Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013."

Transcripción

1 Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 3 de junio de ptos. Encuentre en C las singularidades de la siguiente función e indique su tipo: f z = 5 3 cos z Solución: Las singularidades de f z son los ceros del denominador, debemos resolver la ecuación: 5 3 cos z = Para ello utilizamos la definición de cos z en términos de la función exponencial e iz + e iz = 2 }{{} cos z Hacemos el cambio e iz = w y como w e iz = e iz = w De esta forma se obtiene una ecuación en la nueva variable w 5 + 3w + w 2 = w2 + 2w = Multiplicando por 2w obtenemos una ecuación de segundo grado w + 3 w 2 + = 3w 2 + w + 3 = que podemos resolver mediante la correspondiente fórmula w = ± = ± lo que nos da dos soluciones w = w 2 = = 2 = 3 = 8 = 3 = ± 4 = ± 8

2 2 Con estos valores para w y w 2 y teniendo en cuenta el cambio que se hizo al principio del ejercicio obtendremos, mediante la definición de logaritmo complejo e iz = w iz = log w = ln w + i arg w iz = log = ln i π + 2kπ z = π + 2kπ + i ln 3 iz 2 = log 3 = ln 3 + i π + 2kπ z 2 = π + 2kπ i ln 3 De este resultado se deduce que hay infinitas singularidades. Son todas de tipo polo simple ptos. Encuentre, demostrando su existencia, una función vx, y, de manera que la función fz = ux, y + ivx, y sea entera y se cumpla f = i, siendo u x, y definida por Exprese f como función de z. ux, y = 2x 2 + 2y 2 + x 2 y 2y 3 Solución: La función f x, y es entera, por tanto su parte real u x, y debe ser una función armónica y cumplir la ecuación de Laplace Derivando u x, y respecto x e y, una vez y otra comprobamos que se cumple la ecuación : luego u x, y es armónica. u xx + u yy = u x = 4x + 2xy u y = 4y + x 2 y 2 u xx = 4 + 2y u yy = 4 2y 4 + 2y + 4 2y = }{{}}{{} u xx u yy Para el cálculo de v x, y, la parte imaginaria de f x, y, tendremos que aplicar las ecuaciones de Cauchy-Riemann: u x = v y u y = v x De la primera de estas ecuaciones aunque esta elección es indiferente para el resultado final: u x = v y 4x + 2xy = v y e integrando respecto a y obtenemos v x, y v x, y = v y dy = 4x + 2xy dy = 4xy + y 2 x + ϕ x

3 3 ϕ x es constante para x y para encontrar su expresión derivamos v x, y respecto de x v x = 4y + y 2 + ϕ x Por la segunda de las ecuaciones de Cauchy-Riemann, esta expresión debe coincidir con u y = 4y + x 2 y 2 : 4y + y 2 + ϕ x = 4y x 2 + y 2 de donde se deduce que e integrando respecto a x se obtiene ϕ x = x 2 ϕ x = 2x 3 + c R La expresión para v x, y será y la función f x, y v x, y = 4xy + y 2 x 2x 3 + c f x, y = 2x 2 + 2y 2 + x 2 y 2y 3 + i 4xy + y 2 x 2x 3 + c Notar que si z = x + iy, entonces podemos expresar f x, y como función de z de la forma Como f = i, podemos comprobar que c =. f z = i2z 3 2z 2 + ic ptos. Calcule el desarrollo de Laurent de la función f z = 3z 2z + z en el anillo A, 2, = { z C : 2 < z < }. Indique la parte regular y esencial de dicho desarrollo. Solución: La función puede expresarse como f z = 3z 2z + z = 3z 2 z + /2 z Como buscamos potencias de z la mejor descomposición en factores simples es la siguiente: 3z f z = 2 z + /2 z = A 2 z + /2 + B z Para la expresión entre paréntesis tenemos A z + B z + /2 z + /2 z Por tanto A z + B z + /2 = 3z

4 4 y dando a z los valores de las raíces z = 2 A 2 = 3 2 3A 2 = 3 2 A = z = B + /2 = B = 3 B = 2 La descomposición es f z = 2 A z + /2 + B = z 2 z + /2 + 2 z El desarrollo de Laurent en el conjunto indicado 2 < z < de cada fracción se hace de forma independiente. Para la primera fracción y como 2 < z, entonces 2 z = 2z < z + /2 = z + 2z = z n= n n = 2z n= Para la segunda fracción y como z < el desarrollo es n 2 n + = n= n= z = z = z < n 2 n con 2z < La función tendrá el siguiente desarrollo de Laurent f z = 2 z + /2 + 2 = n z 2 2 n 2 n= n= = n= n 2 n n= agrupando potencias negativas y positivas obtendremos las partes regular y singular: y por tanto f z = n= n 2 n n= Parte Regular: Parte Esencial: n= n= n 2 n 4. Calcule las siguientes integrales utilizando la teoría de variable compleja. a.5 ptos. 2π 2 cos t dt

