1.1. Sección del núcleo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1.1. Sección del núcleo"

Transcripción

1 1. CALCULO ANALÍTICO DE TRANSFORMADORES DE PEQUEÑA POTENCIA Los transformadores tienen rendimiento muy alto; aunque éste no lo sea tanto en la pequeña potencia, podemos considerar que la potencia del primario es prácticamente igual a la del secundario (P I = P2). Para calcular un transformador se parte de unas necesidades, como: U p : Tensión en el primario. U s: Tensión en el secundario. P: Potencia necesaria Sección del núcleo Este cálculo ha de hacerse en función de la potencia aparente, aplicando la siguiente relación: Donde: Sn: Sección del núcleo en cm 2. P: Potencia aparente en VA. a: Coeficiente dependiente de la calidad de las chapas; se pondrá 1 para las de baja calidad y 0,7 para las buenas (valores aproximados). El resultado obtenido es la sección neta del núcleo y, por tanto, no debe ser inferior, ya que si se reduce, provocaría calentamientos excesivos del hierro Número de espiras La f.e.m. (fuerza electromotriz) genera da por un bobinado en valor eficaz es: 4,44: Es una constante. Φ: βxs en maxvelios, f: Frecuencia en Hz, Ns: N de espiras necesarias, E: f.e.m. en voltios. Despejando el número de espiras (Ns) de la fórmula anterior, nos queda: 1

2 Ns es el número de espiras totales que ha de tener un bobinado para generar un determinado valor de E. Pero, si lo que deseamos es conocer el número de espiras necesarias para generar un voltio, bastar á con dar a E valor 1, y de esta forma queda: El cálculo hemos de realizarlo para el bobinado primario y para el secundario, o bien, una vez conocido el valor de uno de ellos y teniendo en cuenta la relación de transformación de cualquier transformador, se puede despejar. Ha de tenerse en cuenta que en el caso de los transformadores trifásicos estas tensiones serán las de cada bobinado, independientemente de la tensión de la línea y de la conexión. Nota: El valor de la inducción (β) depende del tipo de chapa a emplear, y es facilitado por el fabricante de éstas. Este valor suele oscilar entre y gausios Sección de los conductores del bobinado Para calcular la sección de los conductores, hay que tener en cuenta la potencia y las tensiones, de donde podemos decir que: En transformadores monofásicos: En los transformadores trifásicos se empleará la siguiente relación: La potencia se mide en VA para los transformadores monofásicos y para los trifásicos. De estas igualdades, se despejan las intensidades como vemos a continuación. 2

3 En los monofásicos: TABLA DE DENSIDADES Potencia del transformador en VA Densidad máxima de corriente admisible en A/mm2 En los trifásicos: 10 a a l00 3,5 101 a a 500 2,5 Dividiendo las intensidades por la densidad de corriente admisible para cada gama de potencias, quedará: 50 1 a a ,5 La densidad se dará en A/mm2, con lo que la sección saldrá en mm 2. En la tabla de densidades se reflejan valores de densidad de corriente admisibles para determinadas gamas de potencia Proceso de construcción de un transformador Siempre que se ha de construir un transformador, se parte de una necesidad concreta, que se cuantifica en tensión de red y tensión e intensidad de secundario o salida. Conocidos estos datos, hemos de proceder a realizar los cálculos y posteriormente a la construcción; pero la mejor forma de conocer el proceso será resolviendo un ejemplo Cálculos necesarios Por ejemplo: Calcular un transformador monofásico, cuyos datos son: tensión de primario, 220 V; tensión de secundario, 48 V y 1 A. La sección del núcleo será: El valor aproximado de a que hemos tomado es 0,9. 3

4 Calculemos ahora el número de es piras por voltio: Φ = β x S en maxvelios. Suponemos que las chapas a emplear serán para β = gausios. RESUMEN DEL EJEMPLO El número de espiras a poner será: Sección del núcleo Sn = 6,23 cm2 Primario La intensidad que circulará por el circuito primario será: Up = 220 V Np = espiras dp = 0,25 mm Secundario Las secciones de conductores a poner en las bobinas de primario y secundario serán: Us = 48 V Ns = 347 espiras ds = 0,56 mm secundario serán: Los diámetros del hilo correspondientes a primario y 1.6. Proceso de montaje Ya tenemos todos los datos necesarios para construir el transformador. Veamos cómo hacerlo. En primer lugar, partiendo de unas dimensiones de chapas (a elegir en catálogo), calculamos el número de éstas necesario para formar la sección que hemos calculado anteriormente. Suponemos, para este caso, que las dimensiones son las reflejadas en la Figura 4.3, y sabemos que hemos de conseguir 6,23 cm 2, partiendo de que S = a x b; y teniendo en cuenta que en la chapa elegida b = 18 mm, queda: 4

5 que es necesario conseguir, poniendo una chapa sobre otra; pero, si consideramos que cada chapa tiene un espesor de 0,5 mm, el número de ellas será : Este número de chapas nos proporciona la sección neta. A esta sección ha de sumarse el espacio ocupado por el barniz de cada chapa (éste puede ser de algunas décimas de mm), con lo que se obtiene la sección geométrica que necesitamos conocer para elegir o construir el carrete necesario. El interior del carrete ha de ser de dimensiones adecuadas para alojar la sección geométrica del núcleo. El siguiente paso es proceder al bobinado del circuito primario; para ello, se pone un aislante y capa por capa se van colocando las espiras, como puede observarse en la Figura 4.9. A continuación se cubre este bobinado con cartón y se inicia el bobinado secundario, dejando tanto del arrollamiento primad o como del secundario, los extremos previamente soldados a conductores suficientemente largos y de características mecánicas adecuadas para después realizar las conexiones. Los conductores deben tener marcados con las siglas P1 y P2 el principio y final respectivamente del arrollamiento primario, y con S1 y S2 los correspondientes al secundario. A continuación, se cubre todo el bobinado con un segundo cartón en el que se pueden escribir las características, quedando como muestra la Figura Una vez que hemos terminado el bobinado, hemos de formar el núcleo con las chapas que habíamos calculado; par a ello, las colocaremos alternativamente en sentido opuesto, como puede observarse en la Figura Ensayos previos al montaje en carcasa Terminado el montaje de las chapas que forman el núcleo, es necesario comprobar: La continuidad de los conductores de los circuitos primarios y secundarios. Eso se puede hacer con una lámpara serie o bien con un polímetro adecuado. El aislamiento entre los dos circuitos, primario y secundario, así como el aislamiento entre éstos y el circuito magnético o núcleo. Esta comprobación debe hacerse con una lámpara serie conectada a 230 V, o con un megóhmetro. 5

6 1.8. Barnizado Realizados con éxito los ensayos y conexiones de los devanados a sus terminales o placas de bornes, se procede al secado en el horno, y posteriormente se impregna del barniz adecuado para el secado en horno y se procede de nuevo a su introducción en el mismo duran te el tiempo adecuado. Este proceso puede realizarse también con barniz de secado al aire. A continuación, se procede a montar la carcasa en caso de que el transformador esté provisto de ella. Los espárragos de sujeción de las chapas que forman el núcleo, irán aislados con respecto a éste mediante un tubo aislante Ejemplos resueltos Calcular transformador Calcular un transformador de 125 V y 220 V en el primario, para un secundario de 1 A y 12, 24, 48 V de tensión en el secundario. Suponiendo que las chapas que utilizaremos soportan una inducción (β) de gausios: RESUMEN DEL EJEMPLO Sección del núcleo Sn = 6,23 cm2 Primario Up = 125/220 V N 125 = 821 espiras N = 821 espiras Ip = 0 38 A Sp = 0,096 mm 2 dp = 0,35 mm Secundario Us =12, 24 y 48 V N 12 = 79 espiras N 24 = 79 espiras N 48 = 158 espiras Ss = 0,25 mm 2 ds = 0,56 mm 6

7 Calcular transformador Calcular un autotransformador trifásico de VA, 230/400 V en el primario, conexión estrella y 230 V en el secundario. Consideraciones previas. Al aplicar tensión de 400 V al primario, cada bobinado o fase del primario, por estar conectado en estrella, está sometido a una tensión de 400x 3 = 230 V. Si aplicamos tensión de 230 V al primario, cada bobina o fase soporta una tensión de 230 V / 3 = 133 V. Con respecto al secundario, prácticamente no hay que tenerlo en cuenta, a no ser a la hora de sacar los bornes, puesto que éstos serán comunes con los del primario para 230 V, corno puede observarse en los esquemas de la Figura Todos los cálculos han de hacerse igual que para un transformador monofásico. Si las chapas que utilizamos sopor tau una inducción (β) de gausios: Teniendo en cuenta que para 400 V en línea el bobinado ha de soportar 230 V, ya que éste está conectado en estrella. que tendrá cada bobina, de las tres que forman el autotransformador. De igual forma que en el caso anterior, el borne para 230 V en línea hemos de sacarlo, teniendo en cuenta que en este caso el bobinado ha de funcionar con 133 V. 7

8 De acuerdo con los cálculos realizados, al montar el bobinado hemos de sacar un borne cuando llevemos puestas 193 espiras, que será común para primario y secundario (borne de 230 V). Se ponen 140 espiras más, hasta completar las 333 totales, con lo que tendremos el borne de 400 V. La intensidad máxima se dará para la tensión más pequeña; así: Reparación de transformadores y autotransformadores En muchas ocasiones vamos a encontrarnos con un transformador o autotransformador averiado. En este caso debemos observar qué tipo de avería tiene, bien por inspección visual, si se observa quemado total o parcialmente alguno de sus circuitos, o bien comprobando su continuidad y aislamiento. Si después de las correspondientes comprobaciones se observa que está averiado alguno de sus circuitos, hemos de hacer lo siguiente: 1. Disponer un recipiente para ir echando las piezas. 2. Desmontamos la carcasa, si la tiene, tras lo cual queda con el aspecto de la Figura Se retiran los espárragos y con ayuda de un mazo de plástico se desmontan las chapas que forman el núcleo, como se observa en la Figura Una vez terminado el proceso de quitar las chapas, sólo nos queda el chasis con los bobinados (Figura 4.10). 5. Quitar ahora el cartón que cubre el bobinado y comenzar a quitar espiras, contando el número de éstas y midiendo la sección del hilo. Si es éste el bobinado averiado y el resto está todo bien, Figura 4.9, no hay más que tomar hilo de las mismas características y rebobinar poniendo el mismo número de espiras. Comprobar que se ha hecho bien y proceder al montaje siguiendo el proceso explicado en los Apartados 3.4.2, y En el caso de que sea el circuito interior el averiado, habrá que desmontarlo totalmente, contando también el número de espiras y midiendo su sección. Eu ese caso, sólo nos queda el chasis de la Figura 4.8, el cual debe sustituirse si no se encuentra en buenas condiciones. 7. Rebobinar totalmente, con las mismas características que tenía antes de la avería siguiendo el proceso ya mencionado. 8

1.1 Qué es y para qué sirve un transformador?

1.1 Qué es y para qué sirve un transformador? TRANSFORMADORES_01_CORR:Maquetación 1 16/01/2009 10:39 Página 1 Capítulo 1 1.1 Qué es y para qué sirve un transformador? Un transformador es una máquina eléctrica estática que transforma la energía eléctrica

Más detalles

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín Un transformador se compone de dos arrollamientos aislados eléctricamente entre sí y devanados sobre un mismo núcleo de hierro. Una corriente alterna que circule por uno de los arrollamientos crea en el

Más detalles

P = Potencia del transformador. Potencia( VA) 10 a 50 51 a100 101 a 200 201 a 500 501 a 1000 1001 a 1500 δ A/mm 2 4 3,5 3 2,5 2 1,5

P = Potencia del transformador. Potencia( VA) 10 a 50 51 a100 101 a 200 201 a 500 501 a 1000 1001 a 1500 δ A/mm 2 4 3,5 3 2,5 2 1,5 CÁLCULO DE PEQUEÑOS TRANSFORMADORES (1) 1. Espiras por voltios. (N/V) N1 V1 N V 3 P 33,6 P N 1 /V 1 Espiras por voltios (en el primario) 3 Constante que depende del tipo de chapa, tipo de transformador...

Más detalles

FISICA III AÑO: 2010. Cátedra de Física Experimental II --- Asignatura: Física III --- Año 2010

FISICA III AÑO: 2010. Cátedra de Física Experimental II --- Asignatura: Física III --- Año 2010 Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología Departamento de Física Cátedra de Física Experimental II --- Asignatura: Física III --- Año 2010 Proyecto: Transformador Casero

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:

Más detalles

Recordar siempre: La potencia del transformador depende de la carga conectada a la misma.

Recordar siempre: La potencia del transformador depende de la carga conectada a la misma. CALCULO SIMPLIFICADO DE TRANSFORMADORES DE PEQUEÑA POTENCIA: El cálculo simplificado de pequeños transformadores ( de hasta 400 Watts) se divide en varios pasos: Recordar siempre: La potencia del transformador

Más detalles

Unidad Didáctica. Transformadores Trifásicos

Unidad Didáctica. Transformadores Trifásicos Unidad Didáctica Transformadores Trifásicos Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION

Más detalles

TEMA 6 CORRIENTE ALTERNA TRIFÁSICA

TEMA 6 CORRIENTE ALTERNA TRIFÁSICA TEMA 6 CORRIENTE ALTERNA TRIÁSICA VI.1 Generación de la CA trifásica VI. Configuración Y-D VI.3 Cargas equilibradas VI.4 Cargas desequilibradas VI.5 Potencias VI.6 actor de potencia Cuestiones 1 VI.1 GENERACIÓN

Más detalles

Transformador. Transformador

Transformador. Transformador E L E C T R I C I D A D Y M A G N E T I S M O Transformador Transformador ELECTRICIDAD Y MAGNETISMO Bajo ciertas condiciones un campo magnético puede producir una corriente eléctrica. Este fenómeno, conocido

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

TRANSFORMADORES TRANSFORMADORES

TRANSFORMADORES TRANSFORMADORES Sean dos bobinas N 1 y N 2 acopladas magnéticamente. Si la bobina N 1 se conecta a una tensión alterna sinusoidal v 1 se genera en la bobina N 2 una tensión alterna v 2. Las variaciones de flujo en la

Más detalles

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir:

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir: Problemas resueltos Problema 1. Un motor de c.c (excitado según el circuito del dibujo) tiene una tensión en bornes de 230 v., si la fuerza contraelectromotriz generada en el inducido es de 224 v. y absorbe

Más detalles

ME II 03 TEORIA DE BOBINADOS TRIFASICOS

ME II 03 TEORIA DE BOBINADOS TRIFASICOS TIPOS DE CONEXIONES EN MOTORES ASINCRONOS TRIFASICOS Existen dos tipos: Motor trifásico tipo jaula de ardilla. CONEXIONES INTERNAS Este tipo de conexiones se realizan cuando el motor se halla en el proceso

Más detalles

Circuito de Encendido. Encendido básico

Circuito de Encendido. Encendido básico Circuito de Encendido Encendido básico Objetivos del Circuito de Encendido 1º Generar una chispa muy intensa entre los electrodos de las bujías para iniciar la combustión de la mezcla Objetivos del Circuito

Más detalles

CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN

CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN V 1.0 SEPTIEMBRE 2005 Corriente máxima en el cable (A) CÁLCULO DE LA SECCIÓN MÍNIMA DEL CABLEADO DE ALIMENTACIÓN Longitud del cable en metros 0 1.2 1.2 2.1 2.1

Más detalles

TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS.

TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS. TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS. 9.. Potencias en sistemas equilibrados y simétricos en tensiones Un sistema trifásico puede considerarse como circuitos monofásicos, por lo que la potencia total

Más detalles

Energía eléctrica. Elementos activos I

Energía eléctrica. Elementos activos I La corriente eléctrica con mucha chispa Elementos activos y pasivos Circuitos eléctricos Corriente continua y alterna, las chispas de nuestras casas Almacenamiento y producción de energía eléctrica ehículos

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

Nota Técnica Abril 2014

Nota Técnica Abril 2014 LÁMPARAS LED QUE QUEDAN SEMIENCENDIDAS O PARPADEAN: En ocasiones ocurre que al realizar una sustitución en donde antes teníamos una halógena por una lámpara LED, la nueva lámpara se queda semiencendida

Más detalles

Farol de desvío en vías Märklin M en digital

Farol de desvío en vías Märklin M en digital Railwaymania Farol de desvío en vías Märklin M en digital Farol de desvío en vías Märklin M en digital Alimentación directa desde la vía Muchos colegas conservan material antiguo procedente de las maquetas

Más detalles

Tipos de instalaciones

Tipos de instalaciones Tipos de instalaciones Existen este infinidad de configuraciones, pero como técnicos debemos referirnos a las normalizadas por la NTE, la cual diferencia cinco tipos basados en número de circuitos y programas,

Más detalles

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Podemos decir que en electricidad y electrónica las medidas que con mayor frecuencia se hacen son de intensidad, tensión y

Más detalles

PROBLEMAS RESUELTOS DE TRANSFORMADORES. Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo.

PROBLEMAS RESUELTOS DE TRANSFORMADORES. Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo. PROBLEMAS RESUELTOS DE TRANSFORMADORES Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere006@yahoo.com Erving Quintero Gil Ing. Electromecánico Bucaramanga

Más detalles

BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS

BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS PARTAMENTO 1.- Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una longitud de 50 cm. En estas condiciones la inducción magnética B total

Más detalles

Medidas de Intensidad

Medidas de Intensidad Unidad Didáctica Medidas de Intensidad Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION (Dirección

Más detalles

TEORIA UTIL PARA ELECTRICISTAS EL TRANSFORMADOR

TEORIA UTIL PARA ELECTRICISTAS EL TRANSFORMADOR Principio de funcionamiento. Sea un circuito magnético constituido por dos columnas y dos culatas en el que han sido arrollados dos circuitos eléctricos, uno constituido por N 1 espiras es conectado a

Más detalles

FUENTES DE ALIMENTACION

FUENTES DE ALIMENTACION FUENTES DE ALIMENTACION INTRODUCCIÓN Podemos definir fuente de alimentación como aparato electrónico modificador de la electricidad que convierte la tensión alterna en una tensión continua. Remontándonos

Más detalles

MOTOR DE INDUCCION MONOFASICO

MOTOR DE INDUCCION MONOFASICO MAQUINAS ELÉCTRICAS ROTATIVAS MOTOR DE INDUCCION MONOFASICO Mg. Amancio R. Rojas Flores 1. Principio de funcionamiento Básicamente, un motor de inducción monofásico está formado por un rotor en jaula de

Más detalles

1. Fenómenos de inducción electromagnética.

1. Fenómenos de inducción electromagnética. 1. Fenómenos de inducción electromagnética. Si por un circuito eléctrico, en forma de espira, por donde no circula corriente, se aproxima un campo magnético originado por la acción de un imán o un solenoide

Más detalles

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa.

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Electricidad: flujo o corriente de electrones. Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Elementos básicos de un circuito: generador,

Más detalles

Unidad Didáctica. Leyes de Kirchhoff

Unidad Didáctica. Leyes de Kirchhoff Unidad Didáctica Leyes de Kirchhoff Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION (Dirección

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA 4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación

Más detalles

TRANSFORMADOR NÚCLEOS

TRANSFORMADOR NÚCLEOS TRANSFORMADOR El transformador es un dispositivo que convierte energía eléctrica de un cierto nivel de voltaje, en energía eléctrica de otro nivel de voltaje, por medio de la acción de un campo magnético.

Más detalles

MÁQUINAS ELÉCTRICAS: MOTORES

MÁQUINAS ELÉCTRICAS: MOTORES MÁQNAS ELÉCTRCAS: MOTORES Se denomina máquina eléctrica a todo dispositivo capaz de generar, transformar o aprovechar la energía eléctrica. Según esto podemos clasificar las máquinas eléctricas en tres

Más detalles

MOTORES ASÍNCRONOS MONOFÁSICOS

MOTORES ASÍNCRONOS MONOFÁSICOS MOTORES ASÍNCRONOS MONOFÁSICOS INTRODUCCIÓN Los motores monofásicos, como su propio nombre indica son motores con un solo devanado en el estator, que es el devanado inductor. Prácticamente todas las realizaciones

Más detalles

~T. Manuel Álvarez Pulido

~T. Manuel Álvarez Pulido ~T. Manuel Álvarez Pulido , Indice general Prólogo.................................................. Introducción............................................... xvii xix Capitulo 1 Generalidades................................

Más detalles

FACULTAD DE MEDICINA VETERINARIA Y ZOOTECNIA SECRETARÍA GENERAL SECRETARÍA DE TECNOLOGÍA EN APOYO A LA DOCENCIA DEPARTAMENTO DE CÓMPUTO

FACULTAD DE MEDICINA VETERINARIA Y ZOOTECNIA SECRETARÍA GENERAL SECRETARÍA DE TECNOLOGÍA EN APOYO A LA DOCENCIA DEPARTAMENTO DE CÓMPUTO FACULTAD DE MEDICINA VETERINARIA Y ZOOTECNIA SECRETARÍA GENERAL SECRETARÍA DE TECNOLOGÍA EN APOYO A LA DOCENCIA DEPARTAMENTO DE CÓMPUTO Determinar la capacidad de un regulador según la placa de datos:

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Unidad didáctica: Electromagnetismo

Unidad didáctica: Electromagnetismo Unidad didáctica: Electromagnetismo CURSO 3º ESO 1 ÍNDICE Unidad didáctica: Electromagnetismo 1.- Introducción al electromagnetismo. 2.- Aplicaciones del electromagnetismo. 2.1.- Electroimán. 2.2.- Relé.

Más detalles

Máquinas eléctricas: Máquinas rotativas de corriente alterna

Máquinas eléctricas: Máquinas rotativas de corriente alterna Máquinas eléctricas: Máquinas rotativas de corriente alterna Ya has visto en temas anteriores el estudio de los motores de corriente continua y la clasificación de las máquinas, pues bien, ahora vas a

Más detalles

TEMA 2. CIRCUITOS ELÉCTRICOS.

TEMA 2. CIRCUITOS ELÉCTRICOS. TEMA 2. CIRCUITOS ELÉCTRICOS. 1. INTRODUCCIÓN. A lo largo del presente tema vamos a estudiar los circuitos eléctricos, para lo cual es necesario recordar una serie de conceptos previos tales como la estructura

Más detalles

ESTUDIO DE LA MÁQUINA ASÍNCRONA

ESTUDIO DE LA MÁQUINA ASÍNCRONA ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica nº : Sistemas Eléctricos ESTUDIO DE LA MÁQUINA ASÍNCRONA Sistemas Eléctricos 009-00.La Máquina de Inducción o Asíncrona

Más detalles

Capítulo 3. Magnetismo

Capítulo 3. Magnetismo Capítulo 3. Magnetismo Todos hemos observado como un imán atrae objetos de hierro. La razón por la que ocurre este hecho es el magnetismo. Los imanes generan un campo magnético por su naturaleza. Este

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA 1. MAGNETISMO Y ELECTRICIDAD...2 Fuerza electromotriz inducida (Ley de inducción de Faraday)...2 Fuerza electromagnética (2ª Ley de Laplace)...2 2. LAS

Más detalles

ASOCIACIÓN DE RESISTORES

ASOCIACIÓN DE RESISTORES ASOCIACIÓN DE RESISTORES Santiago Ramírez de la Piscina Millán Francisco Sierra Gómez Francisco Javier Sánchez Torres 1. INTRODUCCIÓN. Con esta práctica el alumno aprenderá a identificar los elementos

Más detalles

ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES

ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES 1) CONCEPTOS BÁSICOS DE ELECTRICIDAD 1.1 TEORÍA ELECTRÓNICA Los físicos distinguen cuatro diferentes tipos de fuerzas que son comunes en todo el Universo.

Más detalles

Los transformadores. Inducción en una bobina

Los transformadores. Inducción en una bobina Los transformadores Los transformadores eléctricos han sido uno de los inventos más relevantes de la tecnología eléctrica. Sin la existencia de los transformadores, sería imposible la distribución de la

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 4 Tema: FACTOR DE FORMA Y DE LECTURA. RESPUESTA EN FRECUENCIA DE INSTRUMENTOS. Tipos de instrumentos Según el principio en que

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas Mediciones Eléctricas Grupos Electrógenos Mediciones Eléctricas Página 1 de 12 Tabla de Contenido Objetivo 1: Medidas de magnitudes eléctricas... 3 Objetivo 2: Generalidades sobre instrumentos de medición...

Más detalles

CÁLCULO DE LOS CIRCUITOS INTERIORES DE VIVIENDAS

CÁLCULO DE LOS CIRCUITOS INTERIORES DE VIVIENDAS CÁLCULO DE LOS CIRCUITOS INTERIORES DE VIVIENDAS Profesores: Martínez Antón, Alicia (almaran@csa.upv.es) Blanca Giménez, Vicente (vblanca@csa.upv.es) Castilla Cabanes, Nuria (ncastilla@csa.upv.es) Pastor

Más detalles

En un transformador, el núcleo tiene dos misiones fundamentales:

En un transformador, el núcleo tiene dos misiones fundamentales: Transformador El transformador es un dispositivo que convierte energía eléctrica de un cierto nivel de voltaje, en energía eléctrica de otro nivel de voltaje, por medio de la acción de un campo magnético.

Más detalles

CAPÍTULO 2. ESTUDIO DEL MEDIO DE PROPAGACIÓN

CAPÍTULO 2. ESTUDIO DEL MEDIO DE PROPAGACIÓN Método de medida de impedancias del camino de propagación CAPÍTULO 2. ESTUDIO DEL MEDIO DE PROPAGACIÓN El objetio de este Capítulo es encontrar unos circuitos equialentes de parámetros concentrados que

Más detalles

3. 1 Generalidades y clasificación de los generadores. Según sea la energía absorbida, los generadores pueden ser:

3. 1 Generalidades y clasificación de los generadores. Según sea la energía absorbida, los generadores pueden ser: CAPITULO 3 GNRADORS LÉCTRICOS 3. 1 Generalidades y clasificación de los generadores. Se llama generador eléctrico todo aparato o máquina capaz de producir o generar energía eléctrica a expensas de otra

Más detalles

ELECTRICIDAD Secundaria

ELECTRICIDAD Secundaria ELECTRICIDAD Secundaria Carga eléctrica. Los átomos que constituyen la materia están formados por otras partículas todavía más pequeñas, llamadas protones, neutrones y electrones. Los protones y los electrones

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2004-2005 - CONVOCATORIA: Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y gráfico si fuera necesario. Capacidad para el planteamiento de problemas y procedimientos

Más detalles

Aspectos constructivos: circuito magnético I

Aspectos constructivos: circuito magnético I Transformadores Aspectos constructivos: circuito magnético I I1 En la construcción del núcleo se utilizan chapas de acero aleadas con Silicio de muy bajo espesor (0,3 mm) aprox. I2 V1 V2 El Si incrementa

Más detalles

Ensayos Básicos con las Máquinas Eléctricas Didácticas EXPERIMENTOS CON LAS MÁQUINAS ELÉCTRICAS

Ensayos Básicos con las Máquinas Eléctricas Didácticas EXPERIMENTOS CON LAS MÁQUINAS ELÉCTRICAS Ensayos Básicos con las Máquinas Eléctricas Didácticas EXPERIMENTOS CON LAS MÁQUINAS ELÉCTRICAS Experimentos con Máquinas Eléctricas Didácticas 2 ÍNDICE 1 Introducción...3 2 Máquinas de Corriente Continua...4

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

EFECTOS DE LA CORRIENTE ELÉCTRICA: TÉRMICO, MAGNÉTICO Y QUÍMICO

EFECTOS DE LA CORRIENTE ELÉCTRICA: TÉRMICO, MAGNÉTICO Y QUÍMICO EFECTOS DE LA CORRIENTE ELÉCTRICA: TÉRMICO, MAGNÉTICO Y QUÍMICO Marisol de la Fuente Mendoza IES LA CANAL DE NAVARRÉS Navarrés (Valencia) Introducción: Al hablar de los efectos de la corriente eléctrica,

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

Supongamos que se tiene que montar un pilar de referencia"a" localizado en un plano de replanteo.

Supongamos que se tiene que montar un pilar de referenciaa localizado en un plano de replanteo. EJEMPLOS DE SELECCIÓN DE GRÚAS TELESCÓPICAS Ejemplo 1: selección de la grúa para el montaje de pilares. Supongamos que se tiene que montar un pilar de referencia"a" localizado en un plano de replanteo.

Más detalles

UNIDAD. Transformadores

UNIDAD. Transformadores NIDAD 8 Transformadores Transformador de una subestación. (A.L.B.) E l transformador nos resulta muy familiar en el ámbito doméstico. Su uso más común y conocido es para adaptar la tensión de la red a

Más detalles

ORIENTACIONES DIDÁCTICAS PARA EL ALUMNADO

ORIENTACIONES DIDÁCTICAS PARA EL ALUMNADO ORIENTACIONES DIDÁCTICAS PARA EL ALUMNADO "Contenido adscrito a la Licéncia "Creative Commons" CC ES en las opciones "Reconocimiento -No Comercial- Compartir Igual". Autor: Ángel Mahiques Benavent ÍNDICE

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

GUÍA DE USUARIO Motor paso a paso REV. 1.0

GUÍA DE USUARIO Motor paso a paso REV. 1.0 GUÍA DE USUARIO Motor paso a paso REV. 1.0 Ingeniería MCI Ltda. Luis Thayer Ojeda 0115 of. 1105, Providencia, Santiago, Chile. +56 2 23339579 www.olimex.cl cursos.olimex.cl info@olimex.cl GUÍA DE USUARIO:

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

Tema : ELECTRÓNICA DIGITAL

Tema : ELECTRÓNICA DIGITAL (La Herradura Granada) Departamento de TECNOLOGÍA Tema : ELECTRÓNICA DIGITAL.- Introducción. 2.- Representación de operadores lógicos. 3.- Álgebra de Boole. 3..- Operadores básicos. 3.2.- Función lógica

Más detalles

PROBLEMAS DE MAQUINAS ASINCRONICAS

PROBLEMAS DE MAQUINAS ASINCRONICAS PROBLEMAS DE MAQUINAS ASINCRONICAS Problemas de MAQUINAS ASINCRONICAS Problema 1: Un motor de inducción trifásico que tiene las siguientes características de placa: P 1.5 HP; 1400 rpm; U N 220/380 V. Se

Más detalles

CIRCUITOS ELECTRÓNICOS BÁSICOS: EL DIVISOR DE TENSIÓN

CIRCUITOS ELECTRÓNICOS BÁSICOS: EL DIVISOR DE TENSIÓN CIRCUITOS LCTRÓNICOS ÁSICOS: L DIVISOR D TNSIÓN RSUMN: n esta actividad aprenderás a diseñar un tipo de circuito, muy utilizado en electrónica, que sirve para alimentar (proporcionar tensión de alimentación)

Más detalles

TRANSFORMADORES TRIFÁSICOS

TRANSFORMADORES TRIFÁSICOS 1 INTRODUCCIÓN TRANSFORMADORES TRIFÁSICOS Norberto A. Lemozy La mayoría de los transformadores utilizados en la transmisión y distribución de energía eléctrica son trifásicos, por una cuestión de costos,

Más detalles

V V I I N N. Un autotransformador

V V I I N N. Un autotransformador Un autotransformador tiene un solo devanado continuo con un punto de conexión, n, llamado toma entre los lados primario y secundario La toma se ajusta para proporcionar la razón n de transformación deseada,

Más detalles

Instrucciones: No se permitirá el uso de calculadoras programables ni gráficas. La puntuación de cada pregunta está indicada en las mismas.

Instrucciones: No se permitirá el uso de calculadoras programables ni gráficas. La puntuación de cada pregunta está indicada en las mismas. PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B ELECTROTECNIA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: No se permitirá

Más detalles

Sobretensiones por corte del neutro

Sobretensiones por corte del neutro Sobretensiones por corte del neutro Félix Redondo Quintela, Norberto Redondo Melchor, Juan Manuel García Arévalo, Roberto Carlos Redondo Melchor. Universidad de Salamanca Resumen En ocasiones se achacan

Más detalles

Equipos de medida para clientes de AT (< 36 kv)

Equipos de medida para clientes de AT (< 36 kv) Página 1 de 10 Índice 1.- Objeto 2.- Alcance 3.- Desarrollo Metodológico Redacción Verificación Aprobación Responsable Redactor Dpto. de Normalización Dirección de Ambiente, Sostenibilidad, Innovación

Más detalles

Guía de uso del Cloud Datacenter de acens

Guía de uso del Cloud Datacenter de acens guíasdeuso Guía de uso del Cloud Datacenter de Calle San Rafael, 14 28108 Alcobendas (Madrid) 902 90 10 20 www..com Introducción Un Data Center o centro de datos físico es un espacio utilizado para alojar

Más detalles

TEMA 7 TRANSFORMADORES

TEMA 7 TRANSFORMADORES TEMA 7 TRASFORMADORES. Transformador monofásico. Transformador real.3 Transformador real.4 Transformador trifásico.5 Estructura del sistema eléctrico Cuestiones . TRASFORMADOR MOOFÁSCO Un transformador

Más detalles

CALENTAMIENTO DE LOS CONDUCTORES

CALENTAMIENTO DE LOS CONDUCTORES ELECTROTÈCNIA E3d3.doc Pàgina 1 de 5 CALENTAMIENTO DE LOS CONDUCTORES Uno de los efectos perjudiciales del efecto Joule es el calentamiento que se produce en los conductores eléctricos cuando son recorridos

Más detalles

3 CONDUCTORES ELÉCTRICOS

3 CONDUCTORES ELÉCTRICOS 3 CONDUCTORES ELÉCTRICOS 3.1 CONDUCTORES ELÉCTRICOS METALES MÁS EMPLEADOS Los metales más empleados como conductores en los cables eléctricos son el COBRE y el ALUMINIO. 3.1.1 EL COBRE El COBRE se obtiene

Más detalles

0. ÍNDICE...1 1. OBJETO Y CAMPO DE APLICACIÓN...2 2. LIMITACIONES DE EMPLEO...2

0. ÍNDICE...1 1. OBJETO Y CAMPO DE APLICACIÓN...2 2. LIMITACIONES DE EMPLEO...2 CABLES Y FOLIOS RADIANTES EN VIVIENDAS Página 1 de 5 0. ÍNDICE 0. ÍNDICE...1 1. OBJETO Y CAMPO DE APLICACIÓN...2 2. LIMITACIONES DE EMPLEO...2 3. INSTALACIÓN...2 3.1 Circuito de alimentación...2 3.2 Instalación

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

Práctica E4: Medida de potencia en circuitos trifásicos

Práctica E4: Medida de potencia en circuitos trifásicos Medida de potencia en circuitos triásicos: ráctica E4 ráctica E4: Medida de potencia en circuitos triásicos. Objetivos os objetivos de la práctica son:.- Medida de la potencia activa, reactiva y el actor

Más detalles

MAQUINAS Y EQUIPOS FRIGORIFICOS SUMARIO GENERAL

MAQUINAS Y EQUIPOS FRIGORIFICOS SUMARIO GENERAL 2 MAQUINAS Y EQUIPOS FRIGORIFICOS SUMARIO GENERAL 1. Los Presostatos...5 2. Características de los Presostatos...6 2.1 Presión...7 2.2 Gama de regulación...7 2.3 Diferencial...8 2.4 Carga de los contactos...8

Más detalles

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm.

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. 3º parte En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. ELEMENTOS DEL CIRCUITO ELÉCTRICO Para poder relacionar las

Más detalles

RELACIÓN DE MATERIAL NECESARIO PARA LA REALIZACIÓN DE LAS PRÁCTICAS:

RELACIÓN DE MATERIAL NECESARIO PARA LA REALIZACIÓN DE LAS PRÁCTICAS: RELACIÓN DE MATERIAL NECESARIO PARA LA REALIZACIÓN DE LAS PRÁCTICAS: Para la realización de las prácticas, necesitaremos el siguiente material: 1 5 m de cable de hilos de cobre de pequeña sección. Cartón

Más detalles

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé?

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé? 2do Medio > Física Ley de Hooke Resortes y fuerzas Analiza la siguiente situación Aníbal trabaja en una fábrica de entretenimientos electrónicos. Es el encargado de diseñar algunas de las máquinas que

Más detalles

MÁQUINAS ELECTRICAS DE C.C y C.A.. ELECTROMECANICA UNIDAD 4 Generadores de Corriente Continua. Partes de una maquina eléctrica de corriente continua.

MÁQUINAS ELECTRICAS DE C.C y C.A.. ELECTROMECANICA UNIDAD 4 Generadores de Corriente Continua. Partes de una maquina eléctrica de corriente continua. Página19 UNIDAD 4 Generadores de Corriente Continua. Introducción En la actualidad, la generación de C.C. se realiza mediante pilas y acumuladores o se obtiene de la conversión de C.A. a C.C. mediante

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte

Más detalles

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto.

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. TEMA V TEORÍA DE CUADRIPOLOS LINEALES 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. 5.3.-Parámetros de Admitancia a cortocircuito. 5.4.-Parámetros Híbridos (h, g). 5.5.-Parámetros

Más detalles

CÁLCULO DEL CIRCUITO DEL MOTOR DEL ASCENSOR DE UN EDIFICIO DE VIVIENDAS

CÁLCULO DEL CIRCUITO DEL MOTOR DEL ASCENSOR DE UN EDIFICIO DE VIVIENDAS CÁLCULO DEL CIRCUITO DEL MOTOR DEL ASCENSOR DE UN EDIFICIO DE VIVIENDAS Profesores: Martínez Antón, Alicia (almaran@csa.upv.es) Blanca Giménez, Vicente (vblanca@csa.upv.es) Castilla Cabanes, Nuria (ncastilla@csa.upv.es)

Más detalles

Esquema de una F.A. con un regulador fijo, de tres terminales

Esquema de una F.A. con un regulador fijo, de tres terminales EL REGULADOR DE TENSION INTEGRADO El regulador o estabilizador de tensión es un circuito integrado que se encarga de reducir el rizado y de proporcionar una tensión de salida del valor exacto que queremos.

Más detalles

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE MAGNETISMO RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DE LOS TERMINALES CARACTERÍSTICAS DEL NUCLEO LEY DE AMPERE MAGNITUDES MAGNÉTICAS MAGNITUDES ELÉCTRICAS Longitud l Campo magnético H Longitud

Más detalles

EFECTOS DE LA CORRIENTE ELECTRICA

EFECTOS DE LA CORRIENTE ELECTRICA EFECTOS DE LA CORRIENTE ELECTRICA En la siguiente tabla se resumen los daños en el organismo que podría originar en una persona adulta, la circulación de una corriente eléctrica de 50-60 Hz debida al contacto

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA Mediciones Eléctricas Ing. Roberto Solís Farfán CIP 84663 APARATOS DE MEDIDA ANALOGICOS Esencialmente el principio de funcionamiento

Más detalles