MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O 1
|
|
- Martín Alcaraz Luna
- hace 3 años
- Vistas:
Transcripción
1 MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O Fcios aalíticas Dmostrar q s aalítica todo l plao complo Z. Siglaridads d a ció Estdiar las siglaridads d las sigits cios calclado límit: a b c 9 cos d 7 Trasormació Lial: w A B Rcordado l sigiicado gométrico d los coicits A y B obtga, si hallar las coordadas d trasormació, la imag d los sigits rcitos co las trasormacios dadas cada caso: y c Z a y b y Z Z w w w Obtga las imágs d los rcitos atriors orma aalítica. Trasormació Irsa: w 4 a Dmstr q las rctas q pasa por l orig l plao Z s trasorma rctas dl mismo tipo l plao W. Qé rlació hay tr las pdits d ambas rctas? b Dmstr q las circrcias d radio r ctradas l orig l plao Z s trasorma circrcias ctradas l orig l plao W. Qé rlació hay tr los radios d ambas circrcias? Dada la sigit rgió l plao, y, s pid: a Graiq la rgió Z. b Hall y graiq la rgió trasormada mdiat la trasormació w. Matmática Aaada Trabao Práctico Nº /7
2 Trasormació Bilial: A B w C D E qé s trasorma los sigits rcitos mdiat las trasormacios q s da a cotiació d cada o? a, w b, y, w Obsr q dsd l pto d ista dl trabao algbraico s más coit tr la trasormació scrita como ció d w. 7 Hallar la trasormació bilial q trasorma los ptos, w, w, w., Itgrals l Campo Complo: 8 Calcl la sigit itgral I d, dod C s camio q a dsd iicial = a C ial = +, cada o d los sigits casos: a Sido l camio C, la rcta y =. b Sido l camio C, la parábola y = /. c Calcl la itgral Z tr iicial y ial. Qé pd dcir acrca d los rsltados hallados los trs icisos? s 9 Dada I d, sido C la lips t cos t s t co t. C Aalic: a Es C camio abirto o crrado? b E caso d q l camio sa abirto, la ció itgrado s aalítica a rgió q roda dicho camio? Si l camio s crrado, la ció itgrado aalítica la rgió crrada por l camio? c Rsla la itgral. Calclar las sigits itgrals tiliado la Fórmla d la Itgral d Cachy o la Fórmla d la Driada d la Itgral d Cachy sgú corrspoda: a c d sido C los camios: a Ι - Ι = 4 a ΙΙ = b d c sido C los camios: b ΙΙ = b ΙΙ = 4 b Ι - Ι = ½ t c d c dod C s la cra,, t s d c 9 d co C: ΙΙ = / Matmática Aaada Trabao Práctico Nº /7
3 c d co C: t t, t Rsolr todos los icisos aplicado l torma d los rsidos. Sris d Potcias: Dada la sigit ció,, s pid lo sigit: a Graiq todas las oas dl plao Z las cals pda dsarrollars potcias d. b Dsarroll cada oa, idicado s rgió d corgcia. c Aproim cada smatoria hasta los térmios d sgdo grado iclsi y haga lo sigit: c Obsrado las sris, diga qé oa ti sólo potcias positias, cál sólo potcias gatias y cál ti potcias tato positias como gatias d. c Para =, calcl l alor d y d cada a d las smatorias aproimadas. Cáls d las smatorias corg a para l alor d dado? c Haga lo mismo q l pto atrior pro para =. Qé scd st caso? Hay alga sri d las ya calcladas q cora a? Por qé? Para las sigits cios: I Graiq todas las oas dl plao dod pda dsarrollars alrddor dl pto a dado. II Obtga las sris corrspodits a las oas q dtrmió l iciso atrior idiq las rgios d alid d dichas sris. s a, a b, a c s, a d s, a, a D las sris q dsarrolló l rcicio atrior, obsr las potcias gatias la oa crcaa y diga qé tipo d pto s l q s ctra l ctro d la sri y cáto al s rsido. 4 Si s sma dos sris d potcias, a co rgió d corgcia ΙΙ < y otra co rgió d corgcia ΙΙ >, cál srá la rgió d corgcia d la sma d stas dos sris? Dada la sigit ció: a Hall ss siglaridads. Matmática Aaada Trabao Práctico Nº /7