5 5 b.75 ptos. Re z 2 Im z + i 5 Im z Re z dz, donde t = t + it 2 ; t [, ] Solución: La primera es una integral trigonométrica que hay que resolver haciendo los cambios correspondientes. Para la segunda integral hay que emplear la definición puesto que comprobaremos que la curva no es cerrada. a Es una integral real de una función trigonométrica y haciendo los cambios correspondientes e it = z la integral queda cos t = eit + e it 2 sen t = eit e it 2i dt = iz dz = z2 + 2z = z2 2zi 2π 2 cos t dt = 2 z 2 + 2z iz dz = i 2z 5z 2 5 dz = i 5 z 5 z 5 siendo t = e it, con t [, 2π], la circunferencia unidad. Para el cálculo de esta integral mediante residuos, sólo se consideran las singularidades que están dentro de la curva, en este caso obviamente sólo es z = 5 2π 2 cos t dt = 2πi i Res 5z 5z 5, 5 = 2πi = π 2 dz b La función f z = Re z 2 Im z + i 5 Im z Re z = x 2 y + i 5y x no es derivable en ningún punto, puesto que si planteamos las ecuaciones de Cauchy- Riemann { u = x 2 ux = 2x y u y = { vx = v = 5y x v y = 5 vemos que la segunda ecuación u y = v x, no se cumple nunca, además la curva no es cerrada puesto que } = = + i

6 Debemos utilizar la definición de integral a lo largo de una curva b f z dz = f t t dt siendo en este caso : [, ] C a t = t + it 2 t [, ] t = + i2t Aplicando la definición Re z 2 Im z + i 5 Im z Re z dz = { } Re t 2 Im t + i 5 Im t Re t t dt que para t Re t = t Im t = t 2 y la integral es { t 2 t 2 + i 5t 2 t } + i2t dt = i 5t 2 t + i2t dt = i e integrando directamente i 5t 2 + it 3 t i2t 2 dt 5t 2 + it 3 t i2t 2 dt = i 5 t3 3 + it4 4 t2 5 2 i2t3 = i i 4 2 i2 = 3 +7 i ptos. Resuelva mediante la transformada de Laplace el siguiente problema del valor inicial: y t 3y t + 2y t = e 4t t y = y = Compruebe que la solución obtenida cumple las condiciones iniciales, así como la ecuación diferencial. Solución: Para resolver la ecuación diferencial y t 3y t + 2y t = e 4t junto con las condiciones iniciales y =, y =, aplicaremos la transformada L y sus propiedades: linealidad y desplazamiento L [ y t 3y t + 2y t ] z = L [ e 4t] z

7 7 Primero la linealidad L [ y t ] z 3L [ y t ] z + 2L [y t] z = L [ e 4t] z y a continuación la propiedad de desplazamiento junto con las condiciones iniciales L [y t] z = Y z L [ y t ] z = zl [y t] z y = zy z Sustituyendo en la ecuación L [ y t ] z = z 2 Y z zy y = z 2 Y z z 2 Y z 3zY z + 2Y z = L [ e 4t] z y despejando z 2 3z + 2 Y z = L [ e 4t] z Y z = L [ e 4t] z z 2 3z + 2 El valor de L [ e 4t] z lo obtenemos mediante la aplicació de las propiedades de la transformada L [ e ωt] z = z ω si Re z > Re ω L [ e 4t] z = z 4 o también de forma directa mediante la definición L L [ e 4t] z = e 4t e zt dt = e 4 zt dt = 4 z e4 zt Sustituyendo obtenemos la transformada de y t t= t= = z 4 si Re z > 4 si Re z > 4 Y z = L [ e 4t] z z 2 3z + 2 = z 4 z 2 3z + 2 = z 4 z 2 3z + 2 = z 4 z z 2 Mediante la transformada inversa obtendremos el valor de y t [ ] y t = L t z 4 z z 2 Utilizando residuos: y t = L [ z 4z z 2 ] t = Res z 4z z 2, +Res Como son todos polos simples este calculo es directo: e Res zt z 4z z 2, e Res zt z 4z z 2, 2 e Res zt z 4z z 2, 4 = lím z z = lím z 2 z 2 = lím z 4 z 4 z 4 z z 2 = lím z z 4 z z 2 = lím z 2 z 4 z z 2 = lím z 4 z 4z z 2, 2 +Res z 4 z 2 = et 3 z 4 z = e2t 2 z z 2 = e4t z 4z z 2, 4

8 8 por tanto y t = et 3 e2t 2 + e4t Podemos comprobar que se cumplen las condiciones iniciales y derivando y = = y t = et 3 2e2t 2 + 4e4t = et 3 e2t + 2e4t 3 comprobamos que también se cumple la segunda de las condiciones iniciales y = = Para comprobar que esta función cumple la ecuación diferencial, calculamos su segunda derivada y t = et 3 2e2t + 8e4t 3 y sustituyendo en la ecuación diferencial e y t 3y t t + 2y t = 3 2e2t + 8e4t e t e2t + 2e4t e t e2t 2 + e4t = e 4t

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 5 de septiembre de 22..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013 Matemáticas II Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica 4 de febrero de 0. Conteste las siguientes cuestiones: (a) (0. ptos.) Escriba en forma

Más detalles

ysecumple 1 = = =0 = 3 ± 5 2 = 1 = Ã = 2 = 2

ysecumple 1 = = =0 = 3 ± 5 2 = 1 = Ã = 2 = 2 Matemáticas II Grado en Ingeniería Eléctrica/Grado en Ingeniería Electrónica y Automática Convocatoria febrero 06. Resuelva en C la ecuación siguiente: 3+cos() 0 Solución: Usamos la definición de cos en

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16 Examen final Análisis Complejo

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16 Examen final Análisis Complejo AMPLIACIÓN DE MATEMÁTICAS. Curso 015/16 Examen final. 14 6 016 Análisis Complejo Nombre y apellidos: DNI: No está permitido el uso de calculadora programable. Los cálculos deben ser exactos y los ángulos

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 10 Aplicaciones de la Teoría de funciones analíticas.

