puntos del gráfico de la función para los cuales la recta tangente sea horizontal f(x) = e x 3x

Más detalles

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º Cuatrimestre 2017 SEGUNDO TURNO (22/11/2017) TEMA 1

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º Cuatrimestre 2017 SEGUNDO TURNO (22/11/2017) TEMA 1 SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 17 SEGUNDO TURNO (/11/17) TEMA 1 Ejercicio 1 ( puntos) Dada la función exponencial f(x) = x 1, determinar el conjunto de negatividad y positividad. Ya que la función

Más detalles

TEMA 4 SEGUNDO TURNO (22/11/2017) Ejercicio 1 (2 puntos) Respuesta. Ejercicio 2 (3 puntos) Respuesta. Material de uso exclusivamente didáctico 1

TEMA 4 SEGUNDO TURNO (22/11/2017) Ejercicio 1 (2 puntos) Respuesta. Ejercicio 2 (3 puntos) Respuesta. Material de uso exclusivamente didáctico 1 SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 17 SEGUNDO TURNO (/11/17) TEMA 4 Ejercicio 1 ( puntos) Hallar las coordenadas del punto de la gráfica de la función h(x) = ln(x + x + 1) + 5x donde la pendiente

Más detalles

CLAVES DE CORRECCIÓN FINAL 11/07/2017 MATEMÁTICA 1º Cuatrimestre 2017 TEMA 1

CLAVES DE CORRECCIÓN FINAL 11/07/2017 MATEMÁTICA 1º Cuatrimestre 2017 TEMA 1 FINAL 11/7/17 1º Cuatrimestre 17 TEMA 1 Ejercicio 1 ( puntos) Hallar la expresión de un polinomio de grado 5 que verifica las siguientes condiciones: a) Tiene una raíz simple en x = 3 b) Tiene una raíz

Más detalles

Material de uso exclusivamente didáctico 1

Material de uso exclusivamente didáctico 1 TEMA 1 Ejercicio 1 ( puntos) Sea f(x) = 10 + 4. Hallar a R tal que f(a) = 9. Para el valor encontrado, hallar la ecuación de la recta tangente x 4 al gráfico de f en (a; f(a)) f(a) = 9 10 a 4 + 4 = 9 10

Más detalles

FINAL 15/07/ Tema 2

FINAL 15/07/ Tema 2 FINAL 5/07/206 - Tema 2 Ejercicio Hallar la ecuación de la recta tangente a la curva 4x 2 f ( x) = en x ( x 2 0 = + ) Forma de resolución La ecuación de la recta tangente en (expresada en forma canónica)

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

FINAL 15/07/ Tema 1

FINAL 15/07/ Tema 1 FINAL 15/07/016 - Tema 1 Ejercicio 1 Hallar la ecuación de la recta tangente a la curva x + x f ( x) = en x 0 = x + Solución y comentarios Forma 1 de resolución La ecuación de la recta tangente en (expresada

Más detalles

SEGUNDO TURNO TEMA 1

SEGUNDO TURNO TEMA 1 TEMA 1 Ejercicio 1 ( puntos) Dada la función polinómica f(x) = x + 2x 2 x 2, hallar los intervalos de positividad y negatividad de f sabiendo que el gráfico de dicha función corta al eje x en el punto

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Curso: 2º Bachillerato Examen II

Curso: 2º Bachillerato Examen II Nombre: Nota Curso: º Bachillerato Examen II Fecha: de Octubre de 015 La mala o nula explicación de cada ejercicio implica una penalización de hasta el 5% de la nota. 1.- Se sabe que la función f :[0,5]

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

TEMA 1 SEGUNDO TURNO (09/10/2017) Ejercicio 1 (2 puntos) Hallar el conjunto de negatividad del polinomio S de grado 3 que verifica

