DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS:
|
|
- Celia Ojeda Lagos
- hace 4 años
- Vistas:
Transcripción
1 DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. CUESTIONARIO DE RESPUESTA MÚLTIPLE (5%) (Cada respuesta incorrecta resta, puntos) La función f ( ) sin() cumple: a) Tiene una asíntota oblicua. b) Corta infinitas veces al eje OX. c) Nunca es decreciente. a 6, si < La función f ( ), si donde a R, es continua en cuando: a) a. b) a o a. c) Es discontinua siempre, para cualquier valor de a. La recta y es una asíntota oblicua de la función f ( ) si: k a) k >. b) k. a 8 El valor de d : a) Si a. b) Si a c) Para ambos valores de a; esto es, si a ± p cos e El valor de lim : a) Si p. b) Si p c) Para cualquier valor de p. p p La función f ( ) cumple: a) Corta veces al eje OX si p <. b) Tiene un máimo y un mínimo para cualquier valor de p. Dada la función f ( ) y las rectas r : y y r : y 7, entonces: a) La primera de ellas, r : y, es tangente a la curva y f () en algún punto. b) La segunda de ellas, r : y 7, es tangente a la curva y f () en el punto (, 5). La función f ( ) p : a) Corta al eje OX una, dos o tres veces, dependiendo del valor de p. b) Solamente corta una vez al eje OX, sea cual sea el valor de p. El valor de que verifica el teorema del valor medio para f ( ), en el intervalo (, 8), es: a) 6 b) La integral impropia d : a) Converge a b) Converge a c) Es divergente
2 PROBLEMAS:. Se considera la función f ( ). a) Estudia el dominio de definición y calcula sus asíntotas. (,6 puntos) b) Determina los intervalos de crecimiento, decrecimiento, concavidad y conveidad. (,6 puntos) c) Halla los máimos, mínimos y puntos de infleión. (, puntos) d) Esboza la gráfica de la función. (, puntos). ( punto) Para la función f ( ) ln( ), halla el polinomio de Taylor de grado en el punto. Demuestra que si se calcula f (, ) mediante ese polinomio, el error de estimación será menor que,.. Calcula las siguientes integrales: d a) (,7 puntos) b) e d (,7 puntos) 5 c) d (, puntos) d) d sin cos (, puntos)
3 EXAMEN DE ANÁLISIS MATEMÁTICO I (enero ). La función f ( ) sin() cumple: a) Tiene una asíntota oblicua. b) Corta infinitas veces al eje OX. c) Nunca es decreciente. SOLUCIONES Para determinar si tiene asíntota oblicua (la recta y m n ), se calcula: f ( ) sin sin m lím lím lím y n lím ( f ( ) m) lím ( sin ) lím sin, que no eiste. Luego, no tiene asíntota oblicua. Derivando se tiene: f ( ) sin() f ( ) cos(), para todo. En consecuencia, la función nunca es decreciente. En particular, puede estudiarse lo que sucede en el intervalo [, π], ya que cos() es periódica de período π. π cos( ) cos( ) π π Si < <, f () > f () es creciente. π Si < < π, f () > f () es creciente. Por tanto, la función no tiene máimos ni mínimos. Siempre es creciente. a 6, si <. La función f ( ), donde a R, es continua en si cuando: a) a. b) a o a. c) Es discontinua siempre, para cualquier valor de a. La función está definida a trozos mediante otras dos funciones. La primera es continua en todos los puntos de su dominio, que es <, aunque cuando presenta serias dificultades. La segunda es continua siempre. Para asegurar la continuidad en el punto hay que eigir que los límites laterales eistan y que sean iguales. Esto es: lím f ( ) lím f ( )
4 Como ( ) 8 lím f ( ) lím lím f ( ) lím, debe cumplirse que a 6 8 En consecuencia, el límite anterior debe ser, inicialmente, indeterminado en. Esto es: a 6 a 6 9a lím La única indeterminación posible es la del tipo ; y, para ello, 9a a. Falta por ver que en este caso el límite vale 8. En efecto, para a : 6 ( )( ) lím f ( ) lím lím lím ( ( ) ) 8 Nota: También se puede hacer aplicando L Hôpital: a 6 a lím (L H) lím a Como el límite debe valer 8, se deduce que: a 8 a. La recta y es una asíntota oblicua de la función a) k >. b) k. f ( ) k si: La recta y m n es asíntota oblicua de la curva f () cuando se cumple que: f ( ) lím m, m y n lím f ( ) m, n ( ) En este caso: m y n. Por tanto debe cumplirse que: f ( ) lím lím ( k) Basta ver que lím lím ( k ) k Este límite vale para cualquier valor de k.
