Capítulo 4: Capa Red - III
|
|
|
- Juan Joaquín Romero Naranjo
- hace 7 años
- Vistas:
Transcripción
1 Capítulo 4: Capa Red - III ELO322: Redes de Computadores Agustín J. González Este material está basado en: Material de apoyo al texto Computer Networking: A Top Down Approach Featuring the Internet. Jim Kurose, Keith Ross. Capa de Red 4-1
2 Capítulo 4: Capa de Red 4. 1 Introducción 4.2 Circuitos virtuales y redes de datagramas 4.3 Qué hay dentro de un router? 4.4 IP: Internet Protocol Formato de Datagrama Fragmentación Direccionamiento IPv4 NAT: Netwoork Address Translation ICMP IPv6 4.5 Algoritmo de ruteo Estado de enlace Vector de Distancias Ruteo Jerárquico 4.6 Ruteo en la Internet RIP OSPF BGP Capa de Red 4-2
3 Direcciones IP: Cómo obtener una? Q: Cómo obtiene un host su dirección IP? Configurada por el administrador en un archivo Windows: ver versión específica Linux: ver versión específica Vía protocolo de configuración dinámica : Dynamic Host Configuration Protocol: el host obtiene la dirección dinámicamente desde un servidor plug-and-play Capa de Red 4-3
4 : Dynamic Host Configuration Protocol Objetivo: permitir a un host obtener dinámicamente su dirección IP desde un servidor en la red cuando el host se integra a la red. El host puede renovar y extender el uso de su dirección Permite el reuso de direcciones (la dirección sólo se mantiene mientras se esté conectado). Conveniente para usuarios móviles que se conectan por corto tiempo. cómo funciona en general: host difunde (broadcasts) mensaje discover Servidor responde con mensaje offer Host pide una dirección IP mensaje: request Servidor envía mensaje con dirección: ack Capa de Red 4-4
5 Escenario cliente-servidor / server Nuevo cliente necesita dirección en esta red / /24 Capa de Red 4-5
6 Escenario cliente-servidor server: request src: , 68 dest:: , 67 yiaddr: transaction ID: 655 server ID: lifetime: 3600 secs discover src : , 68 dest.: ,67 yiaddr: transaction ID: 654 offer src: , 67 dest: , 68 yiaddr: transaction ID: 654 server ID: lifetime: 3600 secs ACK src: , 67 dest: , 68 yiaddr: transaction ID: 655 server ID: lifetime: 3600 secs Nuevo cliente yiaddr: your internet address Capa de Red 4-6
7 : más que direcciones IP puede retornar además de la dirección IP: Dirección del router de salida para ese cliente Nombre y dirección IP del servidor DNS Máscara de la subred (indicando la porción de la dirección de red de la porción de la dirección del host) Capa de Red 4-7
8 : ejemplo UDP IP Eth Phy UDP IP Eth Phy router servidor interno Notebook necesita dirección IP, dirección de router, dir de servidor DNS: usa Notebook envía requerimiento encapsulado en UDP, encapsulado en IP, encapsulado en Ethernet Trama Ethernet (dest: FFFFFFFFFFFF) en LAN es recibida en el router que corre el servidor Ethernet, IP, UDP demultiplexan trama Capa de Red 4-8
9 : ejemplo UDP IP Eth Phy UDP IP Eth Phy router with server built into router Servidor prepara mensaje ACK con la dirección IP del cliente, dirección IP del primer router para el cliente, nombre & dir IP del servidor DNS Servidor encapsula el mensaje ACK, trama es enviada al cliente, allí se demultiplexa y pasa al en cliente Cliente ahora conoce su dir IP, nombre y dir IP del servidor DNS local, dir IP del primer router para salir de la LAN. Capa de Red 4-9
10 : Wireshark output (home LAN) Message type: Boot Request (1) Hardware type: Ethernet Hardware address length: 6 Hops: 0 request Transaction ID: 0x6b3a11b7 Seconds elapsed: 0 Bootp flags: 0x0000 (Unicast) Client IP address: ( ) Your (client) IP address: ( ) Next server IP address: ( ) Relay agent IP address: ( ) Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a) Server host name not given Boot file name not given Magic cookie: (OK) Option: (t=53,l=1) Message Type = Request Option: (61) Client identifier Length: 7; Value: D323688A; Hardware type: Ethernet Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a) Option: (t=50,l=4) Requested