TEMA 1 SEGUNDO TURNO (09/10/2017) Ejercicio 1 (2 puntos) Hallar el conjunto de negatividad del polinomio S de grado 3 que verifica PRIMER PARCIAL MATEMÁTICA º Cuatrimestre 017 SEGUNDO TURNO (09/10/017) TEMA 1 Ejercicio 1 ( puntos) Hallar el conjunto de negatividad del polinomio S de grado 3 que verifica S( ) = S(1) = S() = 0 y que

Más detalles

CLAVES DE CORRECCIÓN PRIMER PARCIAL MATEMÁTICA 2º Cuatrimestre 2017 SEGUNDO TURNO (09/10/2017) TEMA 4

CLAVES DE CORRECCIÓN PRIMER PARCIAL MATEMÁTICA 2º Cuatrimestre 2017 SEGUNDO TURNO (09/10/2017) TEMA 4 PRIMER PARCIAL MATEMÁTICA º Cuatrimestre 017 SEGUNDO TURNO (09/10/017) Ejercicio 1 ( puntos) Dadas las funciones TEMA 4 f(x) = 3 x + 1 4 ; g(x) = 4x 5x 1 Hallar el dominio de la función f g(x) Primero

Más detalles

Aplicaciones de la integral definida al cálculo de áreas

Aplicaciones de la integral definida al cálculo de áreas Aplicaciones de la integral definida al cálculo de áreas 6 º) Interpreta geométricamente el área que define la integral (x + 6)dx 6 Geométricamente, la integral (x + 6) dx representa el área de la región

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones 3 SOLUCIONES 1. La suma superior es: La suma inferior es:. La suma superior es: s ( P) = ( 1) 3 + (3 ) 10 = 3 + 10 = 13 La suma inferior es: s ( P) = ( 1) 1+

Más detalles

TERCER TURNO TEMA 1. Ejercicio 1 (3 puntos) Sea f(x) la función lineal que pasa por los puntos A = (1; 3) y B = (2; 5). Sea

TERCER TURNO TEMA 1. Ejercicio 1 (3 puntos) Sea f(x) la función lineal que pasa por los puntos A = (1; 3) y B = (2; 5). Sea PRIMER PARCIAL MATEMÁTICA 1Cuat. 017 TEMA 1 Ejercicio 1 (3 puntos) Sea f(x) la función lineal que pasa por los puntos A = (1; 3) y B = (; 5). Sea g(x) = 4 x + 7 1 Hallar el conjunto de ceros de la función

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA 1) La recta r 1, tiene ordenada al origen 4 y forma con los ejes coordenados en el segundo cuadrante, un triángulo de área 16. Determinar la distancia del punto

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II 1 Matemáticas II COMUNIDAD DE MADRID MODELO CURSO 009-010 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A Ejercicio 1 a) Para calcular los extremos y los intervalos

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto. MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación

Más detalles

Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA

Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA CUARTO AÑO - 015 QUINTO AÑO - 016 1) Hallar la órmula de unción cuadrática g, que cumple las dos condiciones simultáneamente:

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

Matemática-ILSE. Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA. Guía de verano

Matemática-ILSE. Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA. Guía de verano Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA Guía de verano 1 1) Con la información dada, hallar la fórmula en cada caso: a) El vértice de la parábola es V = ( ;1 ) y pasa

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS DE INTEGRALES INDEFINIDAS

PROBLEMAS DE INTEGRALES INDEFINIDAS PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su

Más detalles

Examen de Matemáticas 2 o de Bachillerato Mayo 2003

Examen de Matemáticas 2 o de Bachillerato Mayo 2003 Examen de Matemáticas o de Bachillerato Mayo 1. (a) Dibuja el recinto limitado por las curvas y = e x+, y = e x y x =. (b) Halla el área del recinto considerado en el apartado anterior. (a) El dominio

Más detalles

Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones:

Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones: Fundamentos Matemáticos para la Ingeniería. Curso 2015-2016. Tema 3. Hoja 1 Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones 1. Estudiar la acotación de las siguientes funciones: (a) y = 2x 1; (b) y =