MATEMATICAS ESPECIALES I PRACTICA 10 Aplicaciones de la Teoría de funciones analíticas. MATEMATICAS ESPECIALES I - 17 PRACTICA 1 Aplicaciones de la Teoría de funciones analíticas. Aplicaciones del Teorema de los residuos para calcular integrales reales. 1. Integrales del tipo π R(cos t, sin

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

Problemas para la materia de Cálculo IV

Problemas para la materia de Cálculo IV Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica Problemas para la materia de álculo IV Febrero de 5 ompilación de problemas propuestos como parte de exámenes parciales

Más detalles

Curso 2018/2019 Grado en Ingeniería Química Industrial Matemáticas I - Soluciones problemas Tema 1 Concepto básicos Números complejos

Curso 2018/2019 Grado en Ingeniería Química Industrial Matemáticas I - Soluciones problemas Tema 1 Concepto básicos Números complejos Curso 08/09 Grado en Ingeniería Química Industrial Matemáticas I - Soluciones problemas Tema Concepto básicos Números complejos. Escribe en lenguaje matemático las siguientes afirmaciones: a) Sea una aplicación

Más detalles

(a) z 1 + i = 1, (b) z + i 3, (c) Re(z i) = 2, (d) 2z i = 4. i 2 2i, z k = 1 zn+1 1 z

(a) z 1 + i = 1, (b) z + i 3, (c) Re(z i) = 2, (d) 2z i = 4. i 2 2i, z k = 1 zn+1 1 z Demostrar que Re z + Im z z para todo z C. Encontrar las soluciones de z = z. 3 Representar cada uno de los siguientes conjuntos: (a) z + i =, (b) z + i 3, (c) Re(z i) =, (d) z i = 4. 4 Demostrar que si

Más detalles

0 (0) = 0 (0) = 0. L [ 00 + ]( ) = L [ ( )] ( ) (Linealidad) L [ 00 ]( )+L[ ]( ) = L [ ( )] ( ) (Derivación) 2 ( )+ ( ) =L [ ( )] ( )

0 (0) = 0 (0) = 0. L [ 00 + ]( ) = L [ ( )] ( ) (Linealidad) L [ 00 ]( )+L[ ]( ) = L [ ( )] ( ) (Derivación) 2 ( )+ ( ) =L [ ( )] ( ) Ampliación de Matemáticas II Grado en Ingeniería en Tecnologías Industriales 8 de junio 6. Dado el siguiente problema de valor inicial: ()+() = () () = () = a) (.5 puntos) Resuelve el problema utilizando

Más detalles

Práctica 6. ; hallar el desarrollo en serie de Laurent de f en cada uno z(z 1)(z 2) de los siguientes anillos:

Práctica 6. ; hallar el desarrollo en serie de Laurent de f en cada uno z(z 1)(z 2) de los siguientes anillos: MATEMATICA 4 Primer Cuatrimestre 2004 Práctica 6. Sea f entera y tal que lím f() = 0. Probar que f 0. b) Hallar todas las f enteras tales que lím f() = 5. 2. Sea f() = ; hallar el desarrollo en serie de

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Capítulo 2 Funciones de Variable Compleja Se trata en este capítulo de estudiar las relaciones que se establecen entre conjuntos de números complejos a través de funciones entre ambos. Se definirá el concepto

Más detalles

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto Capítulo 2 Funciones analíticas. Funciones armónicas. En este capítulo iniciamos el estudio de las funciones de variable compleja. Comenzamos con los conceptos de límite y continuidad en lc, conceptos

Más detalles

16. Ejercicios resueltos sobre cálculo de residuos.

16. Ejercicios resueltos sobre cálculo de residuos. 7 Funciones de variable compleja. Eleonora Catsigeras. 3 Junio 26. 6. Ejercicios resueltos sobre cálculo de residuos. En esta sección se dan ejemplos de cálculo de integrales de funciones reales, propias

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja U Contenido Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Funciones de Variable Compleja (Continuidad,

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 9 Singularidades - Series de Laurent - Teorema de los residuos. a n (z z 0 ) n + n 1

MATEMATICAS ESPECIALES I PRACTICA 9 Singularidades - Series de Laurent - Teorema de los residuos. a n (z z 0 ) n + n 1 MATEMATICAS ESPECIALES I - 207 PRACTICA 9 Singularidades - Series de Laurent - Teorema de los residuos Teorema. Sean r y R números reales tales que 0 < r < R

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

Contenido. Números Complejos 3

Contenido. Números Complejos 3 Números Complejos Universidad Central de Venezuela Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Marzo,

Más detalles

2. Derivación y funciones holomorfas.

2. Derivación y funciones holomorfas. 18 Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 2. Derivación y funciones holomorfas. 2.1. Derivación de funciones complejas y funciones holomorfas. Sea Ω abierto contenido en C,

Más detalles

Contenidos. Importancia del tema. Conocimientos previos para este tema?