IP Address = Option: (t=12,l=5) Host Name = "nomad" Option: (55) Parameter Request List Length: 11; Value: 010F03062C2E2F1F21F92B 1 = Subnet Mask; 15 = Domain Name 3 = Router; 6 = Domain Name Server 44 = NetBIOS over TCP/IP Name Server Message type: Boot Reply (2) Hardware type: Ethernet reply Hardware address length: 6 Hops: 0 Transaction ID: 0x6b3a11b7 Seconds elapsed: 0 Bootp flags: 0x0000 (Unicast) Client IP address: ( ) Your (client) IP address: ( ) Next server IP address: ( ) Relay agent IP address: ( ) Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a) Server host name not given Boot file name not given Magic cookie: (OK) Option: (t=53,l=1) Message Type = ACK Option: (t=54,l=4) Server Identifier = Option: (t=1,l=4) Subnet Mask = Option: (t=3,l=4) Router = Option: (6) Domain Name Server Length: 12; Value: E F ; IP Address: ; IP Address: ; IP Address: Option: (t=15,l=20) Domain Name = "hsd1.ma.comcast.net." Esta lámina es referencial, no se requiere su estudio detallado Capa de Red 4-10
11 Direcciones IP: Cómo obtener varias? Q: Cómo la red obtiene la dirección de subred? parte común más significativa de la dirección IP. A: Obteniendo una porción del espacio de direcciones del proveedor ISP. Ejemplo: ISP's block /20 Organization /23 Organization /23 Organization / Organization /23 También podrían haberse definido redes de distinto tamaño. Capa de Red 4-11
12 Direccionamiento IP: la última palabra... Q: Cómo un ISP obtiene un bloque de direcciones? A: ICANN: Internet Corporation for Assigned Names and Numbers Asigna direcciones Administra DNS Asigna nombre de dominio, resuelve disputas Para América Latina la oficina es LACNIC: Hay otras cuatro para otras regiones del mundo. Capa de Red 4-12
13 Agotamiento de Direcciones IP Conforme más subredes se crearon y conectaron a Internet, las direcciones IP se comenzaron a agotar. Hoy 4 de las 5 regiones de mundo no tienen nuevas direcciones para asignar. Se desarrollaron dos estrategias para extender el uso de Ipv4: Flexibilizar el tamaño de las subredes:surge Classless InterDomain Routing (CIDR) *. Permitir acceso a Internet de redes privadas a través del uso de NAT (Network Address Translation) (*) Antes el número de bits de la dirección de sub-red era 8 bits, Clase A; 16 bits, Clase B, ó 24 bits, Clase C. Capa de Red 4-13
14 NAT: Network Address Translation Motivación: Cómo podemos dar salida a Internet a una red con direcciones privadas? Usamos un representante. La idea es usar sólo una dirección IP para acceder al mundo exterior: No necesitamos asignación de un rango del ISP: sólo una dirección externa es usada por todos los equipos internos Podemos cambiar la dirección de equipos en red local sin notificar al mundo exterior Podemos cambiar ISP sin cambiar direcciones de equipos en red local Equipos dentro de la red no son explícitamente direccionables o visibles desde afuera (una ventaja de seguridad). Capa de Red 4-14
15 NAT: Network Address Translation resto del Internet red local (e.g., red en la casa) / Todos los datagramas saliendo de la red local tienen la misma dirección NAT IP: , pero diferentes números de puerto Datagramas con fuente o destino en esta red tienen direcciones /24 (También se puede usar: /24 ó /24) Capa de Red 4-15
16 NAT: Network Address Translation Implementación ruteador NAT: Para Datagramas salientes: remplazar (IP fuente, # puerto) de cada datagrama saliente por (IP NAT, nuevo # puerto)... Clientes y servidores remotos responderán usando (IP NAT, nuevo # puerto) como dirección destino. Recordar (en tabla de traducción NAT) cada par de traducción (IP fuente, # puerto) a (IP NAT, nuevo # puerto) Para Datagramas entrantes: remplazar (IP NAT, nuevo # puerto) en campo destino de cada datagrama entrante por correspondiente (IP fuente, # puerto) almacenado en tabla NAT Capa de Red 4-16