Más detalles

Análisis de Funciones OPCIÓN A. x 3 si x 3. x 3 si x 3. x 2 (a 3)x 3a si x 3. x 3. 1 si x 3

Análisis de Funciones OPCIÓN A. x 3 si x 3. x 3 si x 3. x 2 (a 3)x 3a si x 3. x 3. 1 si x 3 Bloque III Análisis de Funciones PCIÓN A Solucionario x 9 A. Sea f (x). x 3 a) Existe lim f (x)? b) Haz un esbozo de la gráfica de f (x). a) f (x) x 9 x 3 x 9 x 3 si x 3 x 3 x 9 x 3 si x 3 3 x No existe

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. cuadrante, un triángulo de área 16. Determinar la distancia del punto recta. 1, son también ceros de

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. cuadrante, un triángulo de área 16. Determinar la distancia del punto recta. 1, son también ceros de 1) La recta MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA r 1, tiene ordenada al origen 4 y forma con los ejes coordenados en el segundo P ; 5 a la cuadrante, un triángulo de área 16. Determinar la distancia

Más detalles

MATEMÁTICA AGRONOMÍA RESPUESTAS AL SEGUNDO PARCIAL Primer Cuatrimestre Tema 1

MATEMÁTICA AGRONOMÍA RESPUESTAS AL SEGUNDO PARCIAL Primer Cuatrimestre Tema 1 Ejercicio Considerando la recta R que pasa por los puntos A = (; 0; ) y B = (2; ; 5) y el punto P = (2; ; ), hallar la ecuación implícita del plano π que es perpendicular a la recta R y contiene al punto

Más detalles

Aplicaciones de la integral definida. Cálculo de áreas.

Aplicaciones de la integral definida. Cálculo de áreas. ºBachillerato Aplicaciones de la integral definida. Cálculo de áreas.. Calcular el área del recinto limitado por la gráfica de la función f 4 abscisas y las rectas = y =. Sol: /., el eje de a) Buscamos

Más detalles

Para calcular las asíntotas, empezaremos por las verticales, precisamente en ese punto donde no está definida la función.

Para calcular las asíntotas, empezaremos por las verticales, precisamente en ese punto donde no está definida la función. 1.- Dada la función: f(x) = x + 1 a) Calculad el dominio de f(x). Encontrar también sus asíntotas verticales, horizontales y oblicuas. b) Encontrad la recta tangente a f(x) en el punto x= 0. c) Calculad

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Lección 22: Extremos relativos y absolutos para funciones de una variable. Introducción al Cálculo Infinitesimal I.T.I. Gestión

Lección 22: Extremos relativos y absolutos para funciones de una variable. Introducción al Cálculo Infinitesimal I.T.I. Gestión Lección 22: Extremos relativos y absolutos para funciones de una variable Introducción al Cálculo Infinitesimal I.T.I. Gestión Esquema: - Crecimiento - Puntos críticos y extremos relativos - Extremos absolutos

Más detalles

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución: RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función

Más detalles

TEMA 4 TERCER TURNO (09/10/2017)

TEMA 4 TERCER TURNO (09/10/2017) TEMA 4 Ejercicio 1 (2 puntos) Determinar el valor de la constante a R para que se verifique que la recta de ecuación y = 2 sea una asíntota horizontal de la función f(x) = 20x2 x + 7 2ax 2 + 1 Hallar la

Más detalles

TEMA 1 TERCER TURNO (09/10/2017) Ejercicio 1 (2 puntos) Dadas las funciones. determinar todos los valores de x R para los cuales (g f)(x) = f(36)

TEMA 1 TERCER TURNO (09/10/2017) Ejercicio 1 (2 puntos) Dadas las funciones. determinar todos los valores de x R para los cuales (g f)(x) = f(36) TEMA 1 Ejercicio 1 (2 puntos) Dadas las funciones f(x) = x 3 ; g(x) = 2(x 5) 2 + 1 determinar todos los valores de x R para los cuales (g f)(x) = f(36) Primero debemos hallar la expresión de la función