Contenidos. Importancia del tema. Conocimientos previos para este tema? Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de

Más detalles

1. Ceros y singularidades de una función

1. Ceros y singularidades de una función TEMA 6 TEORÍA DE RESIDUOS. Ceros y singularidades de una función. Ceros de una función.2 Singularidades de una función.3 Relaciones entre ceros y singularidades.4 Singularidades y el punto del infinito

Más detalles

15. Teoría de los residuos.

15. Teoría de los residuos. 162 Funciones de variable compleja. Eleonora Catsigeras. 12 Julio 2006. 15. Teoría de los residuos. 15.1. Residuos. Definición 15.1.1. Residuo de una función en una singularidad aislada. Dada una función

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2013/14 Examen final de junio Teoría y Problemas

AMPLIACIÓN DE MATEMÁTICAS. Curso 2013/14 Examen final de junio Teoría y Problemas AMPLIACIÓN DE MATEMÁTICAS. Curso 23/4 Examen final de junio. 8 6 24 Teoría y Problemas. Contestar a las siguientes cuestiones: (a) (.5 puntos) Dada una función :[ ) R de clase,demostrarlafórmula L[ ]()

Más detalles

2xy 3x 2 y 2 y(0) = 1

2xy 3x 2 y 2 y(0) = 1 ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA DEPARTAMENTO DE MATEMÁTICA APLICADA II Ingeniería Técnica Industrial. Especialidad en Mecánica Soluciones al Primer Parcial de Ampliación de Matemáticas. Curso

Más detalles

z 2 z 2 = i. Log z = Log z. 3. Sin utilizar la regla de L'Hospital hállese el valor del límite:

z 2 z 2 = i. Log z = Log z. 3. Sin utilizar la regla de L'Hospital hállese el valor del límite: Análisis Matemático VI Curso 005-006 Examen Final de Junio a convocatoria. Descríbase geométricamente el conjunto de puntos z C que satisfacen la ecuación: z z = i.. Sea Log z la rama principal del logaritmo.

Más detalles

FUNCIONES ANALITICAS (Curso 2011) Práctica 7. Clase 1 - Desarrollo de Laurent - Clasificación de singularidades aisladas

FUNCIONES ANALITICAS (Curso 2011) Práctica 7. Clase 1 - Desarrollo de Laurent - Clasificación de singularidades aisladas FUNCIONES ANALITICAS (Curso 2) Práctica 7 Clase - Desarrollo de Laurent - Clasificación de singularidades aisladas. Hallar los desarrollos de Laurent de + en > en las distintas coronas alrededor del origen

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Capítulo 5 Singularidades. Teorema de los Residuos.

Capítulo 5 Singularidades. Teorema de los Residuos. Capítulo 5 Singularidades. Teorema de los Residuos. La notable fórmula integral de Cauchy se generaliza en este importante capítulo y esta extensión se llama teorema de los residuos. Entre sus numerosas

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2014/15 Examen final Análisis Complejo

AMPLIACIÓN DE MATEMÁTICAS. Curso 2014/15 Examen final Análisis Complejo AMPLIACIÓN DE MATEMÁTICAS. Curso 04/5 Examen final. 0 7 05 Análisis Complejo Nombre y apellidos: DNI: En los ejercicios prácticos se valorará que estén explicados, indicando qué resultado o propiedad se

Más detalles

FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS

FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS. FUNCIONES MEROMORFAS Definición.. Se dice que una función es meromorfa en un abierto Ω de C si f es holomorfa en Ω excepto

Más detalles

CÁLCULO DE PRIMITIVAS

CÁLCULO DE PRIMITIVAS 2 CÁLCULO DE PRIMITIVAS REFLEXIONA Y RESUELVE Concepto de primitiva NÚMEROS Y POTENCIAS SENCILLAS a) b) 2 c) 2 a) 2x b) x c) 3x 3 a) 7x b) c) x 4 a) 3x2 b) x2 c) 2x2 5 a) 6x 5 b) x5 c) 3x5 x 3 2 2 POTENCIAS

Más detalles

FUNCIONES HOLOMORFAS

FUNCIONES HOLOMORFAS Capítulo 2 FUNCIONES HOLOMORFAS Problema 2.. Estudia en qué puntos son derivables en sentido complejo las siguientes funciones (z = x + iy): (a) f(z) = z α, con α > 0, (b) f(z) = xy, (c) f(z) = h(x), con

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 200-2002 HOJA 4 Ejercicio. Halla el orden del cero z 0 = 0 para la siguiente función: (e z e z2 log( z; Definción Sea f : G C holomorfa. Se dice que f(z tiene

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Capítulo 2 Funciones de Variable Compleja Se estudian en este tema las relaciones que se puedan establecer entre conjuntos de números complejos, extendiendo a C el concepto de función, como aplicación

Más detalles

Métodos Matemáticos I ( ) Hoja 1 NúmerosComplejos. 8 (1 i) 5. (3 + 5i) (2 i) (1 + i 3 ) (1 + i) 3

Métodos Matemáticos I ( ) Hoja 1 NúmerosComplejos. 8 (1 i) 5. (3 + 5i) (2 i) (1 + i 3 ) (1 + i) 3 Hoja NúmerosComplejos.- Calcular todos los números z IC tales que: a) z = z 2 b) z = Rez + 2.- Obtener en forma binómica. a) b) c) 8 ( i) 5 (3 + 5i) (2 i) ( + i 3 ) ( + i) 3 3.- Obtener en forma binómica

