Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de"

Transcripción

1 Matemátcas II Segundo Curso, Grado en Ingenería Electrónca Industral y Automátca Grado en Ingenería Eléctrca 7 de febrero de 0. Conteste las sguentes cuestones: Ã! 0 (a) (0.5 ptos.) Escrba en forma bnómca +. Solucón: Haremos la operacón en forma exponencal. Para ello calculamos el módulo y argumento del complejo + v u t Ã! + r arctan arctan + (Está en el segundo cuadrante) Y ahora realzamos la operacón de potencacón Ã! S descontamos vueltas completas: 0 (67 +) Se han dado 67 vueltas completas a la crcunferenca y queda un ángulo de 4 radanes, por tanto 0 4 cos 4 + sen 4 (b) (0.75 ptos.) Calcule en forma bnómca todas las solucones de la ecuacón 4 +0 Solucón: Los complejos que cumplen la ecuacón son las raíces cuartas de, por tanto 4 que calculamos en forma exponencal. Para ello expresamos el radcando en forma exponencal y las 4 raíces cuartas son sendo 4p + ; 0 4

2 En este caso y, deestemodo sendo + ; 0 4 y las raíces en forma bnómca son (c) (0.5 ptos.) Demuestre que todos los números de la forma cos ()+ sen (); ( R) pertenecen a la crcunferenca () ; [0 ] Solucón: Utlzando la fórmula de Euler cos ()+ sen () (cos ()+ sen ()) yestáclaroque luego todos esos puntos están en la curva () Tambén es posble comprobarlo utlzando la defncón de módulo de forma drecta, sn necesdad de la fórmula de Euler q cos ()+ sen () ( cos ) +(sen ) p (cos +sen ) (d) (0.5 ptos.) Tenendo en cuenta que C R, represente en el plano el conjunto { C; Im () Re ()} Solucón: S expresamos el complejo en la forma bnómca +, elconjuntopuedeexpresarse como {( ) R ; } cuya representacón gráfca es una banda horzontal de anchura con centro en el eje real, es decr

3 (e) ( pto.) uelva en la ecuacón sguente: cos()+ 0 Solucón: Utlzamos la defncón de cos en térmnos de la funcón exponencal para reescrbr la ecuacón Hacemos el cambo ycomo6 0 De esta forma se obtene una ecuacón en la varable y multplcando por obtenemos una ecuacón de segundo grado ( +) que podemos resolver fáclmente medante la correspondente fórmula q ± 4 () () ± 6 ± 4 obtenendo dos solucones + ±

4 Con estos valores para y y tenendo en cuenta el cambo que se hzo al prncpo del ejercco obtendremos, medante la defncón de logartmo complejo log, tenemos en cuenta además que y son dos números magnaroas puros con parte magnara postva y negatva respectvamente log + ln + + ln + + log + ln ln (.75 ptos.) Se consdera la funcón raconal () ( 4)(.Calcule,justfcando la valdez 4 ) de la regón de convergenca, el desarrollo de Laurent de convergente en el anllo A(0; 6) { C; 6} Solucón: En prmer lugar buscamos las raíces del denomnador para descomponer la funcón en fraccones smples. Está claro que una de las raíces es 4, para las otras resolvemos la correspondente ecuacón ( 4 ) 4 ± p 6 4 ( ) 4 ± 64 4 ± por tanto () ( 4)( 4 ) ( 4) ( 6) ( +) Como estamos buscando potencas de, la descomposcón en factores smples es la sguente: () ( 4) ( 6) ( +) Para la expresón entre paréntess tenemos Por tanto ydandoa los valores de las raíces y la descomposcón es ( 6) ( +)+ ( 4) ( +)+ ( 4) ( 6) ( 4) ( 6) ( +) ( 6) ( +)+ ( 4) ( +)+ ( 4) ( 6) 4 (4 6) (4+) (6 4) (6 + ) ( 4) ( 6) ( 4) ( 6) ( +) 07 ( 4) + 8 ( 6) + 9( +) El desarrollo de Laurent en el conjunto ndcado 6 de cada fraccón es muy sencllo. Como 4 4 y entonces con 4

5 De nuevo como y el desarrollo para esta fraccón es: + + ( ) 0 0 ( ) + con Fnalmente como X con 6 0 La funcón tendrá el sguente desarrollo6 Ã () 07 ( 4) + 8 ( 6) + 8 9( +) agrupamos las potencas negatvas y postvas de forma: osmplfcando () () ( ) 4 + ( ) y cambando el contador en la prmera suma + Ã! () ( ) 9. Calcule las sguentes ntegrales: ! ( ) + (a) (.5 ptos.) Z sen ( ) ; () exp() [0 ] Solucón: Es la ntegral de un cocente de funcones dervables a lo largo de una curva cerrada, por tanto utlzaremos el teorema de los resduos tenendo en cuenta solamente las sngulardades que caen dentro de la curva. Las sngulardades de la funcón son los números complejos que anulan el denomnador de la funcón, por tanto ( ) 0 que tene por solucones 0 Aunque 0es un cero doble del denomnador, tambén es un cero smple del numerador, por tanto será un polo smple de la funcón. La otra sngulardad,, es de tpo evtable puesto que aunque es un cero smple del denomnador, tambén es un cero smple del numerador y por tanto será sngulardad evtable de la funcón. No obstante solamente está dentro de la curva ( es el centro de la crcunferenca!), ya que la dstanca de al centro de la crcunferenca es ( 0) 0 5

6 es mayor que el rado y no nflurá en el cálculo de la ntegral. El resduo para se puede calcular medante límtes sen ( ) 0 sen lím 0 ( ) lím sen 0 ( ) lím sen 0 ( ) ylantegralserá Z sen sen ( ) ( ) 0 (b) (.75 ptos.) Calcule razonadamente, aplcando la teoría de varable compleja, la ntegral real Z 0 +sen Solucón: Es una ntegral trgonométrca de una funcón raconal en (sen cos ), por tanto haremos el cambo usual sen en este caso la funcón del ntegrando es +sen y la ntegral trgonométrca se transofrma en Z Z 0 +sen +4 sendo () [0 ] Utlzando el teorema de los resduos podremos resolver dcha ntegral. En prmer lugar buscaremos los ceros del denomnador de la funcón +4 4 ± ± 4 ± Sólo está en la crcunferenca den centro (0 0) yrado, puesto que + mentras que estará fuera puesto que + + Para la ntegral sólo tendremos en cuenta a Z +sen

7 4. ( pto.) Obtenga una sucesón { } 0 cuya transformada Z sea () ( ) ( ) Solucón: Para obtener el valor de tendremos que calcular la transformada Z nversa de () ( ) ( ) Para calcular esta transformada Z nversa, hay que encontrar las raíces del denomnador y hacer la descomposcón de la funcón raconal en fraccones smples. Las raíces del denomnador son La descomposcón de () es () ( ) ( ) + Para la expresón entre paréntess tenemos ( ) + ( ) ( ) ( ) Por tanto ( ) + ( ) ydandoa los valores de las raíces ( ) y la descomposcón es ( ) ( ) ( ) ( ) + ( ) A contnuacón desarrollamos cada fraccón en seres de Laurent dentro de conjuntos de la forma (0 ), es decr en el exteror de bolas de centro 0 yrado, en todas hay que hacer la msma operacón, transformar la fraccón para poder emplear la suma de una sere geométrca + X y susttuyendo en la expresón para () ( ) ( ) X + X ( ) Los coefcentes de las potencas de son los elementos de la sucesón que buscamos ( ) mentras que 0 0 7

8 5. ( ptos.) Calcule razonadamente, medante la transformada de Laplace, una funcón (), queverfque la sguente ecuacón dferencal con condcones ncales: 00 ()+5 0 ()+6() (); (0 + ) (0) 0 0 (0) donde ; 0 6 () 0; 6 Solucón: Para resolver la ecuacón dferencal 00 ()+5 0 ()+6 () () junto con las condcones ncales (0) 0 0 (0), aplcaremos la transformada de laplace y sus propedades de lnealdad y desplazamento. Aplcamos la transforada de Laplace a ambos membros de la ecuacón utlzamos la lnealdad L [ 00 ()+5 0 ()+6 ()] () L [ ()] () L [ 00 ()] ()+5L [ 0 ()] ()+6L [ ()] () L [ ()] () y a contnuacón la propedad de desplazamento junto con las condcones ncales L [ ()] () () L [ 0 ()] () L [ ()] () (0) () L [ 00 ()] () L [ ()] () (0) 0 (0) () Con estos cambos la ecuacón queda () +5(L [ ()] ()) + 6 ( ()) L [ ()] () () L [ ()] ()+ y despejando L [ ()] ()+ () ( +5 +6) El valor de L [ ()] () lo obtenemos medante la aplcacón drecta de la defncón de transformada de Laplace, tenendo en cuenta que () en térmnos de la funcón de Heavsde se puede expresar como luego () ( 0 () 6 ()) L [ ()] () L [ ( 0 () 6 ())] () 6 o como alternatva tambén puede hacerse medante la defncón de L [ ()] () L [ ()] () Z 0 () Z

9 Susttuendo en la expresón de () () L [ ()] ()+ ( +5 +6) ( +5 +6) ( +5 +6) ( +)( +) Medante la transformada nversa obtendremos el valor de () + () L 6 () ( +)( +) Utlzando la lnealdad L h + 6 (+)(+) () L h (+)(+) y utlzando la propedad de desplazamento h h L + 6 (+)(+) () L (+)(+) ()+L h (+)(+) ()+L h h h h L (+)(+) ()+L (+)(+) () L ()+L h (+)(+) 6 (+)(+) 6 (+)(+) () () h () L (+)(+) ( 6) 6 () sendo 6 () la funcón de Heavsde en el ntervalo correspondente [6 ] Calculamos cada nversa medante los resduos en las sngulardades de las funcones correspondentes, que por ser funcones raconales son los ceros del denomnador: L h (+)(+) () este cálculo es drecto 0 (+)(+) (+)(+) (+)(+) 0 (+)(+) + (+)(+) + (+)(+) lím 0 lím ( +) lím ( +) (+)(+) lím 0 (+)(+) 6 (+)(+) lím (+)(+) lím (+) (+) por tanto h L (+)(+) () 6 + Para el segundo térmno tambén utlzamos resduos h L (+)(+) () X (+)(+) (+)(+) + (+)(+) sendo yportanto (+)(+) (+)(+) lím ( +) lím ( +) (+)(+) lím (+)(+) lím h L (+)(+) () (+) (+) Para el últmo térmno usamos la propedad de traslacón h h L 6 (+)(+) () L (+)(+) ( 6) 6 () 6 + ( 6) ( 6) 6 () 9

10 y la funcón () se obtene sumando todos los térmnos: () ( 6) 6 + ( 6) ( 6) 6 () Podemos comprobar que se cumplen las condcones ncales, tanto en (0) (0) como en 0 (0), prmero dervando y evaluando en el punto 0 ( 6) 6 () (0 6) (0 6) 6 (0) () () 0 (0) (0) 0 Se comprueba que () cumple la ecuacón dferencal. Para ello tenemos que obtener la segunda dervada de () 00 () () Y susttuyendo en la ecuacón dferencal 00 ()+5 0 ()+6() () () () ( 0 () 6 ()) () 6 + ( 6) ( 6) 6 () 0

NÚMEROS COMPLEJOS. [1.1] Expresar en forma binómica: z 1 3i 1 3i. Solución: Teniendo en cuenta que 1 3i. [1.2] Calcular: a) 3 4 NÚMEROS COMPLEJOS

NÚMEROS COMPLEJOS. [1.1] Expresar en forma binómica: z 1 3i 1 3i. Solución: Teniendo en cuenta que 1 3i. [1.2] Calcular: a) 3 4 NÚMEROS COMPLEJOS NÚMEROS COMPLEJOS NÚMEROS COMPLEJOS 9 9 [1.1] Expresar en forma bnómca: z 1 1 Tenendo en cuenta que 1 / 1 / 9 9 9 9 9 9 1 1 / / z 9 9 9 10 10 (cos sen ) (cos( ) sen( )) cos ( 1) 10 [1.] Calcular: z 1 a)

Más detalles

Unidad 6-. Números complejos 1

Unidad 6-. Números complejos 1 Undad -. Números complejos ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS Efectúa las sguentes operacones: aa (-(-(- aa (-(-(- cc ( -(-( bb ( ( - - (- 7 dd ( - - (- / ( - ( ( (. ( Sumamos algebracamente por

Más detalles

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE En el Aula Vrtual se encuentra dsponble: Materal nteractvo con teoría y ejerccos resueltos. Para acceder a ello deberá pulsar sobre los sguentes enlaces una vez dentro

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

(4 3 i)(4 3 i)

(4 3 i)(4 3 i) E.T.S.I. Industrales y Telecomuncacón Curso 00-0 Grados E.T.S.I. Industrales y Telecomuncacón Asgnatura: Cálculo I Ejerccos resueltos Calcular el valor de a y b para que b a 4 sea real y de módulo undad

Más detalles

Solución. Se multiplica numerador y denominador por el conjugado del denominador.

Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Solucón. Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador,

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

Ejercicios y problemas (páginas 131/133)

Ejercicios y problemas (páginas 131/133) 7 Calcula el opuesto y el conjugado de los sguentes números complejos, expresándolos en forma polar: a) z b) z (cos 00 sen 00 ) c) z Expresamos en prmer lugar los números complejos en forma Calcula las

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013 Matemáticas II Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica 4 de febrero de 0. Conteste las siguientes cuestiones: (a) (0. ptos.) Escriba en forma

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reales Complejos Ejerccos resueltos Halla los números reales que cumplen la condcón a a S a 0 : a a a 0 No este solucón S a < 0 : a a a a Halla todos los números r tales que r < a) S

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. Pág. NOTA: En todos los ejerccos se deberá justfcar la respuesta explcando el procedmento segudo en la resolucón del ejercco. CURSO 0 - CONTROL OCTUBRE 00 A contnuacón se presentan 5 preguntas con respuestas

Más detalles

1 x. f) 4. Encuentra los valores de x que hacen cierta la ecuación: x² + 1=0.

1 x. f) 4. Encuentra los valores de x que hacen cierta la ecuación: x² + 1=0. Los Números Complejos. La necesdad de crear nuevos conjuntos numércos (enteros, raconales, rraconales), fue surgendo a medda que se presentaban stuacones que no tenían solucón dentro de los conjuntos numércos

Más detalles

Ejercicios Resueltos de NÚMEROS COMPLEJOS

Ejercicios Resueltos de NÚMEROS COMPLEJOS Ejerccos Resueltos de NÚMEROS COMPLEJOS Ejerccos Resueltos de NÚMEROS COMPLEJOS Números Complejos. Formas de epresarlos.- Halla las raíces de los sguentes números: 00 Solucón: ± 00 00 ± 0 ± ±.- Representa

Más detalles

60 EJERCICIOS de NÚMEROS COMPLEJOS

60 EJERCICIOS de NÚMEROS COMPLEJOS 60 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos a) x -x+=0 (Soluc ) b) x +=0 (Soluc ) c) x -x+=0 (Soluc ) d) x +x+=0 (Soluc ) e) x -6x +x-6=0 (Soluc,

Más detalles

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147 Undad. Números complejos Matemátcas I Resuelve Págna 7 Cómo operar con? Vamos a proceder como los antguos algebrstas: cuando nos encontremos con seguremos adelante operando con ella con naturaldad y tenendo

Más detalles

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro Matemátcas Bachllerato? Soluconaro del Lbro Actvdades Dado el número complejo se pde: qué valor ha de tener x para que x? Calcula el opuesto de su conjugado Calcula el conjugado de su opuesto x x x El

Más detalles

Números Complejos II. Ecuaciones

Números Complejos II. Ecuaciones Complejos 1º Bachllerato Departamento de Matemátcas http://selectvdad.ntergranada.com Raúl González Medna Ecuacones 1. Resolver las sguentes ecuacones y determnar en qué campo numérco tenen solucón: a)

Más detalles

Integración por el método de los residuos

Integración por el método de los residuos Semana 13 - lase 38 Tema 6: Varable ompleja 1. Introduccón Integracón por el método de los resduos Las expansones de funcones en seres de potencas dejan resduos al detener la expansón a para una determnada

Más detalles

Matemáticas I - Anaya

Matemáticas I - Anaya ! 0 "# Representa gráfcamente los resultados que obtengas al hallar y calcula el lado del trángulo formado al unr esos tres puntos. Para hallar las raíces prmero pasamos el número a forma polar : r ( )

Más detalles

INTEGRACIÓN POR DESCOMPOSICIÓN EN FRACCIONES PARCIALES USANDO EL CALCULO DIFERENCIAL LUIS CARLOS OÑATE FERNANDEZ

INTEGRACIÓN POR DESCOMPOSICIÓN EN FRACCIONES PARCIALES USANDO EL CALCULO DIFERENCIAL LUIS CARLOS OÑATE FERNANDEZ NTEGRACÓN POR DESCOMPOSCÓN EN FRACCONES PARCALES USANDO EL CALCULO DFERENCAL LUS CARLOS OÑATE FERNANDEZ FUNCÓN RACONAL Una funcón f es raconal s es el cocente de dos POLNOMOS PX ( Sea P(X y Q(X dos polnomos

Más detalles

TRABAJO Nº 5 PSU MATEMÁTICA 2017 NÚMEROS COMPLEJOS Nombre:. Fecha:..

TRABAJO Nº 5 PSU MATEMÁTICA 2017 NÚMEROS COMPLEJOS Nombre:. Fecha:.. GUÍA DE TRABAJO Nº 5 PSU MATEMÁTICA 07 NÚMEROS COMPLEJOS Nombre:. Fecha:.. CONTENIDOS Números complejos, problemas que permten resolver. Undad magnara. Operatora con números complejos. Propedades de los

Más detalles

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO.

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. Dado un numero n de puntos del plano ( a, b ) es posble encontrar una funcón polnómca

Más detalles

Problemas sobre números complejos -1-

Problemas sobre números complejos -1- Problemas sobre números complejos --.- Representa gráfcamente los sguentes números complejos y d cuáles son reales, cuáles magnaros y, de estos, cuáles magnaros puros: 5-5 + 4-5 7 0 -- -7 4.- Obtén las

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller Unversdad Smón Bolívar Conversón de Energía Eléctrca Prof José anuel Aller 41 Defncones báscas En este capítulo se estuda el comportamento de los crcutos acoplados magnétcamente, fjos en el espaco El medo

Más detalles

CAPÍTULO 9: CONJUNTO DE LOS NÚMEROS COMPLEJOS

CAPÍTULO 9: CONJUNTO DE LOS NÚMEROS COMPLEJOS Conjunto de los números complejos CAPÍTULO 9: CONJUNTO DE LOS NÚMEROS COMPLEJOS SUMARIO: INTRODUCCIÓN OBJETIVOS DEL CAPÍTULO PARTE TEÓRICA DEL TEMA: 9.1.- Defncón. 9..- Suma y producto. 9..- Partes real

Más detalles

Números Complejos. 4º Año. Matemática. Cód M i r t a R o s i t o V e r ó n i c a F i l o t t i J u a n C a r l o s B u e

Números Complejos. 4º Año. Matemática. Cód M i r t a R o s i t o V e r ó n i c a F i l o t t i J u a n C a r l o s B u e Números Complejos Matemátca 4º Año Cód. 403-8 M r t a R o s t o V e r ó n c a F l o t t J u a n C a r l o s B u e Dpto. de Matemátca Los Números Complejos. Una amplacón más en el campo numérco La necesdad

Más detalles

Números Complejos. 4º Año. Matemática. Cód M i r t a R o s i t o V e r ó n i c a F i l o t t i J u a n C a r l o s B u e

Números Complejos. 4º Año. Matemática. Cód M i r t a R o s i t o V e r ó n i c a F i l o t t i J u a n C a r l o s B u e Números Complejos Matemátca 4º Año Cód. 404-7 M r t a R o s t o V e r ó n c a F l o t t J u a n C a r l o s B u e Dpto. de M atemátca Los Números Complejos. Una amplacón más en el campo numérco La necesdad

Más detalles

CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI

CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI CAPÍTULO 5: MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 57 CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 5. Resumen Se busca solucón a las ecuacones acopladas que descrben los perfles de onda medante

Más detalles

Actividades de recuperación

Actividades de recuperación Actvdades de recuperacón 1.- Para cada uno de los sguentes complejos, se pde 1 Señala cuál es su parte real y su parte magnara e ndca cuáles se corresponden con números reales y cuáles son magnaros puros.

Más detalles

Números Complejos. Matemática

Números Complejos. Matemática Números Complejos Matemátca 4º Año Cód. 40-6 M r t a R o s t o V e r ó n c a F l o t t J u a n C a r l o s B u e Dpto. de Matemátca Los Números Complejos. Una amplacón más en el campo numérco La necesdad

Más detalles

Números Complejos. Matemática

Números Complejos. Matemática Números Complejos Matemátca 4º Año Cód. 40-5 M r t a R o s t o V e r ó n c a F l o t t J u a n C a r l o s B u e Dpto. de Matemátca Los Números Complejos. Una amplacón más en el campo numérco La necesdad

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

b) Encuentra el criterio de formación de la siguiente sucesión recurrente:

b) Encuentra el criterio de formación de la siguiente sucesión recurrente: Ejercco nº.- Calcula, utlzando la dencón de logartmo: log log log b) Halla el valor de, aplcando las propedades de los logartmos: log log log Solucón: b) log log log 9 log log log log log 9 9 Ejercco nº.-

Más detalles

b) Encuentra el criterio de formación de la siguiente sucesión recurrente:

b) Encuentra el criterio de formación de la siguiente sucesión recurrente: Ejercco nº.- Calcula, utlzando la dencón de logartmo: log log log b) Halla el valor de, aplcando las propedades de los logartmos: log log log Ejercco nº.- Avergua el térmno general de la sucesón: ; 0,;

Más detalles

Notas de la materia de Cálculo IV. Dr. Antonio Ramos Paz Profesor e Investigador Titular B de Tiempo Completo Facultad de Ingeniería Eléctrica UMSNH

Notas de la materia de Cálculo IV. Dr. Antonio Ramos Paz Profesor e Investigador Titular B de Tiempo Completo Facultad de Ingeniería Eléctrica UMSNH Notas de la matera de Cálculo IV Dr. Antono Ramos Pa Profesor e Investgador Ttular B de Tempo Completo Facultad de Ingenería Eléctrca UMSNH Febrero 7 Prologo A contnuacón se presenta una recoplacón de

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 16/12/2011 DACIBAHCC EXAMEN FINAL DE METODOS NUMERICOS (MB536)

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 16/12/2011 DACIBAHCC EXAMEN FINAL DE METODOS NUMERICOS (MB536) UNIVERSIDAD NACIONAL DE INGENIERIA P.A. 0- FACULTAD DE INGENIERIA MECANICA 6//0 EXAMEN FINAL DE METODOS NUMERICOS (MB536) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO Y CALCULADORA ESCRIBA CLARAMENTE

Más detalles

E. P. E. T. N 20 CUADERNILLO DE MATEMÁTICA TERCER AÑO PROF.: JIMENA CARRAZCO MARÍA ANGÉLICA NETTO

E. P. E. T. N 20 CUADERNILLO DE MATEMÁTICA TERCER AÑO PROF.: JIMENA CARRAZCO MARÍA ANGÉLICA NETTO E. P. E. T. N 0 CUADERNILLO DE MATEMÁTICA TERCER AÑO PROF.: JIMENA CARRAZCO MARÍA ANGÉLICA NETTO E. P. E. T. N 0 MATEMÁTICA AÑO Undad N I: Epresones algebracas PROGRAMA DE MATEMÁTICA 0 TERCER AÑO Revsón:

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

SISTEMAS DE ECUACIONES DIFERENCIALES

SISTEMAS DE ECUACIONES DIFERENCIALES DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS AROXIMADOS EN ING. QUÍMICA TF-33 SISTEMAS DE ECUACIONES DIFERENCIALES Esta guía fue elaborada por: rof.

Más detalles

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116 Números complejos E S Q U E M A D E L A U N I D A D. Números magnaros. Números complejos en forma bnómca págna. Representacón gráfca de los números complejos págna 6.. Suma de números complejos págna 8.

Más detalles

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales 16.21 Técncas de dseño y análss estructural Prmavera 2003 Undad 8 Prncpo de desplazamentos vrtuales Prncpo de desplazamentos vrtuales Tengamos en cuenta un cuerpo en equlbro. Sabemos que el campo de esfuerzo

Más detalles

6. Introducción al cálculo en C

6. Introducción al cálculo en C 6. Introduccón al cálculo en C 6.. Funcones de varable compleja No hay nngún número real x tal que x + = 0. Para que esa ecuacón tenga solucón es necesaro ntroducr el número magnaro : =. Veamos algunas

Más detalles

Métodos Matemá5cos en la Ingeniería Tema 1. Ecuaciones no lineales

Métodos Matemá5cos en la Ingeniería Tema 1. Ecuaciones no lineales Métodos Matemá5cos en la Ingenería Tema. Ecuacones no lneales Jesús Fernández Fernández Carmen María Sordo García DEPARTAMENTO DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE CANTABRIA

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

SEGUNDA PARTE RENTAS FINANCIERAS

SEGUNDA PARTE RENTAS FINANCIERAS SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de

Más detalles

ysecumple 1 = = =0 = 3 ± 5 2 = 1 = Ã = 2 = 2

ysecumple 1 = = =0 = 3 ± 5 2 = 1 = Ã = 2 = 2 Matemáticas II Grado en Ingeniería Eléctrica/Grado en Ingeniería Electrónica y Automática Convocatoria febrero 06. Resuelva en C la ecuación siguiente: 3+cos() 0 Solución: Usamos la definición de cos en

Más detalles

Utilizar sumatorias para aproximar el área bajo una curva

Utilizar sumatorias para aproximar el área bajo una curva Cálculo I: Guía del Estudante Leccón 5 Apromacón del área bajo la curva Leccón 5: Apromacón del área bajo una curva Objetvo: Utlzar sumatoras para apromar el área bajo una curva Referencas: Stewart: Seccón

Más detalles

VII. Solución numérica de ecuaciones diferenciales

VII. Solución numérica de ecuaciones diferenciales VII. Solucón numérca de ecuacones derencales VII. Antecedentes Sea dv dt una ecuacón derencal de prmer orden : g c m son constantes v es una varable dependente t es una varable ndependente c g v I m Las

Más detalles

Sistemas Lineales de Masas-Resortes 2D

Sistemas Lineales de Masas-Resortes 2D Sstemas neales de Masas-Resortes D José Cortés Pareo. Novembre 7 Un Sstema neal de Masas-Resortes está consttudo por una sucesón de puntos (de ahí lo de lneal undos cada uno con el sguente por un resorte

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

17/02/2015. Ángel Serrano Sánchez de León

17/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León 1 Índce Introduccón Varables estadístcas Dstrbucones esde frecuencas c Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca,

Más detalles

Algoritmos matemáticos para:

Algoritmos matemáticos para: Algortmos matemátcos para: sstemas de ecuacones lneales, nversón de matrces y mínmos cuadrados Jose Agular Inversón de matrces Defncón(Inversadeunamatrz):SeaAunamatrz nxn.unamatrzcde nxn esunanversadeascaaci.

Más detalles

LUGAR DE LAS RAÍCES. Lugar de las raíces.

LUGAR DE LAS RAÍCES. Lugar de las raíces. Unversdad Carlos III de Madrd Señales y Sstemas LUGAR DE LAS RAÍCES Lugar de las raíces. 1. Introduccón. Crteros del módulo y argumento. 2. Gráfcas del lugar de las raíces. 3. Reglas para construr el lugar

Más detalles

Práctica 4ª: RESOLUCIÓN DE SISTEMAS LINEALES. METODOS ITERATIVOS.

Práctica 4ª: RESOLUCIÓN DE SISTEMAS LINEALES. METODOS ITERATIVOS. practca4srnb Apelldos Nombre: Práctca 4ª: RESOLUCIÓN DE SISTEMAS LINEALES METODOS ITERATIVOS Normas vectorales normas matrcales Número de condcón de una matr Cuando se construe una sucesón de vectores

Más detalles

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN COLEGIO IGLÉS DEPARTAMETO IVEL: CUARTO MEDIO PSU. UIDAD: ESTADISTICA 3 PROFESOR: ATALIA MORALES A. ROLADO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. MEDIDAS DE DISPERSIÓ Las meddas de dspersón dan

Más detalles

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D.

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D. CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 0 Ing. Dego A. Patño G. M.Sc, Ph.D. Solucón de la Ecuacón de Estado Solucón de Ecuacones de Estado Estaconaras: Para el caso estaconaro (nvarante en el tempo),

Más detalles

MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc.

MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc. TEMA. INSTRUMENTOS FÍSICO-MATEMÁTICOS.. SISTEMAS DE MAGNITUDES Y UNIDADES. CONVERSIÓN DE UNIDADES. MAGNITUD: propedad o cualdad físca susceptble de ser medda y cuantfcada. Ejemplos: longtud, superfce,

Más detalles

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad,

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad, 17 Análss matemátco para Ingenería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 1 Los números complejos La varable compleja permte resolver problemas muy dferentes dentro de áreas tan varadas

Más detalles

Capítulo 5 Anualidades.

Capítulo 5 Anualidades. Capítulo 5 Anualdades. Hasta ahora solo hemos estudado operacones fnanceras que se componen de un captal únco (captal ncal o monto), por ejemplo, podemos saber el valor presente de una suma de dnero en

Más detalles

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 5 de septiembre de 22..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013.

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013. Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 3 de junio de 23..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su tipo:

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

En general puede representarse por : Clase 6 3

En general puede representarse por : Clase 6 3 Encontrar raíces de uncones es uno de los problemas más comunes en ngenería Los métodos numércos para encontrar raíces de uncones son utlzados cuando las técncas analítcas no pueden ser aplcadas. Esto

Más detalles

UNIDAD 2: NÚMEROS COMPLEJOS

UNIDAD 2: NÚMEROS COMPLEJOS I.E.S. Ramón Graldo UNIDAD : NÚMEROS COMPLEJOS. CONSTRUCCIÓN A los pares de números reales, consderando las sguentes operacones: x, y x', y' xx', y y' El camno más corto entre dos verdades del Análss Real

Más detalles

6.9 El trazador cúbico

6.9 El trazador cúbico 4.9 El trazador cúbco El polnomo de nterpolacón es útl s se usan pocos datos y que además tengan un comportamento polnomal, así su representacón es un polnomo de grado bajo y adecuado. S no se cumplen

Más detalles

1.1 INTRODUCCIÓN: LA INTEGRAL DEFINIDA

1.1 INTRODUCCIÓN: LA INTEGRAL DEFINIDA 3. INTEGRALES OBLES En este trabao se extende el concepto de la ntegral de una funcón real de varable real a funcones de varas varables, comenzando en este capítulo con ntegrales de funcones de dos varables;

Más detalles

CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO

CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO 8 CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO En esta seccón se descrbe el análss de posconamento y orentacón del robot paralelo: Se resuelve el problema cnemátco nverso en base a métodos

Más detalles

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla.

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla. EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. Consdere la sguente tabla, donde 0 : 0 y y0 y Deducr la fórmula para el polnomo de Lagrange de grado a lo más uno que Interpola la tabla.. Consdere la sguente

Más detalles

Expresiones racionales. la función racional. ... l--- Denominador (no nulo)

Expresiones racionales. la función racional. ... l--- Denominador (no nulo) Epresones raconales Así como llamamos números raconales a los números de la forma % con a b enteros (b :t= O)llamaremos epresones raconales a las epresones de la forma: P() Q()... f--- umerador... l---

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas.

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas. UIDAD 3: Meddas estadístcas Las meddas estadístcas o parámetros estadístcos son valores representatvos de una coleccón de datos y que resumen en unos pocos valores la normacón del total de datos. Estas

Más detalles

NÚMEROS COMPLEJOS MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas

NÚMEROS COMPLEJOS MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas NÚMEROS COMPLEJOS MATEMÁTICAS I 1º Bachllerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemátcas Matemátcas I COMPLEJOS I) NECESIDAD DE LOS NÚMEROS COMPLEJOS Los números complejos, tambén

Más detalles

NÚMEROS COMPLEJOS MATEMÁTICAS I 1º

NÚMEROS COMPLEJOS MATEMÁTICAS I 1º NÚMEROS COMPLEJOS MATEMÁTICAS I 1º Bachllerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemátcas Matemátcas I COMPLEJOS I) NECESIDAD DE LOS NÚMEROS COMPLEJOS Los números complejos, tambén

Más detalles

Objetivos El alumno conocerá y aplicará diversas técnicas de derivación e integración numérica. Al final de esta práctica el alumno podrá:

Objetivos El alumno conocerá y aplicará diversas técnicas de derivación e integración numérica. Al final de esta práctica el alumno podrá: Objetvos El alumno conocerá y aplcará dversas técncas de dervacón e ntegracón numérca. Al fnal de esta práctca el alumno podrá:. Resolver ejerccos que contengan dervadas e ntegrales, por medo de métodos

Más detalles

OCION elegr opcones) Ejercco 1 EJERCICIOS Un rombo tene 30 m de superfce su ángulo menor es de 4º, Calcule la longtud de su lado. Ejercco S sumamos uno a un número calculamos su raíz cuadrada postva, se

Más detalles

FISICOQUÍMICA FARMACÉUTICA (0108) UNIDAD 1. CONCEPTOS BÁSICOS DE CINÉTICA QUÍMICA

FISICOQUÍMICA FARMACÉUTICA (0108) UNIDAD 1. CONCEPTOS BÁSICOS DE CINÉTICA QUÍMICA FISICOQUÍMICA FARMACÉUTICA (008) UNIDAD. CONCEPTOS BÁSICOS DE CINÉTICA QUÍMICA Mtra. Josefna Vades Trejo 06 de agosto de 0 Revsón de térmnos Cnétca Químca Estuda la rapdez de reaccón, los factores que

Más detalles

AJUSTE DE LA CURVA DE PROBABILIDAD DEL ESCURRIMIENTO MEDIO HIPERANUAL ANUAL SEGÚN LA TEORÍA S B JOHNSON.

AJUSTE DE LA CURVA DE PROBABILIDAD DEL ESCURRIMIENTO MEDIO HIPERANUAL ANUAL SEGÚN LA TEORÍA S B JOHNSON. AJUSTE DE LA CURVA DE PROBABILIDAD DEL ESCURRIMIENTO MEDIO HIPERANUAL ANUAL SEGÚN LA TEORÍA S B JOHNSON. Revsta Voluntad Hdráulca No. 57, 98. Págnas 58-64 RESUMEN Se nforma sobre el desarrollo del método

Más detalles

x j x 1,,x n, j 1,,n La condición necesaria y suficiente es que el determinante Jacobiano de la transformación no se anule,

x j x 1,,x n, j 1,,n La condición necesaria y suficiente es que el determinante Jacobiano de la transformación no se anule, Mecánca Cambo de Coordenadas En coordenadas Cartesanas estamos acostumbrados a pensar a los vectores base como versores (vectores de norma 1 o untaros) drgdos a lo largo de los correspondentes ejes, en

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

Tema 3. Teoremas de la Teoría de Circuitos

Tema 3. Teoremas de la Teoría de Circuitos Tema 3. Teoremas de la Teoría de Crcutos 3.1 Introduccón 3. Superposcón 3.3 Transformacón de fuentes 3.4 Teorema de Theenn 3.5 Teorema de Norton 3.6 Máxma transferenca de potenca Th Th L nálss de Crcutos

Más detalles

Carlos Mario Morales C 2012

Carlos Mario Morales C 2012 Glosaro de térmnos Carlos Maro Morales C 2012 1 Matemátcas Fnanceras No está permtda la reproduccón total o parcal de este lbro, n su tratamento nformátco, n la transmsón de nnguna forma o por cualquer

Más detalles

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud Unversdad de Pamplona Facultad de Cencas Báscas Físca para cencas de la vda y la salud AÁLISIS GRÁFICO DE DATOS EXPERIMETALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

Aplicación de curvas residuo y de permeato a sistemas batch y en continuo

Aplicación de curvas residuo y de permeato a sistemas batch y en continuo Aplcacón de curvas resduo de permeato a sstemas batch en contnuo Alan Dder érez Ávla En el presente trabajo se presentara de manera breve como obtener las ecuacones que generan las curvas de resduo, de

Más detalles

METODOS NUMERICOS CATEDRA 0 6. Ingeniería Civil ING.CRISTIANCASTROP. Facultad de Ingeniería de Minas, Geología y Civil

METODOS NUMERICOS CATEDRA 0 6. Ingeniería Civil ING.CRISTIANCASTROP. Facultad de Ingeniería de Minas, Geología y Civil ING.CRISTIANCASTROP. CATEDRA 0 6 Facultad de Ingenería de Mnas, Geología Cvl Departamento académco de ngenería de mnas cvl METODOS NUMERICOS Ingenería Cvl ING.CRISTIANCASTROP. Captulo VI Sstema de Ecuacones

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez Problema La sguente tabla epresa la estatura en cm. de soldados: Talla 5 56 60 6 68 6 80 8 88 Soldados 6 86 50 8 95 860 85 6 9 a) Haz un hstograma que represente la estatura en metros de los soldados.

Más detalles

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas y Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

Más detalles

Robótica Tema 4. Modelo Cinemático Directo

Robótica Tema 4. Modelo Cinemático Directo UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industral ASIGNATURA: Robótca TEMA: Modelo Cnemátco Ttulacón: Grado en Ingenería Electrónca y Automátca Área: Ingenería de Sstemas y Automátca Departamento de

Más detalles

Modelado de un Robot Industrial KR-5

Modelado de un Robot Industrial KR-5 RESUMEN Modelado de un Robot Industral KR-5 (1) Eduardo Hernández 1, Samuel Campos 1, Jorge Gudno 1, Janeth A. Alcalá 1 (1) Facultad de Ingenería Electromecánca, Unversdad de Colma, km 2 Carretera Manzanllo-Barra

Más detalles

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta.

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta. Rentas Fnanceras. Renta fracconada 6. RETA FRACCIOADA Una renta fracconada se caracterza porque su frecuenca no concde con la frecuenca de varacón del térmno de dcha renta. Las característcas de la renta

Más detalles