5 Para que este límite k k valga, el valor de k debe ser. En efecto, por L Hôpital, k k lím lím k. k Por tanto, la respuesta es b). k lím ( f ( ) m) lím lím a 8. El valor de d : a) Si a. b) Si a c) Para ambos valores de a; esto es, si a ± Una primitiva del integrando es inmediata. Basta con escribir: 8 d 8 d 8 Por tanto; a a 8 d a. a a Otra solución puede ser a, aunque hay que descartarla, ya que la función 8 f ( ) no es continua en el intervalo [, ]. (Resultaría una integral impropia.) p cos e 5. El valor de lim : a) Si p. b) Si p c) Para cualquier valor de p. p p cos e lim p cos e lim p p. Se aplica la regla de L Hôpital. p sin pe lim p cos p e lim p p ±. Luego, vale la respuesta b). p 6. La función f ( ) cumple: a) Corta veces al eje OX si p <. b) Tiene un máimo y un mínimo para cualquier valor de p.
6 Si p <, la función es negativa cuando >, y positiva cuando <. Por tanto, sólo corta una vez al eje: cuando. p( ) p p p Derivando: f ( ) ( ) ( ) p( ) ( ) Los puntos singulares se dan en las soluciones de f ( ), que son y, independientemente del valor de p. Si p >, en hay un mínimo, pues f ( ) < y f ( ) >. De manera análoga, por f ( ) > y f ( ) <, en hay un máimo. Si p <, en hay un máimo y en un mínimo. (El razonamiento es el mismo.) También puede hacerse la derivada segunda: p( ) ( p p )( ) p( ) f ( ) ( ) ( ) p p Como f ( ) y f ( ), si p >, se tiene mínimo y máimo, respectivamente. Y si p <, sucede al revés. 7. Dada la función f ( ) y las rectas r : y y r : y 7, entonces: a) La primera de ellas, r : y, es tangente a la curva y f () en algún punto. b) La segunda de ellas, r : y 7, es tangente a la curva y f () en el punto (, 5). a) La pendiente de la recta tangente a una curva, y f (), en el punto (a, f(a)) viene dada por el valor de f (a). Por tanto, su ecuación será: y f ( a) f ( a)( a). En este caso, la pendiente de las rectas dadas vale y 7, respectivamente. Luego, esas rectas serán tangente a f ( ) si la derivada, f ( ) 6, toma alguno de esos valores. El valor no puede tomarlo: 6 no tiene solución. La tangente a la curva dada en el punto de abscisa es: y f ( ) f ()( ) Como f ( ) 5 y f ( ) 7, la ecuación queda: y 5 7( ) r : y 7 8. La función f ( ) p : a) Corta al eje OX una, dos o tres veces, dependiendo del valor de p. b) Solamente corta una vez al eje OX, sea cual sea el valor de p.