17 NAT: Network Address Translation 2: NAT router cambia la dirección fuente del datagrama de , 3345 a , 5001, actualiza la tabla 2 NAT table WAN side addr LAN side addr , , 3345 S: , 5001 D: , S: , 3345 D: , : host envía datagrama a , S: , 80 D: , : Respuesta llega a la dirección destino: , 5001 S: , 80 D: , : NAT router cambia dirección destino del datagrama de , 5001 a , 3345 Capa de Red 4-17
18 NAT: Network Address Translation Campo número de puerto es de 16 bits: Máx. ~65,000 conexiones simultáneas pueden salir con sólo una dirección IP válida en Internet! NAT es controversial: Routers deberían procesar sólo hasta capa 3 Viola argumento extremo-a-extremo Los NAT deben ser tomados en cuenta por los diseñadores de aplicaciones, eg, aplicaciones P2P En lugar de usar NAT, la carencia de direcciones debería ser resuelta por IPv6 Si Ud. tiene una máquina detrás de un NAT, ésta puede ser visible usando UPnP (Universal Plug and Play). Importante: hay formas de entrar. Capa de Red 4-18
19 La red wifi de la USM usa direcciones IP privadas Qué hace posible que usted pueda acceder a Internet? Puede usted instalar un servidor (web por ejemplo) conectado a esta red inalámbrica? Sería accesible desde la misma red wifi? Sería accesible desde Internet?? La presencia de un NAT. Sí. Sí. No. Nota: Lo último puede ser Sí indicando el uso de port forwarding en el NAT (tema no cubierto en el ramo, pero puede ser de su conocimiento) Capa de Red 4-19
20 Un alumno se conecta vía ssh desde la red con NAT en su casa a un servidor en la Universidad. Si deja su conexión inactiva por un largo rato, al volver detecta que está caída. Explique cómo el servidor NAT puede causar tal pérdida de conexión. El servidor NAT mantiene una tabla con los puertos que han sido asignados a flujos provenientes de la red privada. Si no hay actividad luego de un rato, este puerto es liberado para ser asignado a otros flujos de datos. En este caso la conexión ssh ya no funciona porque el puerto asignado en el NAT ya no pertenece a esa conexión.? Capa de Red 4-20
21 En un cyber café todos los usuarios navegan en Internet y salen a través de un único NAT. Analizando el tráfico que sale del cyber café hacia Internet cómo podría usted estimar cuántos clientes están usando su red? Se sabe que la capa IP de cada computador usa números de identificación secuenciales en cada datagrama saliente. Basta con observar cuántas secuencias de números de identificación están saliendo. El número de secuencias indicará el número de capas IP enviando paquetes y será el número de clientes del cyber café. Capa de Red 4-21
22 Capítulo 4: Capa de Red 4. 1 Introducción 4.2 Circuitos virtuales y redes de datagramas 4.3 Qué hay dentro de un router? 4.4 IP: Internet Protocol Formato de Datagrama Direccionamiento IPv4 ICMP IPv6 4.5 Algoritmo de ruteo Estado de enlace Vector de Distancias Ruteo Jerárquico 4.6 Ruteo en la Internet RIP OSPF BGP 4.7 Ruteo Broadcast y multicast Capa de Red 4-22
23 ICMP: Internet Control Message Protocol Usado por hosts & routers para comunicar información a nivel de la red Reporte de errores: host inalcanzable, o red, o puerto, o protocolo Echo request/reply (usado por ping) Usado por traceroute (TTL expired, dest port unreachable) Opera en capa transporte: ICMP son llevados por datagramas IP Mensajes ICMP: tipo y código de error, más primeros 8 bytes del datagrama que causó el error Type Code description 0 0 echo reply (ping) 3 0 dest. network unreachable 3 1 dest host unreachable 3 2 dest protocol unreachable 3 3 dest port unreachable 3 6 dest network unknown 3 7 dest host unknown 4 0 source quench (congestion control - seldom used) 8 0 echo request (ping) 9 0 route advertisement 10 0 router discovery 11 0 TTL expired 12 0 bad IP header Capa de Red 4-23