4 b Graiq todas las rgios las q s posibl hallar dsarrollo sris d potcias d --. c Hall todos los dsarrollos posibls idicado aalítica y gráicamt s rgió d corgcia. Estdi l caráctr dl las siglaridads d la sigit ció a partir dl corrspodits / dsarrollo sri:. Rpita l stdio para todas las cios dl Ercicio 7 Calclar las sigits itgrals aplicado rsidos: a d co C: ΙΙ = 4 c Sh b d sido C l cotoro dl rcito: y, y,, y c c s d sido C l cotoro dl rcito: y, c Matmática Aaada TRABAJO PRÁCTICO Nº Rspstas a los rcicios a = y = ± so polos d primr ord o simpls. b = s polo d sgdo ord o dobl. c = s siglaridad itabl, = - s polo simpl, = s polo dobl. d = s polo d qito ord. = s a siglaridad itabl. = s a siglaridad scial. a b W W c W a b c, a y b Z W / / Matmática Aaada Trabao Práctico Nº 4/7
5 a b W W / / -,,, w 8 I =, para los trs icisos. 9 I = a a b b c t cost st t st b d [ cos s ] si b si si 7 c S 4 8 S 4 8 S Matmática Aaada Trabao Práctico Nº /7
6 Matmática Aaada Trabao Práctico Nº /7 a si si b si c 4 / s d si 4 si 4 4 si 4 a Polo d ord, Rsido b =. b Siglaridad itabl, Rsido b =. c Pto rglar, Rsido b =. d Pto rglar, Rsido b =. Siglaridad scial, Rsido b =. Siglaridad itabl, Rsido b =. a Siglaridads: = + = = -. b Zoa crcaa:. Zoa itrmdia:. Zoa laa:. c
7 Matmática Aaada Trabao Práctico Nº 7/7 Siglaridad scial. Ercicio : Como s pid stdiar l caráctr d cada siglaridad s hac los dsarrollos sri sólo la oa crcaa alrddor d cada pto siglar. a = = s polo d primr ord co b = = = = s polo d primr ord co b = -/ = - = - s polo d primr ord, co b = -/ b = = s polo d sgdo ord co b = c = Es polo d sgdo ord; b = -/9 = 9 Es a siglaridad itabl; b = = - 9 Es polo d sgdo ord; b = /9 d = s polo d qito ord; b = = s a siglaridad itabl; b = = s a siglaridad scial; b = 7 a b c cos
Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas
Uivrsidad d Purto Rico Rcito Uivrsitario d Mayagüz Dpartamto d Cicias Matmáticas Eam III Mat - Cálculo II d abril d 8 Nombr Númro d studiat Scció Profsor Db mostrar todo su trabajo. Rsulva todos los problmas.
Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin
Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,
CAPITULO 17 FUNCIONES EXPONENCIALES Y LOGARITMICAS
Capítlo 17. Drivada d las Fcios Epocial, Logarítmica. CAPITULO 17 FUNCIONES EXPONENCIALES Y LOGARITMICAS Ejrcicio. Dibja la gráfica d la fció =, para sto lla la sigit tabla: 0 1 3 4-1 - -3-4 Vamos l sigit
1.- a) Hallar a y b para que la siguiente función sea continua en x = 1:
.- a) Hallar a y b para qu la siguit fució sa cotiua = : b L( ) < f = a = > L b) Para sos valors d a y b, studiar la drivabilidad d f =. Solució: a) f s cotiua l puto = lim f = f() E st caso f () = a lim
TALLER 4: Preparación parcial final. Cálculo Integral. UdeA Profesor: Jaime Andrés Jaramillo.
TALLER : Prparació parcial fial Cálculo Itgral UdA 5- Profsor: Jaim Adrés Jaramillo jaimaj@cocptocomputadorscom Sucsios Mustr los primros cuatro térmios d la sucsió y dtrmi si s covrgt o divrgt: a) d)
TALLER 4: Preparación parcial final. Cálculo Integral. UdeA Profesor: Jaime Andrés Jaramillo.