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim IES Fco Ayala de Granada Septiembre de 014 Reserva 1 (Modelo 5) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_1 014 tan(x) - sen(x) [ 5 puntos] Calcula lim

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones PÁGINA 363 SOLUCIONES 1. La solución: Lo que nos pide el problema es hallar el área del recinto rayado. Este recinto es un trapecio y su area es:. Queda: x

Más detalles

RESUMEN DE ANÁLISIS MATEMÁTICAS II

RESUMEN DE ANÁLISIS MATEMÁTICAS II RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)

Más detalles

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites

Más detalles

De x = 1 a x = 6, la recta queda por encima de la parábola.

De x = 1 a x = 6, la recta queda por encima de la parábola. Área entre curvas El área comprendida entre dos funciones es igual al área de la función que está situada por encima menos el área de la función que está situada por debajo. Ejemplos 1. Calcular el área

Más detalles

Solución. 1/[(1 -x)(1+x)] = A/(1- x) + B/(1+x) = [A(1 +x) + B(1-x)] /[(1-x)(1+x)], de donde igualando los numeradores tenemos

Solución. 1/[(1 -x)(1+x)] = A/(1- x) + B/(1+x) = [A(1 +x) + B(1-x)] /[(1-x)(1+x)], de donde igualando los numeradores tenemos Ejercicio n º 1 de la opción A de junio de 2003 Sea Ln(1 -x 2 ) el logaritmo neperiano de 1 - x 2 y sea f : (-1,1) R la función definida por f(x) = Ln(1 -x 2 ). Calcula la primitiva de f cuya gráfica pasa

Más detalles

Ecuación de la recta tangente

Ecuación de la recta tangente Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA 1) Los gráficos de las funciones lineales r ( x) = x y q ( x) = x se intersecan en el punto A. El gráfico de la función cuadrática f(x) pasa por dicho punto

Más detalles

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 26 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A 5 a a) Discutir para qué valores de a R la matriz M = ( ) tiene inversa. Calcular M a para a =. ( 5 puntos) Para que exista inversa de una

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Derivadas; aplicaciones de las derivadas

Colegio Portocarrero. Curso Departamento de matemáticas. Derivadas; aplicaciones de las derivadas Derivadas; aplicaciones de las derivadas Problema 1: La función f(t), 0 t 10, en la que el tiempo t está expresado en años, representa los beneficios de una empresa (en cientos de miles de euros) entre

Más detalles

ln x dx = x ln x 2x ln x + 2x = (e 2e + 2e) 2 = (e 2) u

ln x dx = x ln x 2x ln x + 2x = (e 2e + 2e) 2 = (e 2) u Tema: Integrales definidas. Áreas Ejercicios PAU - JUNIO GENERAL Ejercicio.- Calcule d + Sea F() = d = + = + d d ln ln + = ln ln ln 5 + ln = A B + = + + = A( + ) + B = = A = = B A =, B = d = ln ln ln 5

Más detalles

INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL DEFINIDA. APLICACIONES COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis Análisis Problema 1: La función f definida por f(x) = x 3 + ax 2 + bx + c verifica que su gráfica pasa por el punto ( 1, 0) y tiene un máximo relativo en el punto (0, 4). Determina la función f (calculando

Más detalles

Un segundo parcial de matemática del CBC totalmente desarrollado como modelo DESARROLLO

Un segundo parcial de matemática del CBC totalmente desarrollado como modelo DESARROLLO DESARROLLO Ejercicio.- Encontrar los valores de a y b de manera que la recta de ecuación: y=- sea tangente al gráfico de f(x)=ax²-7x+b en el punto (;f()). En primer lugar se debe considerar que desde la

Más detalles

Apuntes de Funciones

Apuntes de Funciones Apuntes de Funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar la transformación

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

MODELO DE EXAMEN MATEMÁTICAS II PRIMERA EVALUACIÓN CURSO 2017/2018

MODELO DE EXAMEN MATEMÁTICAS II PRIMERA EVALUACIÓN CURSO 2017/2018 MODELO DE EXAMEN MATEMÁTICAS II PRIMERA EVALUACIÓN CURSO 2017/2018 Límites de funciones. Continuidad Derivadas Aplicaciones de las derivadas Primitiva de una función Integral definida EJERCICIO 1. Dada

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos página 1/12 Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos Hoja 26. Problema 1 1. a) Calcula el número real m que cumple lim 0 ln(1+m ) sen(2 ) =. b) Obtener

Más detalles

PUNTOS CRÍTICOS: Se llaman así a aquellos puntos en que la derivada es cero o no está definida. En símbolos escribimos: f (x)=0 ó f (x) no existe

PUNTOS CRÍTICOS: Se llaman así a aquellos puntos en que la derivada es cero o no está definida. En símbolos escribimos: f (x)=0 ó f (x) no existe PUNTOS CRÍTICOS: Se llaman así a aquellos puntos en que la derivada es cero o no está definida. En símbolos escribimos: f (x)=0 ó f (x) no existe Así encontramos (las abscisas de) los puntos críticos.

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x

Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Nombre y Apellidos: Cálculo I Convocatoria de Diciembre de Diciembre de 008 DNI: (6.5 p.) ) Se considera la función f : R R definida

Más detalles

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Junio 14 Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

Ejercicios de integración

Ejercicios de integración 1. Calcular las siguientes integrales: 1) ) 8) + 1 d ) + 6 6 + 1 d 5) + + 1 + 1 7) d 8) + Ejercicios de integración d ) + + 1 d 6) ( + 1) + + d + d 9) ( + + 1) ln d + 1 + + 1) d 11) d 1) + + 1 d + 1 1)

Más detalles

1.- Sea la función f definida por f( x)

1.- Sea la función f definida por f( x) Solución Eamen Final de la 3ª Evaluación de º Bcto..- Sea la función f definida por f( ) a) El dominio de la función es Dom( f) estudiando las asíntotas verticales:, por tanto vamos a empezar La función

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS APLICACIONES DE LAS DERIVADAS Apuntes de A. Cabañó. Calcula la tasa de variación media de la función +- en los intervalos: a) [-,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación

Más detalles

Aplicaciones de la integral definida al cálculo de áreas

Aplicaciones de la integral definida al cálculo de áreas Aplicaciones de la integral definida al cálculo de áreas 6. Interpreta geométricamente el área que define la integral (x + 6)dx 6 Geométricamente, la integral (x + 6) dx representa el área de la región

Más detalles

5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES

5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad

Más detalles

5. Calcule el dominio, el conjunto de ceros, el conjunto positividad y el de negatividad de la función g(x) = ln(x + 2) + 3.

5. Calcule el dominio, el conjunto de ceros, el conjunto positividad y el de negatividad de la función g(x) = ln(x + 2) + 3. Análisis I para biólogos Ejercicios adicionales para el primer parcial 1. Calcular los siguientes límites: x 4 a) lím tan x x 3x + x + 1 3 c) lím x 4 x e) lím x + ( 3x 4 + 3 x 4 + 5) g) lím x ( 4x 4 +

Más detalles

Módulo de Revisión Anual. Matemática 6 año A y C

Módulo de Revisión Anual. Matemática 6 año A y C Módulo de Revisión Anual Matemática 6 año A y C Función Homográfica ) Hallar las ecuaciones de las asíntotas verticales y horizontales de las siguientes funciones homográficas. a) f() +6 b) f() + c) f()

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 05 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A m + 0 0 Dada la matriz A = ( 3 m + ), se pide: 0 m a) Hallar los valores de m para que la matriz A 0 tenga inversa. ( 5 puntos) La condición