24 Traceroute e ICMP La fuente envía una serie de segmentos UDP al destino Primero usa TTL=1 Luego usa TTL=2, etc. Número de puerto (probablemente) no usado en destino Cuando el n-ésimo datagrama llega a n-ésimo router: Router descarta el datagrama, y Envía a la fuente un mensaje ICMP TTL expirado (tipo 11, código 0) Mensaje incluye nombre del router y dirección IP Cuando mensaje ICMP llega, la fuente calcula el RTT Traceroute hace esto 3 veces Criterio de parada Segmento UDP eventualmente llega al host destino Host destino retorna paquete ICMP puerto inalcanzable (tipo 3, código 3) Cuando la fuente recibe este ICMP, para. Capa de Red 4-24
25 Capítulo 4: Capa de Red 4. 1 Introducción 4.2 Circuitos virtuales y redes de datagramas 4.3 Qué hay dentro de un router? 4.4 IP: Internet Protocol Formato de Datagrama Fragmentación Direccionamiento IPv4 NAT (Network Address Translation) ICMP IPv6 4.5 Algoritmo de ruteo Estado de enlace Vector de Distancias Ruteo Jerárquico 4.6 Ruteo en la Internet RIP OSPF BGP 4.7 Ruteo Broadcast y multicast Capa de Red 4-25
26 IPv6 Motivación Inicial: espacio de direcciones de 32-bit pronto serán completamente asignadas. Motivación adicional: Formato de encabezado debería ayudar a acelerar el procesamiento y re-envío (por aumento de tasas en red) Cambiar encabezado para facilitar QoS (Quality of Service) Formato de datagrama IPv6: Encabezado de largo fijo de 40 bytes (se duplicó) Fragmentación no es permitida Capa de Red 4-26
27 Encabezado IPv6 Prioridad (8bits): identifica prioridad entre datagramas en flujo Flow Label: identifica datagramas del mismo flujo. (concepto de flujo no está bien definido). Next header: identifica protocolo de capa superior de los datos Capa de Red 4-27
28 Otros cambios de IPv4 a v6 Checksum: eliminada enteramente para reducir tiempo de procesamiento en cada router al ser redundante, ya está en capa transporte y enlace (Ethernet) Options: permitidas, pero fuera del encabezado, indicado por campo Next Header ICMPv6: nueva versión de ICMP Tipos de mensajes adicionales, e.g. Paquete muy grande (usado en el descubrimiento de MTU: unidad máxima de transmisión) Funciones para administrar grupos multicast Capa de Red 4-28
29 Transición de IPv4 a IPv6 No todos los routers pueden ser actualizados (upgraded) simultáneamente No es posible definir un día para cambio día de bajada de bandera Cómo operará la red con routers IPv4 e IPv6 mezclados? Tunneling : IPv6 es llevado como carga en datagramas IPv4 entre routers IPv4 Capa de Red 4-29
30 Tunneling Vista lógica: A B E F túnel IPv6 IPv6 IPv6 IPv6 Vista física: A B C D E F IPv6 IPv6 IPv4 IPv4 IPv6 IPv6 Flow: X Src: A Dest: F data Src:B Dest: E Flow: X Src: A Dest: F Src:B Dest: E Flow: X Src: A Dest: F Flow: X Src: A Dest: F data data data A-a-B: IPv6 B-a-C: IPv6 dentro de IPv4 B-a-C: IPv6 dentro de IPv4 E-a-F: IPv6 Capa de Red 4-30
31 Por qué el protocolo IPv6 decidió eliminar el campo de suma de chequeo que sí tiene IPv4? Porque así cada paquete puede ser procesado más rápidamente al no requerir recalcular una suma de chequeo cada vez que el hop limit cambiaba. Capa de Red 4-31
32 Capítulo 4: Capa de Red 4. 1 Introducción 4.2 Circuitos virtuales y redes de datagramas 4.3 Qué hay dentro de un router? 4.4 IP: Internet Protocol Formato de Datagrama Fragmentación Direccionamiento IPv4 NAT (Network Address Translation) ICMP IPv6 4.5 Algoritmos de ruteo Estado de enlace Vector de Distancias Ruteo Jerárquico 4.6 Ruteo en la Internet RIP OSPF BGP 4.7 Ruteo Broadcast y multicast Capa de Red 4-32
Capítulo 4: Capa Red - II
Capítulo 4: Capa Red - II ELO322: Redes de Computadores Agustín J. González Este material está basado en: Material de apoyo al texto Computer Networking: A Top Down Approach Featuring the Internet 3rd
Capítulo 4: Capa Red - II
Capítulo 4: Capa Red - II ELO322: Redes de Computadores Tomás Arredondo Vidal Este material está basado en: material de apoyo al texto Computer Networking: A Top Down Approach Featuring the Internet 3rd
Redes de Computadores Nivel de Red: IP y direccionamiento. Área de Ingeniería Telemática Dpto. Automática y Computación
Redes de Computadores Nivel de Red: IP y direccionamiento Área de Ingeniería Telemática Dpto. Automática y Computación http://www.tlm.unavarra.es/ En la clase anterior... Nivel de red funciones básicas