TALLER : Prparació parcial fial Cálculo Itgral UdA - Profsor: Jaim Adrés Jaramillo jaimaj@cocptocomputadorscom Sucsios Mustr los primros cuatro térmios d la sucsió y dtrmi si s covrgt o divrgt: a) d) +
1 Realizar los ejercicios resueltos números 1 y 2 del tema 3 de Integración de. 2 Terminar los ejercicios de la práctica realizada este día.
Est documto coti las actividads o prscials propustas al trmiar la clas dl día qu s idica. S sobrtid qu tambié s db ralizar l studio d lo plicado clas auqu o s icluya sa tara st documto. Clas 5 d ovimbr
TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS
Tma Sucsios Matmáticas I º Bach. TEMA SUCESIONES SUCESIONES Y TÉRMINOS EJERCICIO : Si l térmio gral d ua sucsió s a 0 Halla l térmio sgudo y l décimo. b) Hay algú térmio qu valga? Si hay dcir qu lugar
ESTIMADOR DE AITKEN Y PROPIEDADES DEL MISMO (Última revisión: 1 de marzo de 2007)
Apts d clas d coomtría II / 6 STIMADOR D AITKN Y ROIDADS DL MISMO Última rvisió: d marzo d 7 rof. Rafal d Arc rafal.darc@am.s stimació d los parámtros dl MBRL por máxima vrosimilitd Apoádoos la hipótsis
a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.
(Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar
Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,...
TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN S llama sucsió a u cojuto d úmros dados ordadamt d modo qu s puda umrar: primro, sgudo, trcro,... Los lmtos d la sucsió s llama térmios y s
El error con ese presupuesto será aproximadamente del 3,1% Ejercicio 8.2
EJERCICIO 8.1 U ivstigador dispo d 0.000 para ralizar las trvistas d ua custa ua gra ciudad. El custioario s admiistrará mdiat trvistas tlfóicas, sido l cost d cada trvista d 0. Qué marg d rror dbrá asumir
EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3
Rpaso d Matmáticas E st apédic s hará u brv rpaso d las cuacios y fórmulas básicas d utilidad Química Física gral y Trmodiámica Química particular. EXPONENTES Y POTENCIAS Muchos úmros s xprsa forma más
! 1 3 <1 la serie converge (y confirma a n! 0 ). a n. x 2 >0; f 0 (x)<0 si x>1; R 1 f (x)dx = 1 2 e x2 1 = 1 2e. ) Convergente. n! 0 ) Convergente.
Solucios d los roblmas d Matmáticas (07-08) {a } acotada ifriormt or 0 (los a so ositivos) y dcrcit us + + )9líma a ) a a ) a0 Como a + a < la sri covrg (y cofirma a 0 ) a) (a ) / Divrgt (O orqu {a
MATEMÁTICA D Módulo I: Análisis de Variable Compleja. Teoría de Residuos
Matmática D MATEMÁTIA D Módulo I: Aálisis d Variabl omplja Uidad Toría d siduos Mag. María Iés Baragatti Sigularidads S dic qu s ua sigularidad aislada d f( si f( o s aalítica pro sí s aalítica u toro
Al integrar cada miembro de esta ecuación se obtiene la fórmula de integración por partes:
Intgración por parts Spón q tnmos dos fncions ( ) y ( ) continamnt difrnciabls dfinidas n n intralo abirto I. D acrdo con la rgla d la difrncial dl prodcto tnmos q: O qialntmnt: d ( ) = d + = d ( ) d Al
Integral Indefinida o Antiderivada
Dpartamto d Matmática Aplicada Cálculo II (0) Smstr -08 Profsor: José Luis Quitro Marzo 08 FACULTAD DE INGENIERÍA UNIVERSIDAD CENTRAL DE VENEZUELA Itgral Idfiida o Atidrivada. Comprub los siguits rsultados
TEMA 2: LA DERIVADA DE UNA FUNCIÓN
Alonso Frnándz Galián TEMA : LA DERIVADA DE UNA FUNCIÓN El concpto d driada sr n l silo XVII para solcionar l problma d la tannt. Postriormnt a dado lar a toda na rama d la Matmática: l Cálclo Dirncial..