7 La función corta al menos una vez al eje OX. Para valores suficientemente grandes y negativos, f ( ) < ; y para valores grandes y positivos, f ( ) >. Por tanto, por el teorema de Bolzano, corta al menos una vez al eje OX. Como f ( ) > para todo, la función es creciente siempre. Luego, sólo corta una vez, independientemente del valor que tome p. 9. El valor de que verifica el teorema del valor medio para (, 8), es: a) 6 b) f ( ), en el intervalo El teorema dice: Si f () es continua en el intervalo [a, b] y derivable en el intervalo (a, b), entonces eiste un punto c (a, b) tal que f ( b) f ( a) f ( c) b a La función es continua y derivable en el intervalo dado, luego se cumple que: f (8) f () 8 f ( c) 8. La integral impropia d : a) Converge a b) Converge a c) Es divergente d lim c c d lim c ( ) lim ( c ) c c
8 Problemas. Se considera la función f ( ). a) Estudia el dominio de definición y calcula sus asíntotas. (,6 puntos) b) Determina los intervalos de crecimiento, decrecimiento, concavidad y conveidad. (,6 puntos) c) Halla los máimos, mínimos y puntos de infleión. (, puntos) d) Esboza la gráfica de la función. (, puntos) a) El dominio de la función es R {}. La recta es una asíntota vertical ya que lím Igualmente, la recta y es una asíntota horizontal pues lím Se ve fácilmente que lím y que lím ( ) b) Como f ( ), que vale en, se tendrá: Si <, f () < f () decrece. Si < <, f () > f () crece. Si >, f () < f () decrece. En consecuencia, en hay un máimo. ( ) 6 La derivada segunda es: f ( ), que se anula en. 6 Luego: para <, f () < f () es convea ( ). para < <, f () < f () es convea ( ). para >, f () > f () es cóncava ( ). En consecuencia, la función tiene un punto de infleión en. c) Se tiene un máimo en ; punto (, /). Se tiene un punto de infleión en ; punto (, /9). c) Conociendo la posición de la curva respecto a las asíntotas, su máimo y punto de infleión, y algunos otros puntos, por ejemplo: (, /); (, ); (, ), puede trazarse la siguiente curva.
9 . ( punto) Para la función f ( ) ln( ), halla el polinomio de Taylor de grado en el punto. Demuestra que si se calcula f (, ) mediante ese polinomio, el error de estimación será menor que,. Sol. f ( ) ln( ) 6 ( 96 f ( ) f ( ) f ( ) f ( ) ( ) ( ) ( ) ( 96 f ( ) f ( ) f ( ) f ( ) 6 f ( ) ( ) Luego, ( ) ( ) 6 P ( ) ( ) (hasta aquí,,6 puntos)!! 8 (Desarrollando se obtiene: P ( ) ) 6 96 (!!! Por tanto: f ) ln( ) ( ) ( ) ( ) donde ( ) ( ) 96 Para (,) ln, ( ) es el resto (el error), con (, ). f, el resto es (, ) ( ) 96 96! (, ) <,, ( ), con (,,) ( ),
10 . Calcula las siguientes integrales: d a) (,7 puntos) b) e d (,7 puntos) 5 c) d (, puntos) d) d sin cos (, puntos) a) Hay que descomponer la función dada en fracciones simples. A B A( ) B( ) Luego: A ( ) B( ) ( A B) A B Identificando coeficientes: A B A ; B A B Con esto: d / / d d ln( ) ln( ) c b) La integral e d puede hacerse por partes. Tomando: Se tiene: u du d dv e d v e e d e e d La segunda integral, e d, también se hace por partes. Tomando: u du d dv e d v e Se tiene: e d e e d e e 9 Por tanto: e d e e d e e e c 9 e e e c c) d d ( ) c 5 ln 6 d) sin cos d sin d cos d cos sin c
a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím
Matemáticas Empresariales I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES si 0. La función f ( ) sen es continua en = 0 si: p si 0 a) p = ½. b) p = 0. Para que sea continua en = 0 debe cumplirse que
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Septiembre de 00 APELLIDOS: NOMBRE: DNI CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada respuesta incorrecta
EXAMEN DE MATEMÁTICAS (2º DE BACHILLERATO) ANÁLISIS (DERIVADAS)
EXAMEN DE MATEMÁTICAS (º DE BACHILLERATO) ANÁLISIS (DERIVADAS) 009 1 (CLS09) (1 punto) Probar que la ecuación e + 0 tiene alguna solución (CLJ13) (1 punto) Sea la función + Calcula sus asíntotas y estudia
TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos
64 TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión. Dada la función
Matemáticas II TEMA 7 Límites y continuidad de funciones Problemas Propuestos
Matemáticas II TEMA 7 Límites y continuidad de funciones Problemas Propuestos Definición de ites Demuestra, aplicando la definición, que ( ) Demuestra, aplicando la definición, que + + 8 Cálculo de ites
1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.
6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un
APLICACIONES DE LAS DERIVADAS 2º Bachillerato
APLICACIONES DE LAS DERIVADAS º Bachillerato RECTA TANGENTE A UNA CURVA EN UN PUNTO. Si f es derivable en el punto, la ecuación de la recta tangente a f en el punto es: y = f + f ' Si f es derivable en
Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2
Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el
RESOLUCIÓN DE ACTIVIDADES
RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. En las siguientes funciones estudia las características: dominio, los puntos de corte con los ejes, las simetrías, la periodicidad, las asíntotas, la monotonía,
TEMA 7. Representación gráfica de funciones y Optimización Problemas Resueltos
Matemáticas Aplicadas a las Ciencias Sociales II. Soluciones de los problemas propuestos. Tema 7 TEMA 7. Representación gráfica de funciones y Optimización Problemas Resueltos Crecimiento y decrecimiento.
Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.
UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4
ANÁLISIS (Selectividad)
ANÁLISIS (Selectividad) 1 Sea f : R R la función definida por f() ln ( +1). (a) Determina los intervalos de crecimiento y decrecimiento y los etremos relativos de la función f (puntos donde se alcanzan
REPRESENTACIÓN DE FUNCIONES
8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta
Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización
Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Aplicaciones de la derivada primera para el estudio de la variación de una función El signo de la
Universidad Carlos III de Madrid
Ejercicio 3 4 5 6 7 8 total Puntos Universidad Carlos III de Madrid Departamento de Economía Eamen final de Matemáticas I 0 de septiembre de 007 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO : Dada
a) Calcular las asíntotas, el máximo y el mínimo absolutos de f (x). 4. (SEP 04) Sabiendo que una función f (x) tiene como derivada
Matemáticas II - Curso - EJERCICIOS DE CÁLCULO DIFERENCIAL E INTEGRAL PROPUESTOS EN LAS PRUEBAS DE ACCESO COMUNIDAD DE MADRID (JUN ) Calcular la base y la altura del triángulo isósceles de perímetro 8
III BLOQUE III ANÁLISIS. Página Estudia las asíntotas, intervalos de crecimiento y de decrecimiento y extremos
III BLOQUE III ANÁLISIS Página 9 Estudia las asíntotas, intervalos de crecimiento y de decrecimiento y etremos de la función y =, y represéntala gráficamente. Asíntotas: Vertical: = Posición: = @ 8 8 +
Selectividad Junio 2007 JUNIO 2007
Selectividad Junio 7 JUNIO 7 PRUEBA A PROBLEMAS 1.- Sea el plano π + y z 5 = y la recta r = y = z. Se pide: a) Calcular la distancia de la recta al plano. b) Hallar un plano que contenga a r y sea perpendicular
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
( ) ( ) ( ) f h f h h h h. h 0 h h 0 h h 0 h h 0. f h f h h h h
Eamen de cálculo diferencial e integral /4/9 Opción A Ejercicio. (Puntuación máima: puntos) Sea la función f ( ) = 4 a. Estudiar su continuidad y derivabilidad. b. Dibujar su gráfica. c. Calcular el área
PROPIEDADES GLOBALES DE LAS FUNCIONES. =, para x 0.
PROPIEDADES GLOBALES DE LAS FUNCIONES Ejercicio. Sea f: R R la función definida por f ( ) Ln( + ), siendo Ln la función logaritmo neperiano. (a) [ punto] Determina los intervalos de crecimiento y decrecimiento
Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos
página 1/12 Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos Hoja 26. Problema 1 1. a) Calcula el número real m que cumple lim 0 ln(1+m ) sen(2 ) =. b) Obtener
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES El estudio de la derivada de una función, junto con otras consideraciones sobre las funciones tales como el estudio de su campo de eistencia (dominio), de sus puntos de corte
Aplicaciones de la derivada
Aplicaciones de la derivada º) Calcula los máimos y mínimos de la función f() = Máimo en P( 6, ) ; Mínimo en Q(0, 0) º) Determina el parámetro c para que la función f() = + + c tenga un mínimo igual a
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
COL LECCIÓ DE PROBLEMES RESOLTS
DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 07 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO
EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)
REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x
1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.
Universidad Carlos III de Madrid
Ejercicio 2 3 5 6 7 8 total Puntos Universidad Carlos III de Madrid Departamento de Economía Eamen final de Matemáticas I 8 de febrero de 2007 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO : Dada la
I.- Representación gráfica de una función polinómica
Los campos a considerar en el estudio de una representación gráfica son; Dominio de la función Continuidad y derivabilidad Simetrías Periodicidad Asíntotas Verticales Horizontales Oblicuas Posición de
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
x = 1 Asíntota vertical
EJERCICIO Sea la función f ( ). a) Indique el dominio de definición de f, sus puntos de corte con los ejes, sus máimos mínimos, eisten, sus intervalos de crecimiento decrecimiento. b) Obtenga las ecuaciones
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES El estudio de la derivada de una función, junto con otras consideraciones sobre las funciones tales como el estudio de su campo de eistencia (dominio), de sus puntos de corte
Universidad Carlos III de Madrid
Universidad Carlos III de Madrid Ejercicio 2 3 4 5 6 Total Puntos Departamento de Economía Eamen Final de Matemáticas I 20 de Enero de 206 APELLIDOS: Duración del Eamen: 2 horas. NOMBRE: DNI: Titulación:
CUESTIONES RESUELTAS 2. FUNCIONES REALES DE VARIABLE REAL FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CURSO
CUESTIONES RESUELTAS. FUNCIONES REALES DE VARIABLE REAL FUNDAMENTOS DE MATEMÁTICAS. º GRADO GESTIÓN AERONAÚTICA CURSO 0-0. CONCEPTOS DE DOMINIO, RECORRIDO Y GRÁFICA e. Sea f() definida por: f ( ) Entonces
TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD
TEMA. FUNCIONES REALES DE VARIABLE REAL.4. APLICACIONES DE LA DERIVABILIDAD .4. APLICACIONES DE LA DERIVABILIDAD.4.1. Intervalos de crecimiento y decrecimiento.4.. Etremos locales de una función.4.3. Intervalos
Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos
Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión
5 APLICACIONES DE LA DERIVADA
5 APLICACIONES DE LA DERIVADA La derivada va a ser la herramienta más potente a la hora de dar forma a la representación gráfica de una función. Ella determinará con toda fidelidad el crecimiento, decrecimiento,
L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S
L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S 1. T A S A D E V A R I A C I Ó N M E D I A Definimos la variación media de una función f en un intervalo [, + ], y la designamos por t m o TVM[,
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,
Universidad Carlos III de Madrid
Universidad Carlos III de Madrid Ejercicio 3 4 5 6 Total Puntos Departamento de Economía Eamen Final de Matemáticas I 3 de Junio de 7 Duración del Eamen: horas. APELLIDOS: NOMBRE: DNI: Titulación: Grupo:
EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES.
EJERCICIOS RESUELTOS TEMA : DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. Ejercicio 1 Calcula las funciones derivadas de las siguientes funciones y simplifícalas: a) f ( ) sine b)
Representaciones gráficas
1 MAJ99 Representaciones gráficas 1. Se considera la función 3 f ( ) 1 60 3 (a) Hállense sus máimos y mínimos. (b) Determínense sus intervalos de crecimiento y decrecimiento. (c) Represéntese gráficamente.
Tema 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización
09 Tema 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Aplicaciones de la derivada primera para el estudio de la variación de una función El signo de la derivada primera
en un punto determinado. Esto es, qué le pasa a f (x) cuando varía x en los alrededores de un punto a. , su derivada en el punto x = 3 es
UAH Actualización de Conocimientos de Matemáticas para Tema 08 DERIVADAS Derivada de una función en un punto Una función f () es derivable en el punto a si f ( a + ) f ( a) eiste el límite: lím Este límite
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN cuya derivada es
ANÁLISIS (Selectividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón, junio a) Determina la función f () cuya derivada es f ( ) b) Calcula: lim a) La función f () es una primitiva de f f 5 (
lim x sen(x) Apellidos: Nombre: Curso: 2º Grupo: A Día: 23-II-2015 CURSO Instrucciones:
EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: II5 CURSO 5 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios de
TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES
TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES 1 DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN El dominio de una función está formado por aquellos valores de (números reales) para los que se puede calcular f(). PUNTOS
Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x
Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Nombre y Apellidos: Cálculo I Convocatoria de Diciembre de Diciembre de 008 DNI: (6.5 p.) ) Se considera la función f : R R definida
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO
EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios
Soluciones del Segundo Parcial 22 de diciembre de 2015
Grado M+I Curso 2015-2016 Apellidos: Nombre: Cálculo I Soluciones del Segundo Parcial 22 de diciembre de 2015 Matemática Aplicada ETSIINF-UPM Nota: /10 Parte 1. Teoría (2 puntos). 1. Enuncia el teorema
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES
Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación
SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será:
Ejercicio nº.- Halla la ecuación de la recta tangente a la curva que sea paralela a la recta y. SOLUCIONES ' Fecha: La pendiente de la recta es m Cuando, y La recta será: Ejercicio nº.- y ( ) Averigua
xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular
. [0] [ET-A] a) Hallar el punto en el que la recta tangente a la gráfica de la función f() = -+ es paralela a la recta de ecuación y = 5-7. b) Calcular el área delimitada por la parábola de ecuación y
REPRESENTACIÓN GRÁFICA DE FUNCIONES
Página 1 de 5 REPRESENTACIÓN GRÁFICA DE FUNCIONES 1 Determinar en cuál de los siguientes intervalos la función f(x) = ln (x+1) es estrictamente cóncava. A (-, 0) B [-1, 1] C (-1, ) D Nunca es estrictamente
1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)=
2 de diciembre de 2008. ) (,6p) Estudia y clasifica las discontinuidades de la función: f()= +4-3 -5 2) (,6p) Halla las ecuaciones de las asíntotas de la siguiente función y estudia la posición relativa:
f(x) = xe para x -1 y x 0, MATEMÁTICAS II PROBLEMAS DE FUNCIONES. Ejercicio 1. (Reserva 1 Septiembre 2013 Opción A) Sea f la función definida por
MATEMÁTICAS II PROBLEMAS DE FUNCIONES. Ejercicio. (Reserva Septiembre 0 Opción A) f() = para > 0, (donde ln denota el logaritmo neperiano). ln() a) [ 5 puntos] Estudia y determina las asíntotas de la gráfica
Opción A. teorema se puede aplicar también si sale /, y cuando x. Como. , la recta x = 0 es una A.V. de la función f.
Opción A 1 Ejercicio 1. [ 5 puntos] Sea f la función definida, para 0, por f e. Determina las asíntotas de la gráfica de f. La recta = a es una asíntota vertical (A.V.) de la función f si lim f Veamos
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES GRÁFICA DE UNA FUNCIÓN: Conjunto de puntos del plano (,y), en los que y = f(), es decir, conjunto de puntos del plano en los que la segunda coordenada es la imagen de la primera.
Prueba º Bach C Análisis. Nombre:... 17/05/10. Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible 1 h. 30 min.
Nota Prueba 3.04 º Bach C Análisis Nombre:... 7/05/0 Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible h. 30 min. OPCIÓN A. a) Calcula los siguientes límites: ln( + ) sen
U.P.N.A. SELECTIVIDAD MATEMÁTICAS II JUNIO 2000
U.P.N.A. SELECTIVIDAD MATEMÁTICAS II JUNIO 000 Grupo Opción c) c) Calcula y epresa lo más simplificadamente posible la derivada de las siguientes funciones: + tag ( ) e ( puntos) c) Utilizando el cambio
12 Representación de funciones
Representación de funciones ACTIVIDADES INICIALES.I. Factorizando previamente las epresiones, resuelve las siguientes ecuaciones: 3 a) 6 7 4 + 5 = 0 6 4 c) 4 + 4 = 0 7 b) 6 d) + + + + 3 = 0.II. Resuelve
EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO
EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO 7-8 Ejercicio º.- Se considera la función f : R R dada por: f ( ) ( ) e a) (,5 puntos) Calcula las asíntotas de f. b) (,5 puntos) Calcula la
TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R
TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le
a) Se trata de integrar una función racional cuyo denominador tiene raíces reales simples. Por tanto, se descompone en fracciones simples:
. a.sen() e Sabiendo que lim es finito, calcula el valor de a y el de dicho límite. lim L'Hôpital a.sen() e a.cos (e e ) lim L'Hôpital a. sen e (e e ) a. sen e e lim lim L'Hôpital El parámetro a puede
APLICACIONES DE LAS DERIVADAS
APLICACIONES DE LAS DERIVADAS Apuntes de A. Cabañó. Calcula la tasa de variación media de la función +- en los intervalos: a) [-,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación
Aplicaciones de las derivadas
Aplicaciones de las derivadas. Recta tangente a una curva en un punto La pendiente de la recta tangente a la gráfica de la función f() en el punto ( 0, f( 0 )) viene dada por f ( 0 ) siempre que la función
Funciones en explícitas
Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos
Unidad 13 Representación gráfica de funciones
1 Unidad 13 Representación gráfica de funciones PÁGINA 315 SOLUCIONES 1. Las funciones son: a) f 8 ) ( = Dominio: = f Dom Puntos de corte con el eje OX: = = (4,0) (0,0) 0 8 Q P y y Puntos de corte con
Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León
Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo
Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización.
TEMA 1 Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. Límite finito en un punto: Consideremos una función f definida en las proimidades
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción B Junio, Ejercicio, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva,
1.- Sea la función f definida por f( x)
Solución Eamen Final de la 3ª Evaluación de º Bcto..- Sea la función f definida por f( ) a) El dominio de la función es Dom( f) estudiando las asíntotas verticales:, por tanto vamos a empezar La función
APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA
Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN
IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS
Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas
Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997)
Matemáticas II. Curso 008/009 de funciones 1 1. Determinar las asíntotas de f () =. Estudiar la concavidad y conveidad. 1 + Determinar los puntos de infleión. (Junio 1997) 1 Por un lado, lim 1 = 0 y =
Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2
Curso º Bachillerato 16/05/017 Ejercicio 1 a) (1 punto) Calcula las derivadas de las siguientes funciones: f() = 1+3 ; g() = ln(1 5) + e7 b) (1 punto) Estudia la derivabilidad de la función dada por: a)
RESUMEN DE ANÁLISIS MATEMÁTICAS II
RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)
Universidad Carlos III de Madrid
Universidad Carlos III de Madrid Ejercicio 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 6 de Junio de 04 Duración del Examen: horas. APELLIDOS: NOMBRE: DNI: Titulación: Grupo:
Idea de Derivada. Tasa de variación media e instantánea
Idea de Derivada. Tasa de variación media e instantánea.- La variación de la altura de un niño con el paso de los años, se recoge en la guiente tabla: Edad (años) 0 6 9 8 Altura (cm.) 8 6 74 78 80 a) Representar
8 x2 y 3 x 4 ( ) define a y como función
Universidad de Santiago de Chile Facultad de Ciencia, Depto. de Matemática y C.C. Departamento de Matemática y C.C. Asignatura: Cálculo Anual Ingeniería Civil PEP, Año 0 Problema. 0 pts.) Considere la
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
Universidad Carlos III de Madrid
Ejercicio 2 3 4 5 6 7 8 total Puntos Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas I 9 de septiembre de 2005 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO :.
derivable en x = 0. b) Para los valores encontrados, calcula la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x = 0.
. [04] [EXT-A] a) Calcula los intervalos de concavidad y conveidad de la función f() = - +. Estudia si tiene puntos de infleión. b) En qué puntos de la gráfica de f() la recta tengente es paralela a la
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m.
Enunciados de problemas de selectividad. Matemáticas II. Funciones FUNCIONES.(97).- Hay alguna función f() que no tenga límite cuando y que, sin embargo, [f()] sí tenga límite cuando?. Si la respuesta
Tema 4: Representación de Funciones
Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...
Universidad Carlos III de Madrid
Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas I 3 de enero de 006 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO : Sea A x, y R : x y 6 x Se pide: a) Representar
Ejercicios de representación de funciones: Primer ejemplo:
www.juliweb.es tlf. 69886 Ejercicios de representación de funciones: Primer ejemplo: f ( ) º) Dominio. Dom f ( ) R {} º) Simetrías. f ( ) No es par f ( ) f ( ) No es impar No hay simetría. º) Puntos de