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

Tema 2: Funciones anaĺıticas. Conjuntos abiertos y conjuntos cerrados. Ejemplos. Marisa Serrano. 6 de octubre de 2009

Tema 2: Funciones anaĺıticas. Conjuntos abiertos y conjuntos cerrados. Ejemplos. Marisa Serrano. 6 de octubre de 2009 Índice Universidad de Oviedo 6 de octubre de 2009 1 2 3 4 email: mlserrano@uniovi.es Conjuntos abiertos y conjuntos cerrados B(a, ɛ) = {z C : z a < ɛ} = D(a, ɛ). Dado A C se dice que un punto a C es interior

Más detalles

B(1;1) Figura 5.1: Coronas de f(z) = (z 1)/z 2. La serie de Laurent en la bola B(1; 1) coincide con la serie de Taylor. Usamos la serie de g(z) = z 2,

B(1;1) Figura 5.1: Coronas de f(z) = (z 1)/z 2. La serie de Laurent en la bola B(1; 1) coincide con la serie de Taylor. Usamos la serie de g(z) = z 2, Capítulo 5 Series de Laurent Problema 5. Hallar las series de Laurent centradas en z = de la función fz = z /z. La función f es holomorfa salvo en z =. Por tanto, si centramos las series en z =, tendremos

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja f es univaluada (multivaluada) si f(z) es único (múltiple) Función inversa: Límite de una función: Curso 2016/2017 (1er cuatrimestre) Métodos Matemáticos de la Física I 15 Lema 1 Lema 2 Caracterización

Más detalles

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i Problemas resueltos 1. Expresa en forma binómica los siguientes números complejos: a) z = ( + i)(1 i) +i b) w = 1+i (1 i) c) u = 1 1+i + 1 1 i a) z = ( + i)(1 i) +i = 5 5i +i (5 5i)( i) = ( + i)( i) =

Más detalles

Capítulo 8 Transformada de Laplace.

Capítulo 8 Transformada de Laplace. Capítulo 8 Transformada de Laplace. La transformada de Laplace es informalmente una rotación en 90 de la transformada de Fourier y este capítulo está dedicado a ella. Su principal aplicación es a la resolución

Más detalles

L [1] ( ) = 1 L [ ( )] ( ) =2 L[1] ( )+L[( 3) 3 ( )] ( ) = 2 + 3

L [1] ( ) = 1 L [ ( )] ( ) =2 L[1] ( )+L[( 3) 3 ( )] ( ) = 2 + 3 Ampliación de Matemáticas II Grado en Ingeniería en Tecnologías Industriales Convocatoria 9 Junio 5. ( puntos) Resolver utilizando la transformada de Laplace la ED ( + + +( 3) 3 (), (), (). Determinar

Más detalles

La transformada de Laplace

La transformada de Laplace Capítulo 5 La transformada de Laplace 5.. Funciones continuas a trozos. Función de Heaviside Definición 5. Dados R, con. Diremos que :[ ] C es una función continuaatrozos Existe una partición del intervalo

Más detalles

PRÁCTICA 5. #1: LOAD(C:\Derive\Complejos.mth) #2: true EJERCICIO 1. k #3: (z - a) f. 1 d k - 1. #5: ((z - a) f) (k - 1)! dz

PRÁCTICA 5. #1: LOAD(C:\Derive\Complejos.mth) #2: true EJERCICIO 1. k #3: (z - a) f. 1 d k - 1. #5: ((z - a) f) (k - 1)! dz #1: LOAD(C:\Derive\Complejos.mth) #2: true EJERCICIO 1 k #3: (z - a) f d k - 1 k #4: ((z - a) f) dz PRÁCTICA 5 1 d k - 1 k #5: ((z - a) f) (k - 1)! dz 1 d k - 1 k #6: lim ((z - a) f) z a (k - 1)! dz 1

Más detalles

T0. TRANSFORMADAS DE LAPLACE

T0. TRANSFORMADAS DE LAPLACE ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS T0. TRANSFORMADAS DE LAPLACE Mediante transformadas de Laplace (por Pierre-Simon

Más detalles

Problemas resueltos del Boletín 4

Problemas resueltos del Boletín 4 Boletines de problemas de Matemáticas II Problemas resueltos del Boletín 4 Problema 1. Resolver el siguiente sistema de ecuaciones diferenciales: { y = 1 z, z = 1 } y Solución: Lo transformamos como sigue:

Más detalles

Tema 8 Ecuaciones diferenciales

Tema 8 Ecuaciones diferenciales Tema 8 Ecuaciones diferenciales 1. ECUACIONES DIFERENCIALES ORDINARIAS Definición 1.1: Ecuación diferencial Se llama ecuación diferencial de orden n a una ecuación que relaciona la variable independiente

Más detalles

4i ± (1 + 1) = w = (2 ± 2)

4i ± (1 + 1) = w = (2 ± 2) POBLEMA esolver la siguiente ecuación en variable compleja Se utilian las siguientes identidades Se realia el cambio de variable Se multiplica ambos lados por w w cos + sen 2 cos ei + e i 2 sen ei e i

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1 Transformaciones conformes 1 Determinar donde son conformes las siguientes transformaciones: (a) w() = 2 + 2 (b) w() = 1 + i (c) w() = + 1 (d) w() = En cada

Más detalles

Sistemas no lineales

Sistemas no lineales Tema 4 Sistemas no lineales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 Tema 4. Sistemas no lineales 1. Sistemas no lineales de ecuaciones diferenciales. Integrales

Más detalles

Series complejas, Teorema de los Residuos y Ecuaciones en Derivadas Parciales.