Universidad de Costa Rica. Instituto Tecnológico de Costa Rica. Determinar si las integrales impropias convergen o divergen.
Uivrsidad d Costa Rica Istituto Tcológico d Costa Rica Tma: Itgrals impropias. Objtivos: Clasificar las itgrals impropias sgú su spci: primra, sguda o trcra spci. Calcular itgrals impropias utilizado su
TEMA 5: LÍMITE DE FUNCIONES. CONTINUIDAD.ASÍNTOTAS
Dpartamto d Matmáticas. IE.S. Ciudad d Arjoa º Bach Socials. LÍMITES Propidads: TEMA : LÍMITE DE FUNCIONES. CONTINUIDAD.ASÍNTOTAS. LÍMITES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES. RESOLUCIÓN DE INDETERMINACIONES.
Señales y Sistemas. Análisis de Fourier.
Sñals y Sistmas Aálisis d Fourir. Itroducció El foqu d st capítulo s la rprstació d sñals utilizado sos y cosos ( otras palabras, xpocials complas). El studio d sñals y sistmas utilizado xpocials complas
INTEGRAL INDEFINIDA. Derivación. Integración
TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA F() s ua primitiva d f() si F ()= f(). Esto s prsa así: La itgració s la opració ivrsa a la drivació, d modo qu: f() F'() F() FUNCIONES PRIMITIVAS
SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA 1: Problema Nº 5.34 Oppenheim
SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA : Problma Nº 5.3 Opphim Obsrv l siguit sistma: Dtrmi y() Solució: El traycto d arriba produc, al multiplicar por Cos(/), traslació dl spctro
EJERCICIOS PROPUESTOS. rectángulos obtenidos tomando como base la longitud de cada subintervalo y como altura la ordenada del extremo derecho.
6 Itgral dfiida Ejrcicio rsulto EJERCICIOS PROPUESTOS Obté, co l método visto, l ára dl trapcio limitado por la rcta y +, l j X y las vrticals y Calcula l ára gométricamt y compara los rsultados S divid
2. Utilizando el método adimensional basado en el factor de calidad Q, determine:
Uivrsidad Simó Bolívar Dpartamto d Covrsió y Trasport d Ergía Autor: Eduardo Albaz. Cart: 06-391 Profsor: J. M. Allr Máquias Eléctricas II CT-311 U motor d iducció coxió strlla d 100 kw, 416 V, rdimito
f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,
CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo
Ejercicios de integrales 2008: 1.2A Ejercicio 2.- [2'5 puntos] Dadas las funciones f : [0;+ ) R y g : [0;+ ) R definidas por
INTEGRALES MATEMATICAS II 0-0 Ejrcicios d intgrals 00:.A Ejrcicio.- ['5 pntos] Dadas las fncions f : [0;+ ) R g : [0;+ ) R dfinidas por f ( ) g() Calcla l ára dl rcinto limitado por las gráficas d f g..b
INTEGRAL INDEFINIDA. Derivación. Integración
TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA. F() s ua primitiva d f() si F ()= f(). Esto s prsa así: f() = F'() = F() La itgració s la opració ivrsa a la drivació, d modo qu: FUNCIONES
8 Límites de sucesiones y de funciones
Solucioario 8 Límits d sucsios y d ucios ACTIVIDADES INICIALES 8.I. Calcula l térmio gral, l térmio qu ocupa l octavo lugar y la suma d los ocho primros térmios para las sucsios siguits., 6,,,..., 6, 8,,...,,,,...
1. Consecuencias de la inclusión de variables irrelevantes en el modelo
Tma 7: spcificació d la cació: Problmas, cotrasts, métodos d slcció d variabls y lcció d forma fcioal. Cosccias d la iclsió d variabls irrlvats l modlo. Cosccias d la omisió d variabls rlvats l modlo 3.