FUNDAMENTOS DE REDES CONCEPTOS DE LA CAPA DE RED
FUNDAMENTOS DE REDES CONCEPTOS DE LA CAPA DE RED Dolly Gómez Santacruz [email protected] CONTENIDO Direcciones privadas Subredes Máscara de Subred Puerta de Enlace Notación Abreviada ICMP Dispositivos
FUNDAMENTOS DE REDES CONCEPTOS DE LA CAPA DE RED
FUNDAMENTOS DE REDES CONCEPTOS DE LA CAPA DE RED Dolly Gómez Santacruz [email protected] Direcciones privadas Subredes Máscara de Subred Puerta de Enlace Notación Abreviada CONTENIDO Protocolo de resolución
Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Comunicación de Datos (6003) Práctica #7 Capa de Red
Capa de Red 1) El valor de HLEN en un datagrama IPv4 es de 8. Cuántos bytes tiene el campo opciones? 2) Un datagrama IPv4 transporta 2048 bytes de datos. Si no hay opciones cuál es el valor del campo longitud
Taller de diseño de redes
Taller de diseño de redes Repaso de capas 1, 2 y 3 Estos materiales están bajo la Licencia Creative Commons Atribución-No comercial 4.0 Licencia internacionall (http://creativecommons.org/licenses/by-nc/4.0/)
Protocolos de Internet
Protocolos de Internet IP Protocolos de Internet IP (Internet Protocol) ICMP (Internet Control Message Protocol) ARP (Address Resolution Protocol) DHCP (Dynamic Host Configuration Protocol) Dirección IP
El nivel de red de TCP/IP Enviar datagramas De una máquina a otra Utilizando rutas (locales) Sin garantías
IP LSUB, GYSC, URJC IP El nivel de red de TCP/IP Enviar datagramas De una máquina a otra Utilizando rutas (locales) Sin garantías 2 IP Pero hace más cosas Los re-ensambla Y en IP v6 aún mas Fragmenta datagramas
Bloque IV: El nivel de red. Tema 12: ICMP
Bloque IV: El nivel de red Tema 12: ICMP Índice Bloque IV: El nivel de red Tema 12: ICMP Introducción ICMP: Puerto inalcanzable ICMP: Fragmentación requerida Ping Traceroute Referencias Capítulo 4 de Redes
Teoría de las comunicaciones Práctica 4: Internetworking
Temas Teoría de las comunicaciones Práctica 4: Internetworking Redes de Circuitos Virtuales, Redes de Datagramas, Forwarding, IP: Direccionamiento y Subnetting. Deniciones Formato paquete IPv4: Tabla de
8. ARQUITECTURA TCP/IP (I)
8. ARQUITECTURA TCP/IP (I) ARQUITECTURA TCP/IP HISTORIA DE TCP/IP E INTERNET PROTOCOLO IP Datagrama IP Direccionamiento IP Subredes Direccionamiento CIDR Arquitectura de una red IP OTROS PROTOCOLOS DEL
IP Internet Protocol. Funcionalidades: Esquema global de direcciones Fragmentación / reensamblado Ruteo
Internet Protocol Funcionalidades: Permite la interconexión de redes heterogéneas mediante un esquema de direccionamiento apropiado y funciones de fragmentación de datos y ruteo de mensajes. Esquema global
Las direcciones IP están formadas por 4 octetos de 8 bits cada uno, para un total de 32 bits
DIRECCIONAMIENTO IP v4 Una dirección IPv4 se representan con un número binario de 32 bits, que identifica de manera lógica y jerárquica a cada dispositivo o host dentro de una red con protocolo IP (Internet
Clase 26 Soluciones al problema de direccionamiento Tema 7.- Ampliación de temas
Clase 26 Soluciones al problema de direccionamiento Tema 7.- Ampliación de temas Dr. Daniel Morató Redes de Ordenadores Ingeniero Técnico de Telecomunicación Especialidad en Sonido e Imagen, 3º curso Temario
Capítulo 4: Capa Red - IV
Capítulo 4: Capa Red - IV ELO322: Redes de Computadores Agustín J. González Este material está basado en: Material de apoyo al texto Computer Networking: A Top Down Approach Featuring the Internet 3rd
IP Internet Protocol. IP Dirección IP. Funcionalidades: Esquema global de direcciones Fragmentación / reensamblado Ruteo. Direccionamiento IP
Internet Protocol Funcionalidades: Permite la interconexión de redes heterogéneas mediante un esquema de direccionamiento apropiado y funciones de fragmentación de datos y ruteo de mensajes. Esquema global
CONCEPTOS DE REDES TCP/IP
Administración de Redes CONCEPTOS DE REDES TCP/IP Profesor Carlos Figueira Departamento de Computación y T. I. USB Modelos de Arquitecturas de Red TCP/IP Aplicaciones (FTP, HTTP, DNS,...) Transporte (TCP,UDP)
Redes (9359). Curso Ingeniería Técnica en Informática de Sistemas (plan 2001)
Redes (9359). Curso 2010-11 Ingeniería Técnica en Informática de Sistemas (plan 2001) Carlos A. Jara Bravo ([email protected]) Grupo de Innovación Educativa en Automática 2010 GITE IEA Redes (9359). Curso
Capa Enlace de Datos: Virtual LANs Point-to-point protocol PPP Multiprotocol Level Switching MPLS
Capa Enlace de Datos: Virtual LANs Point-to-point protocol PPP Multiprotocol Level Switching MPLS Computer Networking: A Top Down Approach Capa enlace datos 5-1 Capa enlace Ya visto en elo322 5.1 Introducción
Tema 3: Fundamentos de conmutación y encaminamiento
Redes de Comunicaciones GIB Tema 3: Fundamentos de conmutación y encaminamiento Stallings:11.1 a 11.5, 13.1 a 13.3 Tanenbaum 5ª ed.: 1.3, 4.3.2, 5.1.1 a 5.1.5, 4.8.1 a 4.8.5, 5.6.1, 5.6.2, 5.2.1 a 5.2.3,
Direcciones únicas permiten la comunicación entre estaciones finales. Selección de caminos está basada en la ubicación.
DIRECCIONAMIENTO IP DIRECCIONAMIENTO IP Direcciones únicas permiten la comunicación entre estaciones finales. Selección de caminos está basada en la ubicación. La ubicación se representa mediante una dirección.
Mg. Jorge Bladimir Rubio Peñaherrera
Mg. Jorge Bladimir Rubio Peñaherrera Uno de los principales parámetros que es necesario configurar en cualquier dispositivo conectado a una red es su dirección IP. La dirección IP es el identificador
Introducción y Modelos de Servicios de Red. Ing. Camilo Zapata Universidad de Antioquia
Introducción y Modelos de Servicios de Red. Ing. Camilo Zapata [email protected] Universidad de Antioquia La Capa de Red, (o Capa de Internet) proporciona una comunicación de host a host, esto es, de
TEORÍA GENERAL DE DIRECCIONAMIENTO DE REDES. 1. Direccionamiento de redes
TEORÍA GENERAL DE DIRECCIONAMIENTO DE REDES 1. Direccionamiento de redes El direccionamiento es una función clave de los protocolos de capa de Red que permite la transmisión de datos entre hosts de la
FUNDAMENTOS DE REDES CONCEPTOS DE LA CAPA DE RED
FUNDAMENTOS DE REDES CONCEPTOS DE LA CAPA DE RED Mario Alberto Cruz Gartner [email protected] CONTENIDO Direcciones privadas Subredes Máscara de Subred Puerta de Enlace Notación Abreviada ICMP Dispositivos
UC3M IP: Internet Protocol IT-UC3M Redes y Servicios de Comunicaciones I
IP: INTERNET PROTOCOL El datagrama IP Formato Fragmentación Opciones ICMP: Internet Control Message Protocol El protocolo Tipos y formatos de mensajes 1 1.- IP: : Características Servicio fundamental:
Teoría de las comunicaciones Práctica 4: Internetworking
Temas Teoría de las comunicaciones Práctica 4: Internetworking Redes de Circuitos Virtuales, Redes de Datagramas, Forwarding, IP: Direccionamiento y Subnetting. Deniciones Formato paquete IPv4: Tabla de
Redes de Computadoras Práctica 6: La capa de red
Redes de Computadoras Práctica 6: La capa de red Temas ASPECTOS DE DISEÑO DE LA CAPA DE RED, ALGORITMOS DE ENRUTAMIENTO, INTERCONECTIVIDAD, LA CAPA DE RED DE INTERNET Protocolos y normas RFC 791: IPV4,
Teoría de las comunicaciones Práctica 4: Internetworking
Temas Teoría de las comunicaciones Práctica 4: Internetworking Redes de Circuitos Virtuales, Redes de Datagramas, Forwarding, IP: Direccionamiento y Subnetting. Deniciones Formato paquete IPv4: Tabla de
DHCP. Redes de computadores: un enfoque descendente basado en Internet, 2ª edición. Jim Kurose, Keith Ross
DHCP Redes de computadores: un enfoque descendente basado en Internet, 2ª edición. Jim Kurose, Keith Ross DHCP: Protocolo de Configuración Dinámica de Host Objetivo: permitir al host obtener dinámicamente
Escuela Superior de Informática
Este test consta de 20 preguntas. Debe contestar todas ellas; las respuestas incorrectas no restan. Sólo una opción es correcta a menos que se indique algo distinto. No está permitido el uso de calculadora.