Series complejas, Teorema de los Residuos y Ecuaciones en Derivadas Parciales. FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Guía de Ejercicios 3. MA6B Matemáticas Aplicadas. Semestre 5- Profesor: Héctor Ramírez C. Auxiliares: Oscar Peredo, Felipe Torres. Series complejas,

Más detalles

Examen ordinario de Matemáticas E.T.S.I. de Telecomunicación

Examen ordinario de Matemáticas E.T.S.I. de Telecomunicación Examen ordinario de Matemáticas E.T.S.I. de Telecomunicación 27 de Enero de 29 1. Enunciados 1.1. Ejercicio 1 1.1.1. Problema 1. (3 puntos) (1) Calcule C(i,2) (cos z + sin z)/(z 1)n dz, donde C(i, 2) denota

Más detalles

TEMA III: FUNCIONES DE VARIABLE COMPLEJA

TEMA III: FUNCIONES DE VARIABLE COMPLEJA TEMA III: FUNIONES DE VARIABLE OMPLEJA Números complejos Se define el conjunto de los números complejos como = { z = (a, b) = a + ib : a, b R, i = }. Al número real a se le denomina parte real de z y se

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 2

Problemas de VC para EDVC elaborados por C. Mora, Tema 2 Problemas de VC para EDVC elaborados por C. Mora, Tema 2 Ejercicio 1 Demostrar que la función u(x, y cosh y sen x es armónica en el plano y construir otra función armónica v(x, y tal que u(x, y + iv(x,

Más detalles

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera: PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa

Más detalles

RESOLVIENDO PROBLEMAS DE MATEMÁTICA

RESOLVIENDO PROBLEMAS DE MATEMÁTICA RESOLVIENDO PROBLEMAS DE MATEMÁTICA RESOLUCIÓN DE LOS PROBLEMAS PROPUESTOS PROBLEMA 14 (16115) Probar que, 3, 5 no pueden ser términos de una misma progresión aritmética. Sean a m, a n 3, a p 5, siendo

Más detalles

( ) ( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( ) de Laplace. (secc..) 5 Apéndice DI_UIV Más ejercicios de Solución de una ecuación diferencial lineal con condiciones iniciales por medio de la trasformada de Laplace (Secc..).[] Ejemplo DI. Teniendo encontrar

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas 1. Sea u : C R una función armónica positiva. Pruebe que u es constante. Solución:

Más detalles

INTEGRACIÓN POR RESIDUOS

INTEGRACIÓN POR RESIDUOS Capítulo 6 INTEGRACIÓN POR RESIDUOS Problema 6. Halla todas las singularidades de las siguientes funciones y obtén sus correspondientes residuos: z 3 (z + 4), z 2 + 2z +, z 3 3, e z, sen z, (z 3)sen Problema

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

Tema 10: Cálculo integral

Tema 10: Cálculo integral Tema 10: Cálculo integral 1. Introducción El matemático inglés Isaac Barrow (1630-1677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5 Cálculo I (Grado en Ingeniería Informática Problemas resueltos, -, -4 y 4-5 (tercera parte Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić, Luis Guijarro (coordinadores,

Más detalles

Análisis Matemático para Estadística. Hoja 1

Análisis Matemático para Estadística. Hoja 1 Análisis Matemático para Estadística. Hoja Funciones de variable compleja. Teoremas básicos.. Describe el conjunto de puntos del plano complejo que cumplen la ecuación: (a) Im(z + 5i) = ; (b) Re(z + 3

Más detalles

Información general. Objetivo

Información general. Objetivo Información general Objetivo El examen extraordinario de la asignatura de Matemáticas Avanzadas es una prueba confiable, válida, pertinente y objetiva, empleada para apoyar a los estudiantes que por diversas

Más detalles

Examen de Funciones de Variable Compleja. Soluciones.

Examen de Funciones de Variable Compleja. Soluciones. Examen de Funciones de Variable Compleja. Soluciones. 5 de febrero de 0. Ejercicio. Sean a b dos complejos fijos no nulos, ambos con el mismo argumento igual a π/4, y tales que a < b. Parte a): Encontrar

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 3. , demostrar que su trayectoria está contenida en D(1, 1) y calcular

Problemas de VC para EDVC elaborados por C. Mora, Tema 3. , demostrar que su trayectoria está contenida en D(1, 1) y calcular Problemas de VC para EDVC elaborados por C. Mora, Tema 3 Ejercicio Sean, : [, ] C dos curvas cerradas de clase C a trozos y z C tal que (t) (t) < z (t) t [, ]. Demostrar que Ind (z) = Ind (z). [Pista:

Más detalles

SISTEMAS LINEALES. Tema 6. Transformada Z

SISTEMAS LINEALES. Tema 6. Transformada Z SISTEMAS LINEALES Tema 6. Transformada Z 6 de diciembre de 200 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 3 Contenidos. Autofunciones de los sistemas LTI discretos. Transformada Z. Región de convergencia

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO ESCUELA SUPERIOR DE TIZAYUCA TRANSFORMADA DE LAPALACE Y Z INGENIERÍA EN TECNOLOGÍAS DE AUTOMATIZACIÓN

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO ESCUELA SUPERIOR DE TIZAYUCA TRANSFORMADA DE LAPALACE Y Z INGENIERÍA EN TECNOLOGÍAS DE AUTOMATIZACIÓN UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO ESCUELA SUPERIOR DE TIZAYUCA TRANSFORMADA DE LAPALACE Y Z INGENIERÍA EN TECNOLOGÍAS DE AUTOMATIZACIÓN Contenido del programa Unidad I Conocer los fundamentos

Más detalles

Universidad Nacional Experimental Sur del Lago Jesús María Semprum Programa de Contaduría Pública Prof. Pedro Quintela Matemática II

Universidad Nacional Experimental Sur del Lago Jesús María Semprum Programa de Contaduría Pública Prof. Pedro Quintela Matemática II Universidad Nacional Experimental Sur del Lago Jesús María Semprum Programa de Contaduría Pública Prof. Pedro Quintela Matemática II Ejercicios Resueltos Ejercicio : Encontrar la pendiente de la recta

Más detalles

Transformada de Fourier.

Transformada de Fourier. Capítulo 7 Transformada de Fourier. Este capítulo contiene ejercicios importantes sobre transformada de Fourier y su aplicación a la solución de las ecuaciones diferenciales en derivadas parciales. Los

Más detalles

7. Teoría de Cauchy global.

7. Teoría de Cauchy global. 68 Funciones de variable compleja. Eleonora Catsigeras. 25 Abril 26. 7. Teoría de Cauchy global. 7.. Teorema de Cauchy global. Sea un abierto no vacío Ω C. Teorema 7... Teorema de Cauchy global. Sea f

Más detalles

Preguntas IE TEC. Total de Puntos: 54 Puntos obtenidos: Porcentaje: Nota:

Preguntas IE TEC. Total de Puntos: 54 Puntos obtenidos: Porcentaje: Nota: IE TEC Nombre: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-4701 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya I Semestre, 006 Examen de Reposición Total de Puntos:

Más detalles

PROBLEMAS PROPUESTOS. TEMAS 5 Y 6 SOLUCIONES

PROBLEMAS PROPUESTOS. TEMAS 5 Y 6 SOLUCIONES Grado en Ingeniería Mecánica Teoría de Sistemas PROBLEMAS PROPUESTOS. TEMAS 5 Y 6 SOLUCIONES Transformada Z. Función de transferencia discreta. Modelado de sistemas discretos. PROBLEMA 1. Sistema discreto

Más detalles

DERIVACIÓN COMPLEJA. Sea f definida en todos los puntos z de algún entorno z 0

DERIVACIÓN COMPLEJA. Sea f definida en todos los puntos z de algún entorno z 0 1. DERIVACIÓN COMPLEJA Límites Sea f definida en todos los puntos z de algún entorno z 0 f(z) ω 0 es decir, el punto ω f(z) puede quedar próximo a ω 0 si elegimos z suficientemente próximo a z 0, pero

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.4 Ecuaciones diferenciales de Bernoulli Una ecuación diferencial ordinaria de primer orden de la forma a 0.x/y 0 C a.x/y D f.x/y r ; con r 0; : se denomina

Más detalles

Funciones de variable compleja

Funciones de variable compleja Capítulo 3 Funciones de variable compleja Vamos a trabajar con los ya conocidos números complejos C. Mucho del material de esta primera parte se verá muy rápido y sin mucho cuidado, por ser solo un repaso

Más detalles

Ejercicios de sistemas de ecuaciones

Ejercicios de sistemas de ecuaciones Ejercicios de sistemas de ecuaciones 1) Resuelve el siguiente sistema (pag 55, ejercicio 30a)): x 2 y 2 = 25 x + y = 25 habitual es realizar una sustitución. Así pues, por ejemplo, despejamos x de la segunda

Más detalles

Capítulo 3 Integración en el Campo Complejo.

Capítulo 3 Integración en el Campo Complejo. Capítulo 3 Integración en el Campo Complejo. La teoría de la integración en el campo complejo es una de las más bellas y profundas de la matemática pura. Pero sus aplicaciones también son importantes e

Más detalles

Determinación de la trasformada inversa mediante el uso de las fracciones parciales

Determinación de la trasformada inversa mediante el uso de las fracciones parciales 3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales 95 3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales Transformadas de Ecuaciones

Más detalles

Lista de Ejercicios Complementarios

Lista de Ejercicios Complementarios Lista de Ejercicios omplementarios Matemáticas VI (MA-3) Verano. ean α >, β > y a, b R constantes. ea la superficie que es la porción del cono de ecuación z = α x + y que resulta de su intersección con

Más detalles

aw + bw bw + aw = a ab + b

aw + bw bw + aw = a ab + b 1. Demostrar que si w 1 3 i +, entonces ( )( ) Desarrollando y factorizando la ecuación: aw + bw bw + aw abw + w( a + b ) + abw ( )( ) 4 3 aw + bw bw + aw a ab + b. Llevando w a su forma eponencial tenemos

Más detalles

El teorema de los residuos

El teorema de los residuos Tema 2 El teorema de los residuos 2. Singularidades aisladas de una función Definición 2. Sea f: A C. Se dice que f tiene una singularidad aislada en el punto α A, si existe un E(α, r tal que la función

Más detalles

Solución: sumando y restando en el numerador y repartiendo el denominador, se tiene. 2e cos 2t e sin 2t. 1 s

Solución: sumando y restando en el numerador y repartiendo el denominador, se tiene. 2e cos 2t e sin 2t. 1 s . Halle la transformada inversa de L s s5 Solución: completando cuadrados la función de forma conveniente, de manera que se asemeje a una transformada conocida de Laplace. L s s 5 L s s 4 L s Empleando

Más detalles

Apellidos y Nombre: Hoja 1

Apellidos y Nombre: Hoja 1 Hoja 1 1 Hallar dos números complejos tales que su suma sea 1+6i y su cociente imaginario puro. Suponer, además que la parte real del que se tome como divisor al calcular el cociente es 1. Hallar los números

Más detalles

Funciones holomorfas Sesión 3

Funciones holomorfas Sesión 3 Funciones holomorfas Sesión 3 E. Cuesta 1 1 Departamento de Matemática Aplicada E.T.S.I. de Telecomunicaciones Universidad de Valladolid (España) Ampliación de Matemáticas Outline Derivabilidad de funciones

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden GUIA 5 Ecuaciones lineales de segundo orden En esta guía estudiaremos algunos conceptos básicos relativos a las ecuaciones diferenciales lineales así como algunas técnicas que permiten el cálculo explícito

Más detalles

a f af= 3. a) Clasificar las singularidades de la función: f z sen x Universidad de Las Palmas de Gran Canaria

a f af= 3. a) Clasificar las singularidades de la función: f z sen x Universidad de Las Palmas de Gran Canaria E.T.S.I.T. º CURSO CONVOCATORIA ORDINARIA 8.. Profesor A. Plaa TIEMPO ESTIMADO:. Horas. Los que se examinan de toda la asignatura deben responder a las 4 primeras preguntas. Las personas que liberaron

Más detalles

Problemas de AMPLIACIÓN DE MATEMÁTICAS

Problemas de AMPLIACIÓN DE MATEMÁTICAS Problemas de AMPLIACIÓN DE MATEMÁTICAS Ingeniería Industrial. Curso 3-4. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema : Series. Problema. Halle la representación en serie de McLaurin

Más detalles

UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO SUBPROGRAMA DE DISEÑO ACADÉMICO ÁREA MATEMATICA PLAN DE CURSO

UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO SUBPROGRAMA DE DISEÑO ACADÉMICO ÁREA MATEMATICA PLAN DE CURSO UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO SUBPROGRAMA DE DISEÑO ACADÉMICO ÁREA MATEMATICA PLAN DE CURSO I. Identificación Nombre: MATEMÁTICA V Código: 739 U.C: 05 Carreras: Ingeniería de Sistemas

Más detalles

Desarrollos en serie de potencias - Residuos

Desarrollos en serie de potencias - Residuos apítulo 7 Desarrollos en serie de potencias - Residuos Existen dos tipos particularmente sencillos de funciones analíticas: los polinomios p (z) a 0 + a z + + a n z n, y las funciones racionales r (z)

Más detalles

2.4 Ecuaciones diferenciales de Bernoulli

2.4 Ecuaciones diferenciales de Bernoulli .4 Ecuaciones diferenciales de Bernoulli 3 Ejercicios.3. Ecuaciones diferenciales lineales. Soluciones en la página 4 Resolver las siguientes ecuaciones diferenciales lineales.. y 0 C 00y D 0.. x 0 0x

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD. CURSO SOLUCIONES (Modelo 5)

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD. CURSO SOLUCIONES (Modelo 5) CURSO 04 05 SOLUCIONES (Modelo 5) JUNIO Opción A Ejercicio.- ['5 puntos] Se quiere vallar un campo rectangular que está junto a un camino. Si la valla del lado del camino cuesta 80 euros/metro y la de

Más detalles

Se suponen conocidos los siguientes conceptos previos desarrollados en las secciones 1, 2, 3.1 y 3.2:

Se suponen conocidos los siguientes conceptos previos desarrollados en las secciones 1, 2, 3.1 y 3.2: 112 Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo 2006. TERCERA PARTE. SINGULARIDADES Y TEORÍA DE LOS RESIDUOS. Resumen Se estudian las singularidades aisladas: evitables, polos y esenciales

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

Series de Laurent. En la práctica, los coeficientes de una serie de Laurent se obtienen por métodos distintos a las expresiones integrales a n

Series de Laurent. En la práctica, los coeficientes de una serie de Laurent se obtienen por métodos distintos a las expresiones integrales a n Series de Laurent En la práctica, los coeficientes de una serie de Laurent se obtienen por métodos distintos a las expresiones integrales a n y b n dadas anteriormente. Además se puede demostrar que la

Más detalles

Cálculo Integral Agosto 2016

Cálculo Integral Agosto 2016 Cálculo Integral Agosto 6 Laboratorio # Antiderivadas I.- Realice la antidiferenciación indicada ) ( + 7/ ) ) w ( w + ) dw ) (z / + z /5 + )dz ) + ) (w + w)(w + ) dw ) k (k +) / dk ) (y / + y 5/ )(y +

Más detalles