2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros
.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros 59.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros Variació d parátros U procdiito
BLOQUE II: GEOMETRÍA. TEMA 4. ESPACIO EUCLÍDEO TRIDIMENSIONAL: VECTORES. PRODUCTO ESCALAR, VECTORIAL Y MIXTO
Mat. II-Gomtría BLOQUE II: GEOMETRÍA. TEMA 4. ESPIO EUCLÍDEO TRIDIMENSIONAL: VECTORES. PRODUCTO ESCALAR VECTORIAL Y MIXTO. VECTORES.. Opracions con ctors Trabajamos n l spacio como hicimos n l plano n
AB se representa por. CD y
1.- VECTORES. OPERACIONES Vector fijo Un ector fijo AB es n segmento orientado con origen en el pnto A y extremo en B Todo ector fijo AB tiene tres elementos: Módlo: Es la longitd del segmento AB. El módlo
TEMA 7 APLICACIONES DE LA DERIVADA
Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f
2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13
º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y
Capítulo IV. Estadísticas cuánticas.
Capítulo I. stadísticas cuáticas. Lcció 6 Itroducció a las stadísticas cuáticas. Partículas distiguibls idistiguibls. stadísticas d Bos-isti y d rmi-dirac. Lcció 7 Gas idal d rmi: lctros mtals. Lcció 8
al siguiente límite si existe: . Se suele representar por ( x )
UNIDAD : DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit it si ist: f f ' sigifica lo mismo. f. S sul rprstar por f D
UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS
UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit límit si ist: f f ' lím sigifica lo mismo.
TEMA 1: CALCULO DIRECTO DE LÍMITES
INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Rsolució Nº 88 d ovimbr.8/ ScrtariaD Educació Distrital REGISTRO DANE Nº-99 Tléfoo Barrio Bastidas Sata Marta DEPARTAMENTO DE MATEMATICAS ACTIVIDAD ESPECIAL
6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular
MasMatscom Slctividad CCNN 7 [ANDA] [JUN-A] San f: y g: las funcions dfinidas mdiant: f() = + y g() = + a) Esboza la gráfica d f y d g calculando sus puntos d cort b) Calcula l ára d cada uno d los dos
MATEMÁTICAS Y CULTURA B O L E T Í N No. 273 COORDINACIÓN DE MATEMÁTICAS APLICACIONES DEL DETERMINANTE DE VANDERMONDE
MATEMÁTICAS Y CULTURA B O L E T Í N 23.04.20 No. 273 COORDINACIÓN DE MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS APLICACIONES DEL DETERMINANTE DE VANDERMONDE E l Boltí Matmáticas Y Cultura No. 257 dl 23 d abril
SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.
UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h
INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES
UNIDAD 9 INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES.- Calclar las sigientes integrales definidas: a) d b) d c) e e ln(ln ) d d) e + d e) sen cos d f ) ( )cos d e + +.- Sean a = sen d y b = los valores de a y
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) La función y : a) Tin una
5 MECÁNICA ESTADÍSTICA CUÁNTICA DE GASES IDEALES
ma 5 MCÁICA SADÍSICA CUÁICA D GASS IDALS stadística d rmi-dirac y stadística d Bos-isti. l límit clásico. Gas idal d rmi: lctros mtals. Gas idal d Bos: fotos y 4H líquido. Codsació d Bos-isti. [RI-9; HUA-8;
FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel
FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san
IDENTIFICAR LOS ELEMENTOS DE UN VECTOR
8 REPSO POO OJETIVO IDENTIFICR LOS ELEMENTOS DE UN VECTOR Nombre: Crso: Fecha: Vector: segmento orientado determinado por dos pntos: (a, a ), origen del ector, y (b, b ), extremo del ector. Coordenadas
TEMA 2. ESPACIOS Y OPERADORES LINEALES CONTENIDO
TEMA. ESPACIOS Y OPERADORES LINEALES CONTENIDO ESPACIOS LINEALES SOBRE UN CAMPO INDEPENDENCIA LINEAL, BASES Y CAMBIOS DE BASES OPERADORES LINEALES Y SUS REPRESENTACIONES SISTEMAS DE ECUACIONES ALGEBRÁICAS
3. [2014] [JUN-A] Calcule el área de la región plana limitada por la gráfica de la función f(x) = cos x, el eje OX y las rectas x = 0 y x = 2.