Bloque IV: El nivel de red. Tema 10: Enrutamiento IP básico
Bloque IV: El nivel de red Tema 10: Enrutamiento IP básico Índice Bloque IV: El nivel de red Tema 10: Enrutamiento IP básico Introducción Tabla de enrutamiento Algoritmo de enrutamiento Direcciones IP
Capítulo 6: Capa Enlace de Datos y LANS
Capítulo 6: Capa Enlace de Datos y LANS ELO322: Redes de Computadores Agustín J. González Este material está basado en: Material de apoyo al texto Computer Networking: A Top Down Approach Featuring the
ICMPv6, DHCPv6 y Túneles. Roque Gagliano LACNIC
ICMPv6, DHCPv6 y Túneles Roque Gagliano [email protected] LACNIC Agenda Introducción a ICMPv6. Descubrimiento de Vecinos y Autoconfiguración de interfaces. Autodescubrimiento de MTU de camino (PMTUD). Túneles.
Conmutación y comunicaciones inalámbricas de LAN
Conmutación y comunicaciones inalámbricas de LAN VLAN : Capítulo 3 1 Objetivos 2 Presentación de las VLAN Una VLAN permite que un administrador de red cree grupos de dispositivos conectados a la red de
1 Completar la siguiente tabla:
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Facultad de Ingeniería en Electricidad y Computación FUNDAMENTOS DE TELECOMUNICACIONES MEJORAMIENTO FEBRERO 18 2018 Nombres y apellidos: PREGUNTAS DE RESPUESTA
Guía N 3 Entregar como tarea problemas 5, 8, y 11 Algunos problemas pueden quedar fuera porque el tema no fue visto en clases.
ELO3: Redes de Computadores I º sem. 0 Guía N 3 Entregar como tarea problemas, 8, y Algunos problemas pueden quedar fuera porque el tema no fue visto en clases.. Considere las ventajas y desventajas de
Capítulo 5: Capa Enlace de Datos - I
Capítulo 5: Capa Enlace de Datos - I ELO322: Redes de Computadores Agustín J. González Este material está basado en: Material de apoyo al texto Computer Networking: A Top Down Approach Featuring the Internet.
4.4. TCP/IP - Configuración Parte 2 SIRL
4.4. TCP/IP - Configuración Parte 2 SIRL Configuración de parámetros de red Elementos de configuración relacionados con TCP/IP DIRECCIÓN IP Que se asigna al equipo MÁSCARA DE SUBRED Asignada al equipo
1. La tabla de rutas de un ordenador con el sistema operativo Windows XP es esta:
NOTA: Estas son una serie de preguntas tipo, de los temas 1 al 4 de la asignatura de Ingeniería de Protocolos. Sirven, a modo de ejemplo, como referencia para el tipo de preguntas teórico-prácticas que
IP: Internet Protocol
IP: Internet Protocol Jesús Moreno León Alberto Molina Coballes Redes de Área Local Septiembre 2009 IP: Internet Protocol IP es un protocolo de nivel de red que ofrece un servicio: basado en datagramas
Nota: El protocolo ICMP está definido en la RFC 792 (en inglés, en español) Área de datos del datagrama IP. Área de datos de la trama
Protocolo ICMP Debido a que el protocolo IP no es fiable, los datagramas pueden perderse o llegar defectuosos a su destino. El protocolo ICMP (Internet Control Message Protocol, protocolo de mensajes de
Xarxes de Computadors. Tema 2 - Redes IP
Xarxes de Computadors Tema 2 - Redes IP Temario } 1) Introducción } 2) Redes IP } 3) Protocolos UDP y TCP } 4) Redes de área local (LAN) } 5) Protocolos del nivel aplicación Tema 2 Redes IP } Introducción
Direccionamiento IPv4 (IP addressing)
Direccionamiento IP Direccionamiento IPv4 (IP addressing) Para el funcionamiento de una red, todos sus dispositivos requieren una dirección IP única: Las direcciones IP están construidas de dos partes:
Ing. Elizabeth Guerrero V.
Ing. Elizabeth Guerrero V. Introducción Tipos de direccionamiento Determinación de la ruta o enrutamiento Dirección IP Direccionamiento IPv4 Formato de direccionamiento IP Clases de Direcciones IP Clase
Redes de Computadores
Internet Protocol (IP) http://elqui.dcsc.utfsm.cl 1 La capa 3 más usada en el mundo.. http://elqui.dcsc.utfsm.cl 2 Crecimiento de Internet http://elqui.dcsc.utfsm.cl 3 Crecimiento de Internet http://elqui.dcsc.utfsm.cl
Fragmentación y Reensamblado en IP ICMP
Fragmentación y Reensamblado en IP ICMP Area de Ingeniería Telemática http://www.tlm.unavarra.es Arquitectura de Redes, Sistemas y Servicios 3º Ingeniería de Telecomunicación Temario 1. Introducción 2.
Switch LAN Topología de la red del laboratorio. Dirección IP de próximo salto. Dirección IP de próximo salto
5. ENRUTAMIENTO DINÁMICO 5.1 Introducción En la práctica anterior se han repasado algunos conceptos básicos del enrutamiento IP y se ha configurado la tabla de rutas utilizando enrutamiento estático. Este
Tema (Internet Control Message Protocol) Transmisión de mensajes de control en redes IP. Laboratorio de Redes y Servicios de Comunicaciones 1
Tema 11 1.1 ICMP (Internet Control Message Protocol) Transmisión de mensajes de control en redes IP Comunicaciones 1 Índice Introducción 3 Formato mensajes ICMP 4 Solicitud de eco (ping) 6 Destino inalcanzable...
Redes (9359). Curso Ingeniería Técnica en Informática de Sistemas (plan 2001)
Redes (9359). Curso 2010-11 Ingeniería Técnica en Informática de Sistemas (plan 2001) Carlos A. Jara Bravo ([email protected]) Grupo de Innovación Educativa en Automática 2010 GITE IEA Redes (9359). Curso
66.62 Redes de Computadoras. Nicolás Matsunaga
66.62 Redes de Computadoras Nicolás Matsunaga IP versión 6 y sus Motivaciones Espacio de direccionamiento 128 bits vs 32 bits Otros problemas Ruteo QoS Seguridad Movilidad Espacio de direccionamiento Falta
TEMA 0. Revisión Protocolo IPv4
REDES Grados Ing. Informática / Ing. de Computadores / Ing. del Software Universidad Complutense de Madrid TEMA 0. Revisión Protocolo IPv4 PROFESORES: Rafael Moreno Vozmediano Rubén Santiago Montero Juan
Capa de enlace. Ejercicio 1: Cuál es la diferencia entre los tipos de tráfico unicast, multicast, broadcast y anycast? Ejemplos de cada uno.
Capa de enlace Ejercicio 1: Cuál es la diferencia entre los tipos de tráfico unicast, multicast, broadcast y anycast? Ejemplos de cada uno. Ejercicio 2: Explicar lo que es un dominio de broadcast y un
QUE SON Y PARA QUE SIRVEN LAS DIRECCIONES IP, LA MASCARA DE SUBRED, LA PUERTA DE ENLACE Y LAS DNS.
QUE SON Y PARA QUE SIRVEN LAS DIRECCIONES IP, LA MASCARA DE SUBRED, LA PUERTA DE ENLACE Y LAS DNS. Vamos a explicar qué son las direcciones IP, la máscara de subred, las DNS y la Puerta de enlace. En primer