Más detalles

ESTUDIO LOCAL DE LA FUNCIÓN

ESTUDIO LOCAL DE LA FUNCIÓN ESTUDIO LOCAL DE LA FUNCIÓN Dominio : x Calcular máximo, mínimo, Punto de Inflexión, intervalos crecimiento y decrecimiento e intervalos de curvatura de la y = (x 1) 3 y = 3 (x 1) 2 ; y = 0 3 (x 1) 2

Más detalles

, donde denota la matriz traspuesta de B.

, donde denota la matriz traspuesta de B. Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº Páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje

FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje Funciones elementales - Matemáticas B 4º E.S.O. FUNCIONES ELEMENTALES DISTINTOS TIPOS DE FUNCIONES LINEALES FUNCIONES DE PROPORCIONALIDAD: y = mx FUNCIÓN CONSTANTE: y = n Las funciones de proporcionalidad

Más detalles

UNIDAD I. 1.1 ELEMENTOS Y CLASIFICACIÓN DE LA FUNCIÓN A) Anota la definición para cada concepto: Función: Dominio: Contradominio:

UNIDAD I. 1.1 ELEMENTOS Y CLASIFICACIÓN DE LA FUNCIÓN A) Anota la definición para cada concepto: Función: Dominio: Contradominio: EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 CUAUTITLAN IZCALLI, MEX. GUÍA DE ESTUDIO PARA EL EXAMEN DE CALCULO DIFERENCIAL PRIMER PERIODO DE TRABAJO CICLO ESCOLAR 2017 2018 INSTRUCCIONES: Contesta cada

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 000 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

30. La tangente paralela a la bisectriz del segundo cuadrante tendrá pendiente 1. y' = 2x= 1 x= El punto pedido es :, 4

30. La tangente paralela a la bisectriz del segundo cuadrante tendrá pendiente 1. y' = 2x= 1 x= El punto pedido es :, 4 PÁGINA 96 1 SOLUCIONES 0 La tangente paralela a la bisectriz del segundo cuadrante tendrá pendiente 1 Por tanto: 1 La solución queda: 1 1 1 y' = x= 1 x= El punto pedido es :, 4 La ecuación de la elipse

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

Aplicaciones de la derivada

Aplicaciones de la derivada Aplicaciones de la derivada º) Calcula los máimos y mínimos de la función f() = Máimo en P( 6, ) ; Mínimo en Q(0, 0) º) Determina el parámetro c para que la función f() = + + c tenga un mínimo igual a

Más detalles

Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m

Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m Ejercicio n º 1 de la opción A de septiembre de 2004 [2'5 puntos] Se desea construir una caja de base cuadrada con una capacidad de 80 cm 3. Para la tapa y la superficie lateral se usa un material que

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas)

Análisis Matemático I (Lic. en Cs. Biológicas) Análisis Matemático I (Lic. en Cs. Biológicas) Segundo Cuatrimestre 25 Práctica 6: Integración Ejercicio. Hallar en cada caso una función g : R R que cumpla (i) g (x) = 2. (ii) g (x) = x. (iii) g (x) =

Más detalles

Ejercicios de funciones

Ejercicios de funciones Matemáticas 4º ESO. Ejercicios Tema 0. Funciones. Pág /6. Sean las funciones: Ejercicios de funciones Calcular:. Dadas las funciones: Calcular: Probar que: Probar que: 3. Dadas las funciones: Calcular:

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL FUNCIONES REALES DE VARIABLE REAL Función: Es toda aplicación definida entre conjuntos numéricos. Cuando el conjunto inicial y final son los números Reales, se llaman funciones reales de variable real.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Eamen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Dadas las matrices 2 4 2 2 0 A = 1 m m ; B = 0 X = y O = 0 1 2 1 1 z 0 (1 punto). Estudiar el rango

Más detalles