MasMats.com Colccions d jrcicios Intgrals Slctividad CCNN Extrmadura. [04] [ET-A] Calcul la siguint intgral dfinida d una función racional: + x- x -x+. [04] [ET-B] a) Dibuj l rcinto plano limitado por
Métodos integrales en la teoría de la capa límite 1
Métoos itgrals la toría la caa límit.- trocció as cacios la caa límit itgraas la ircció ormal a la ar a lgar a cacios ircials oriarias rscto a la variabl. Estas cacios so las cacios itgrals la caa límit.
Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos
Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la
Respuesta en frecuencia. Procesado Digital de Señales.4º Ingeniería Electrónica. Universitat de València. Profesor Emilio Soria.
Rspusta frcucia. Procsado Digital d Sñals.4º Igiría Elctróica. Uivrsitat d Valècia. Profsor Emilio Soria. 1 Itrés uso PDS. Ti l mismo uso qu sistmas cotiuos: dtrmiar la salida d u sistma stado stacioario;
Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos
Matmáticas II TEMA 8 Drivadas. Torma. Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto. Utilizando la dfinición, calcula la drivada d f ( ) n l punto. +. Utilizando la dfinición, halla
1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,...
TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mil: imozs@lx.ud.s http://tlfoic.t/wb/imm EJERCICIOS DE SERIES NUMÉRICAS PROPUESTOS EN EXÁMENES.- Estudi l cráctr d l sri uméric. (Fbrro 00, x. or.) Solució.- Pusto
MÉTODO DE LAS SERIES DE TAYLOR PARA RESOLVER ECUACIONES DIFERENCIALES LINEALES Y NO LINEALES
MÉTODO DE LAS SERIES DE TAYLOR PARA RESOLVER ECUACIONES DIFERENCIALES LINEALES Y NO LINEALES Profsor: José Albiro Sáhz Co Dprtmto d Ciis Básis Ursidd EAFIT josh@fitdo Objto: Aplir l método d Tlor pr rsolr
(Apuntes en revisión para orientar el aprendizaje) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL
(Apns n risión para orinar l aprndizaj) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL Fnción logarimo naral S sa q n+ n d + C ; n n + S comnzará con la dfinición d na ingral indfinida pariclar d
PROBLEMAS TEMA 4 EJERCICIO 1 (Ej 9.15 de Fernández Abascal)
PROLMAS TMA JRCICIO j 9.5 d Frádz Abascal La cotizació olsa d u cirto título s cosidra ua variabl alatoria ormalmt distribuida co arámtros dscoocidos, ro s diso d la siguit iformació: a ist u,5% d robabilidad
Tema 8. Limite de funciones. Continuidad
. Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito asítota horizotal... 8.
PROYECCIÓN CÓNICA CONFORME DE LAMBERT Prof. Ricardo Martínez Morales
CARTOGRAFÍA MATEMÁTICA PROYECCIÓN CÓNICA CONFORME DE LAMBERT Prof. Ricardo Martíz Morals INTRODUCCIÓN El físico, astróomo y matmático alsaciao J.H.Lambrt tuvo ua prolífica producció l ára d la cartografía
Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5
página 1/7 Problmas Tma 1 Solución a problmas d Rpaso d 1ºBachillrato - Hoja 07 - Problmas 2, 4, 5 Hoja 7. Problma 2 Rsulto por Luis Sola Ruiz (sptimbr 2014) 1. Los vértics d un triángulo son A( 2, 1),
MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O 5
MEMÁIC NZD BJO PÁCICO N O raforada d aplac ariabl d Eado l doiio d la frccia Dada la igi raforada, proi d fcio f caal, dri grafiq l plao rgió d corgcia aalizado lo polo lo cro. a F b F c F 9 Dada = - =
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto
CÁLCULO NUMÉRICO ( )
CÁLCULO NUMÉRICO (808068) Tma. Fudamtos d la Toría d Errors Octubr 0. Al studiar l fómo diario d la variació qu primta las codicios mtorológicas, s suprim muchas variabls qu dbría d itrvir los cálculos.
PARTE I Parte I Parte II Nota clase Nota Final
Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES
Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V
Apllidos Nombr: N.P. : Ejrcicio. (,5 puntos) Calcula l volumn dl cono circular rcto más grand qu stá inscrito n una sra d radio. D acurdo con la igura adjunta, s aprcia qu l radio d la bas dl cono s: La
Prob PI-1. Forma débil de un problema de flujo de calor estacionario en 2D (Cálculos a mano) T k. Q y
p Q S d ds d S q d ds d ] [ ] [ ] ([ d Q d ] [ j i Prob PI-. Forma débil d u problma d flujo d calor stacioario D (Cálculos a mao Cosidérs l problma dfiido la figura siguit: La EDP asociada s: co Q ua
Cálculo Diferencial. libro Cálculo I de los autores Larson, R., Hostetler, R.P., y Edwards, B. Ediciones Pirámide del año 2002
Cálclo Diferencial 1. Gráficas y modelos Teoría: Ver páginas y 5 del capítlo P del libro: Preparación para el Cálclo del libro Cálclo I de los atores Larson, R., Hostetler, R.P., y Edwards, B. Ediciones
Sistemas de ecuaciones diferenciales lineales
695 Aálisis matmático para Igiría M MOLERO; A SALVADOR; T MENARGUEZ; L GARMENDIA CAPÍTULO Sistmas d cuacios difrcials lials d primr ord Cuado s studia matmáticamt ua situació d la ralidad, l modlo qu s
TEORÍA DEL CONTROL III
Igeiería e Cotrol y Atomatizació Formas caóicas Trasformació de similitd TEORÍA DEL CONTROL III 5 de agosto de 5 Ator: M. e C. Rbé Velázqez Cevas Escela Sperior de Igeiería Mecáica y Eléctrica Formas caóicas
DECAIMIENTO RADIOACTIVO
DECIMIETO RDIOCTIVO El dcaimito radioactivo s idpdit dl modo d dcaimito, y s aplica a todos llos: α,β +, β -, CE (captura lctróica), γ, y fisió spotáa. Postulados: LEY DE DESITEGRCIO RDIOCTIV. La probabilidad
2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:
Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada
En consecuencia: Z=f(x,y)=f[ x(t) ; y(t) ]= F(t) (1) que resulta en definitiva una función de la variable t.la llamaremos Función Compuesta de t.
TEMA 4 (Últma mocacó 8-7-05) CALCULO DIFERENCIAL E INTEGRAL II FUNCIONES COMPUESTAS DE UNA VARIABLE INDEPENDIENTE. Coseramos e prmer térmo a có e os arables Z=(;) spogamos, aemás qe é o so arables epeetes,
Fallas de la aproximación estática. cristal
Diámica d la rd Foos Fallas d la aproximació stática para l cristal Propidads térmicas dl quilibrio: Calor spcífico: Las vibracios d la rd so la pricipal causa d absorció d calor y da cuta dl calor spcífico
61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS
Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr
ESTIMADORES DE LA VARIANZA DE LAS PERTURBACIONES ALEATORIAS EN EL MBRL
Apts d Clas d cootría Prof Rafal d Arc STMADORS D LA VARANZA D LAS PRTURBACONS ALATORAS N L MBRL rafaldarc@as Ua vz ddcda a fórla para la stacó para la dtracó d los parátros dl odlo, a través d los MCO
SOLUCIONES A LOS EXÁMENES DE ANÁLISIS
SOLUCIONES A LOS EXÁMENES DE ANÁLISIS CURSO 0-0 º.- (,5 puntos) Dtrmina la función f : 0, R tal qu f '' gráfica tin una tangnt horizontal n l punto P,. f ( ) ln( ) y su º.- Sa f la función dfinida por
CAPÍTULO DOS. TRANSFORMADA Z.
CAPÍULO DOS. RANSORMADA Z. II.. INRODUCCIÓN. E el capítulo aterior se demostró que la trasormada de Laplace de ua señal muestreada (t) puede ser expresada e distitas ormas: ( ) s e s (2-) ( ) s ( s j )
LECCIÓN 11 CÉLULAS SOLARES
ÓN CÉUAS SOAS NTODUÓN tr los dispositivos basados smicoductors, la célula solar s uo d los más adcuados para tdr cómo las propidads itríscas básicas dl smicoductor, combiació co las propidads tríscas coscucia
REGULACION AUTOMATICA Primera convocatoria 5 de febrero de 2009
EGLACION AOMAICA Primra covocatoria d brro d 9 Ejrcicio puto S da cotrolar la poició agular d ua maa M mdiat u motor d corrit cotiua cotrolado por iducido, a travé d u rductor d rlació. La maa prta ua
Fonones: Cuantización de las vibraciones de la red cristalina.
Foo: Cuatizació d la ibracio d la rd critalia. Oda d logitud larga Oda lática... Oda d logitud corta λ a o πa tmo qu tr cuta la tructura atómica dl crital. foó logitudial foó traral a mooatómica: Coidrmo
Análisis de Señales Capítulo III: Transformada de Fourier discreta. Profesor: Néstor Becerra Yoma
Aálisis d Sñals Capíulo III: Trasormada d Fourir discra Prosor: ésor Bcrra Yoma 3. Torma dl Musro Gra dsarrollo d la compuació > digializació d sñals mdia musro, posrior rcosrucció d la sñal Codició csaria
ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 16 de julio de 2015 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:...
ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 6 de julio de 5 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:... Ejercicio Ejercicio Ejercicio Ejercicio 4 Ejercicio 5 NOTA Todas sus respuestas debe ser justificadas
E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación
E.T.S.I. Idustrils y Tlcomuicció Curso 00-0 Grdos E.T.S.I. Idustrils y Tlcomuicció Asigtur: Cálculo I Tm : Sucsios y Sris Numérics. Sris d Potcis. Ejrcicios propustos Obtr los cutro primros térmios, sí
CASO DE ESTUDIO N 8. Análisis de un tornillo de transmisión
Vrsió 01 CAPITULO POYECTO DE ELEMENTOS DE SUJECIÓN, ANCLAJE Y CIEE CASO DE ESTUDIO N 8 Aálisis u torillo trasmisió Vrsió 01 1. Itroucció Los torillos trasmisió stá somtios a cosirabls solicitacios bias
Problemas Tema 2: Sistemas
SISTEMAS Y CIRCUITOS ~ PROBLEMAS Curso Académico 00900 Problmas Tma Sismas PROBLEMA. Dados los siguis sismas impo coiuo las sñals d rada idicadas, drmi las sñals d salida corrspodis ( ) x sñal d rada x
Tema 5. Análisis de Fourier para Señales y Sistemas Discretos.
Tma 5. Aálisis d Fourir para Sñals y Sistmas Discrtos. E l tma 3 hmos hcho u studio d los sistmas discrtos l domiio tmporal. Esto os ha prmitido ralizar ua caractrizació d los mismos y hacr u studio d
es divergente. es divergente.
.- Dtrmir l cráctr d l sri sgú los vlors d = +. Solució: sido = + = Si = = lim = s divrgt. = Si < < lim = s divrgt. = Si = = lim = s divrgt. = Si >, plicdo l critrio d D`Almrt: + ( + ) ( + ) + lim = lim
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción
PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.
Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f
3.- a) [1,25 puntos] Prueba que f(x) = ex e x
EXAMEN DE MATEMATICAS II ENSAYO ª (FUNCIONES) Apllidos: Nombr: Curso: º Grupo: A Día: 6-XII-05 CURSO 05-6 Opción A.- a) [,5 puntos] Dmustra qu ln( -3) y -4 son infinitésimos quivalnts n =. b) [,5 puntos]
REPRESENTACIÓN DE CURVAS
REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A
IES CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - (RESUELTOS por Antonio nguiano) ATEÁTICAS II Timpo máimo: horas minutos Contsta d manra clara raonada una d las dos opcions
VECTORES EN EL PLANO.
VECTORES EN EL PLNO. Introdcción: Magnitdes escalares ectoriales. Ha ciertas magnitdes físicas, tales como la masa, la presión, el olmen, la energía, la temperatra, etc., qe qedan completamente definidas
Tema 52. Producto escalar de vectores. Producto vectorial y mixto. Aplicaciones: resolución problemas físicos y geométricos
TEMA 5.Podcto escala de ectoes. Podcto ectoial mito. Resolció poblemas físicos geométicos Tema 5. Podcto escala de ectoes. Podcto ectoial mito. Aplicacioes: esolció poblemas físicos geométicos. Itodcció.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción