Tamaño: px
Comenzar la demostración a partir de la página:

Download ""

Transcripción

1

2 OCION A (elegr opcones) Ejercco 1 EJERCICIOS En una vaquería, un rebaño de 0 vacas se come, en 15 días 400Kg de penso. Determnar: a) Cuántos días durarán 400 kg a 75 vacas b) Cuantas vacas se comerán los 400 kg de penso en 1 días. c) Cuantos klos de penso se comerán 43 vacas en 5 días. a) 15 b) Das Vacas c)

3 Kg de penso Ejercco Un clente de un supermercado ha pagado un total de 16.5 por 10 ltros de leche, 7 kg de jamón serrano y 15 ltros de acete de olva. Calcular el preco de cada artículo sabendo que 1 ltro de acete cuesta el trple que 1 ltro de leche y que 1 kg de jamón cuesta gual que 3 ltros de acete más 1 ltro de leche y + 15z y z 3 y y 3z y y y + 15z /1ltro z 3 z z 3.9 /1ltro y 3z + y y 13 / klo leche acete jamón Ejercco 3 En el pato de una casa hay dos árboles. Uno de ellos está a una dstanca de 6 metros de la puerta de la casa. S nos stuamos en él, observamos que el ángulo que forman las líneas que unen éste árbol con la puerta de la casa y éste árbol con el otro es de 5º. S vamos al segundo árbol, observamos que el ángulo que forman las líneas que unen éste árbol con la puerta de la casa y con el otro árbol es de 30º. Calcula la dstanca desde la puerta de la casa al segundo de los árboles y la dstanca que separa a los dos árboles.

4 y tg5 º y 6 tg5º tg º 4. tg30º metros metros Ejercco 4 En una facultad unverstara, los alumnos se clasfcan según su seo y su gusto por la práctca de algún deporte, resultando ractca deporte No practca Total deporte Varón Mujer Total A la vsta de estos datos, calcula la probabldad de que elegdo un alumno al azar: a) ractque deporte. b) Sea mujer y no practque deporte. c) ractque deporte sabendo que es mujer. d) Sea varón s el alumno elegdo no practca deporte. (r actca Deporte) 354 a) Total 335 b) ( No ractca Deporte Sea mujer) % ( r actca Deporte) % c) r actque % d) Varon No deporte mujer practca % 636 deporte ( r actque Deporte) ( mujer) ( mujer) ( No r actca Deporte) ( Varon) ( No r actca Deporte)

5 Opcón B(elegr ejerccos) Ejercco 5 Una persona compró certo número de objetos por 450 euros. Con ese msmo dnero, podría haber comprado 5 objetos más, s cada uno hubese costado 3 euros menos. Cuántos objetos compró? Cuánto costó cada objeto? nº de objetos y y y preco del objeto ( + 5)( y 3) 450 ( + 5)( y 3) ( y 3) y y 15 0 y y y y 15y 0 5y ( 3) 4 ( 70) 1 15y y ( 3) ± 3 ± ± y y y 15 No Valda objetos S y 18 entonces 5 18 y 18 E jercco 6 3y ± 33 Halla la ecuacón de la recta que pasa por punto (1,1) y es paralela a la recta que pasa por los puntos A(1,) y B(3,-4). La recta r pasa por los puntos A y B, calculo su pendente: A(1,) Δy ( 4) 6 r y a + b r a 3 B( 3, 4) Δ 3 1 y al ser rectas paralelas, tendrán la msma pendente, y por tanto la recta será la msma cambando el térmno ndependente (b).utlzo el punto (1,1) (1,1) b b b r y 3 a

6 Ejercco 7 Sabendo que la epresón del peso es mg, donde m es la masa y g la gravedad, y que la fuerza de la gravedad en la terra vale 9,81 y en Venus 8,85. a) Cuánto pesaría Antono en Venus s su peso en la terra es de 70 kg? b) Escrbe y representa gráfcamente la funcón que permte calcular el peso en Venus a partr del peso terrestre. gtierra 9.81m s m g Datos g 8.85m s TIERRA 70 a) TIERRA m gtierra m g 9.81 TIERRA m g kg Al ser Venus, un planeta más pequeño que la terra, la fuerza de gravedad que ejerce Venus es más pequeña que la fuerza de la gravedad de la terra, por tanto en Venus se pesa menos. TIERRA b) TIERRA m g venus donde : m gtierra TIERRA g 8.85 g TIERRA TIERRA or tanto: TIERRA gtierra gtierra TIERRA Representamos la sguente funcón, que me relacona los pesos entre ambos planetas: ESO de Venus GRAFICA ESO de la Terra

7 Ejercco 8 El porcentaje de poblacón actva dedcada a la agrcultura en 30 países afrcanos es: a)agrupa estos datos en cnco ntervalos de gual ampltud b)calcula la meda, moda y medana c)calcula la varanza, la desvacón típca y el coefcente de varacón. X f Marca de Frecuenca Frecuenca X f X f la clase relatva absoluta (h) acumulada [14-30) [30-46) [46-6) [6-78) [78-94) La marca de la clase será el valor medo de cada ntervalo. (Cogemos un ntervalo a elegr). [ 14 30) La meda: X f 1844 X n 30 Moda (es el valor que más se repte) 17, se encuentra en el ntervalo[ 14 30). N 30 Medana: m 15, Se busca en la frecuenca absoluta acumulada, y corresponde al ntervalo de [6-78). Varanza: X f σ 1936 (61.46) n 30 Desvacón típca: X f 1936 σ (61.46) n 30 σ Coefcente de Varacón: C. V 0.59 X 61.46

EJERCICIOS. OPCION A (elegir 2 opciones) Ejercicio 1

EJERCICIOS. OPCION A (elegir 2 opciones) Ejercicio 1 EJERCICIOS OCION A (eler opcones) Ejercco 1 En una vaquería, un rebaño de vacas se come, en días 4K de penso. Determnar: a) Cuántos días durarán 4 k a 75 vacas b) Cuantas vacas se comerán los 4 k de penso

Más detalles

OCION elegr opcones) Ejercco 1 EJERCICIOS Un rombo tene 30 m de superfce su ángulo menor es de 4º, Calcule la longtud de su lado. Ejercco S sumamos uno a un número calculamos su raíz cuadrada postva, se

Más detalles

Prueba de Evaluación Continua

Prueba de Evaluación Continua Estadístca Descrptva y Regresón y Correlacón Prueba de Evaluacón Contnua 1-III-18 1.- Dada la varable x y la nueva varable y=a+bx, ndcar (demostrándolo) la expresón exstente entre las respectvas medas

Más detalles

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y ENUNCADOS DE LOS EJERCCOS PROPUESTOS EN 011 EN MATEMÁTCAS APLCADAS A LAS CENCAS SOCALES. EJERCCO 1 a (5 puntos Raconalce las epresones y. 7 b (5 puntos Halle el conjunto de solucones de la necuacón EJERCCO

Más detalles

EJERCICIOS: Tema 3. Los ejercicios señalados con.r se consideran de conocimientos previos necesarios para la comprensión del tema 3.

EJERCICIOS: Tema 3. Los ejercicios señalados con.r se consideran de conocimientos previos necesarios para la comprensión del tema 3. EJERCICIOS: Tema 3 Los ejerccos señalados con.r se consderan de conocmentos prevos necesaros para la comprensón del tema 3. Ejercco 1.R Dos bblotecas con el msmo fondo bblográfco especalzado ofrecen las

Más detalles

CURSO DE VERANO C.O.U II/ 2º BACHILLERATO I ESTADISTICA

CURSO DE VERANO C.O.U II/ 2º BACHILLERATO I ESTADISTICA ESTADISTICA 1º.- La sguente tabla muestra las frecuencas relatvas de respuestas contestadas en un test por 50 personas. Intervalo Marca de clase Frecuenca Frecuenca absoluta relatva 0-0.1 5-9 0.3 10-1

Más detalles

Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL

Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL Relacón de Ejerccos nº 2 ( tema 5) Curso 2002/2003 1) Las cento trenta agencas de una entdad bancara presentaban, en el ejercco 2002, los sguentes datos correspondentes

Más detalles

Estadística Unidimensional: SOLUCIONES

Estadística Unidimensional: SOLUCIONES 4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas

Más detalles

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia MAT-3 Estadístca I Tema : Meddas de Dspersón Facltador: Félx Rondón, MS Insttuto Especalzado de Estudos Superores Loyola Introduccón Las meddas de tendenca central son ndcadores estadístcos que resumen

Más detalles

ACTIVIDADES ESTADÍSTICA UNIDIMENSIONAL. a) Calcula la temperatura media y la temperatura mediana de la semana.

ACTIVIDADES ESTADÍSTICA UNIDIMENSIONAL. a) Calcula la temperatura media y la temperatura mediana de la semana. Matemátcas Aplcadas a las Cencas Socales I ACTIVIDADES ESTADÍSTICA UNIDIMENSIONAL 1) Se ha meddo la temperatura en grados centígrados la presón atmosférca en mm en una cudad durante una semana obtenéndose

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Págna 0 PRACTICA Meda y desvacón típca 1 Las edades de los estudantes de un curso de nformátca son: 17 17 18 19 18 0 0 17 18 18 19 19 1 0 1 19 18 18 19 1 0 18 17 17 1 0 0 19 0 18 a) Haz una tabla

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

b) Encuentra el criterio de formación de la siguiente sucesión recurrente:

b) Encuentra el criterio de formación de la siguiente sucesión recurrente: Ejercco nº.- Calcula, utlzando la dencón de logartmo: log log log b) Halla el valor de, aplcando las propedades de los logartmos: log log log Ejercco nº.- Avergua el térmno general de la sucesón: ; 0,;

Más detalles

b) Encuentra el criterio de formación de la siguiente sucesión recurrente:

b) Encuentra el criterio de formación de la siguiente sucesión recurrente: Ejercco nº.- Calcula, utlzando la dencón de logartmo: log log log b) Halla el valor de, aplcando las propedades de los logartmos: log log log Solucón: b) log log log 9 log log log log log 9 9 Ejercco nº.-

Más detalles

ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR FUNDAMENTOS DE MATEMÁTICAS

ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR FUNDAMENTOS DE MATEMÁTICAS IES ÍTACA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR FUNDAMENTOS DE MATEMÁTICAS HOJA 18: ESTADÍSTICA 1. El número de hermanos de los alumnos de una clase es el sguente: 1 3 1 1 1 1 1 1 1 1 3 1 3 5 a)

Más detalles

MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc.

MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc. TEMA. INSTRUMENTOS FÍSICO-MATEMÁTICOS.. SISTEMAS DE MAGNITUDES Y UNIDADES. CONVERSIÓN DE UNIDADES. MAGNITUD: propedad o cualdad físca susceptble de ser medda y cuantfcada. Ejemplos: longtud, superfce,

Más detalles

5ª Parte: Estadística y Probabilidad

5ª Parte: Estadística y Probabilidad ª Parte: Estadístca y Probabldad. Las notas de los alumnos de una clase son:,,,, 6, 7,,,,,,,, 7,,,, 6,, Haz una tabla de frecuencas. Solucón Varable Frecuencas absolutas Frecuencas relatvas estadístca

Más detalles

14 EJERCICIOS RESUELTOS ESTADÍSTICA

14 EJERCICIOS RESUELTOS ESTADÍSTICA 1 EJERCICIOS RESUELTOS ESTADÍSTICA Pág. 1 Meda y desvacón típca 1 El número de faltas de ortografía que cometeron un grupo de estudantes en un dctado fue: 0 1 0 1 0 0 1 1 5 1 5 0 1 0 0 0 0 1 1 0 0 0 5

Más detalles

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas y Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL La estadístca undmensonal trata de resumr la nformacón contenda en una tabla que contene nformacón de una sola varable en unos pocos números. Las meddas de poscón pueden ser:

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

2 Dos tipos de parámetros estadísticos

2 Dos tipos de parámetros estadísticos Dos tpos de parámetros estadístcos Págna 198 1. Calcula la meda, la medana y la moda de cada una de estas dstrbucones estadístcas: a) 4, 5, 6, 6, 6, 6, 7, 11, 1, 17 b), 1, 6, 9,, 8, 9,, 14, c), 3, 3, 3,

Más detalles

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos

Más detalles

9Soluciones a los ejercicios y problemas

9Soluciones a los ejercicios y problemas 38 S a todos los datos de una dstrbucón le sumamos un msmo número, qué le ocurre a la meda? Y a la desvacón típca? Y s multplcamos todos los datos por un msmo número? Llamamos a al valor sumado a cada

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

EJERCICIOS RESUELTOS TEMA 2

EJERCICIOS RESUELTOS TEMA 2 EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones;

Más detalles

17/02/2015. Ángel Serrano Sánchez de León

17/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León 1 Índce Introduccón Varables estadístcas Dstrbucones esde frecuencas c Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca,

Más detalles

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez Problema La sguente tabla epresa la estatura en cm. de soldados: Talla 5 56 60 6 68 6 80 8 88 Soldados 6 86 50 8 95 860 85 6 9 a) Haz un hstograma que represente la estatura en metros de los soldados.

Más detalles

TEMA 1.- CONCEPTOS BÁSICOS

TEMA 1.- CONCEPTOS BÁSICOS TEMA 1.- CONCEPTOS BÁSICOS 1.1.- Cuestones tpo test 1.- En las encuestas personales puede codfcarse, por ejemplo, con un cero las que son contestadas por una mujer y con un uno las que lo son por un varón.

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS SEPTIEMBRE 2014 Código asignatura: EXAMEN TIPO TEST MODELO B DURACION: 2 HORAS.

INTRODUCCIÓN AL ANÁLISIS DE DATOS SEPTIEMBRE 2014 Código asignatura: EXAMEN TIPO TEST MODELO B DURACION: 2 HORAS. eptembre 04 EAMEN MODELO B ág. INTRODUCCIÓN AL ANÁLII DE DATO ETIEMBRE 04 Códgo asgnatura: 60037 EAMEN TIO TET MODELO B DURACION: HORA olucones 0 4 40 30 0 0 0 44 4 39 6 4 36 37 3 8 00 0 0 03 04 Nº de

Más detalles

EJERCICIOS PROPUESTOS TEMAS 1 Y 2

EJERCICIOS PROPUESTOS TEMAS 1 Y 2 EJERCICIOS PROPUESTOS TEMAS 1 Y 2 1.- Indca para los sguentes caracteres s son varables (dferencando entre dscretas y contnuas) o atrbutos, y la escala de medda a la que pertenecen: a) Nvel de estudos

Más detalles

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN COLEGIO IGLÉS DEPARTAMETO IVEL: CUARTO MEDIO PSU. UIDAD: ESTADISTICA 3 PROFESOR: ATALIA MORALES A. ROLADO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. MEDIDAS DE DISPERSIÓ Las meddas de dspersón dan

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

PyE_ EF1_TIPO1_

PyE_ EF1_TIPO1_ SEMESTRE 00- TIPO DURACIÓN MÁIMA.5 HORAS DICIEMBRE DE 00 NOMBRE. El índce de clardad se determnó en los celos de Morelos, para cada uno de los 365 días de un año, obtenéndose los sguentes datos. Límtes

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un epermento, un número real.

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. S A es un suceso de probabldad 0.3, la probabldad de su suceso contraro es: a) 0. b) 1.0 c) 0.7 (Convocatora juno 006. Eamen tpo H) S A es un suceso, la probabldad de su suceso

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

Agrupa los datos en intervalos de amplitud 8. Elabora una tabla similar a la anterior !!!""#""!!!

Agrupa los datos en intervalos de amplitud 8. Elabora una tabla similar a la anterior !!!#!!! Undad 15 REPASO DE ESTADÍSTICA! 11 Resuelve tú ( Pág "#$ ) sdo: Las puntuacones de una prueba de ntelgenca aplcada a los 75 alumnos anterores han 87 105 88 103 114 15 108 107 118 114 19 100 106 113 105

Más detalles

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Unversdad de onora Departamento de Matemátcas Área Económco Admnstratva Matera: Estadístca I Maestro: Dr. Francsco Javer Tapa Moreno emestre: 016-1 Hermosllo, onora, a 17 de 016. Introduccón En la clase

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es

Más detalles

Unidad 17 Distribuciones de probabilidad. Distribuciones binomial y normal

Unidad 17 Distribuciones de probabilidad. Distribuciones binomial y normal Undad 7 Dstrbucones de probabldad. Dstrbucones bnomal y normal PÁGINA 89 SOLUCIONES. La probabldad es: 4 P(V y M) = = 8. Sabemos que P( Defectuoso) = 0,05. El número de chps que cabe esperar defectuosos

Más detalles

Ejercicios y Talleres. puedes enviarlos a

Ejercicios y Talleres. puedes enviarlos a Ejerccos y Talleres puedes envarlos a klasesdematematcasymas@gmal.com www.klasesdematematcasymas.com Hallar: 1. Altura Mayor: 1,93. Altura Menor: 1, 3. Rango: 1,93-1, 0,7 4. Formar ntervalos: m Rango 5.

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias.

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias. Estadístca (Q) Dana M. Kelmansky 5 Varables Aleatoras Nos nteresa asgnar probabldades a valores numércos obtendos a partr de fenómenos aleatoros, es decr a varables aleatoras. Por ejemplo, calcular la

Más detalles

Tema 1: Estadística Descriptiva Unidimensional

Tema 1: Estadística Descriptiva Unidimensional Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde

Más detalles

Estadística aplicada a las ciencias sociales. Examen Febrero de 2008 primera semana

Estadística aplicada a las ciencias sociales. Examen Febrero de 2008 primera semana Estadístca alcada a las cencas socales. Examen Febrero de 008 rmera semana Ejercco. - En la sguente tabla, se reresentan los datos de las edades de los trabajadores de una gran emresa. Gruos de edad Nº

Más detalles

Regresión y Correlación

Regresión y Correlación Regresón Correlacón.- El número de turstas (en mllones) entrados en España mensualmente durante los años 00 00 se epone en la sguente estadístca. Nº Turstas 00,76,6,9 3,8 4,4 4,8 8,93 9,98 5,9 4,34,6 3,65

Más detalles

Tema 11: Estadística.

Tema 11: Estadística. Tema 11: Estadístca. Ejercco 1. Un fabrcante de tornllos desea hacer un control de caldad. Para ello, recoge 1 de cada 100 tornllos producdos y lo analza. a) Cuál es la poblacón? b) Cuál es la muestra?

Más detalles

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución.

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución. Ejercco nº En una empresa de teleonía están nteresados en saber cuál es el número de aparatos teleóncos (ncludos teléonos móvles) que se tene en las vvendas. Se hace una encuesta y, hasta ahora, han recbdo

Más detalles

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto:

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto: -.GEOMETRÍA.- Ejercco nº 1.- Calcula el lado que falta en este trángulo rectángulo: Ejercco nº 2.- En los sguentes rectángulos, se dan dos catetos y se pde la hpotenusa (s su medda no es exacta, con una

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

PyE_ EF1_TIPO1_

PyE_ EF1_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Una empresa dedcada al transporte y dstrbucón de mercancías, tene una plantlla de 50 trabajadores. Durante el últmo año se ha observado que 5 trabajadores han faltado un solo día

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ C. DE LA ESCUELA PREPARATORIA

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ C. DE LA ESCUELA PREPARATORIA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ C. DE LA ESCUELA PREPARATORIA PROBLEMARIO DE ESTADÍSTICA MÓDULO I. REPRESENTACIÓN DE DATOS MÓDULO II. MEDIDAS DE TENDENCIA CENTRAL ELABORADO

Más detalles

UNIDAD 12: Distribuciones bidimensionales. Correlación y regresión

UNIDAD 12: Distribuciones bidimensionales. Correlación y regresión Matemátcas aplcadas a las Cencas Socales UNIDAD 1: Dstrbucones bdmensonales. Correlacón regresón ACTIVIDADES-PÁG. 68 1. La meda la desvacón típca son: 1,866 0,065. Los jugadores que se encuentran por encma

Más detalles

MEDIDAS DE TENDENCIA CENTRAL: MEDIA ARITMÉTICA

MEDIDAS DE TENDENCIA CENTRAL: MEDIA ARITMÉTICA .. MEDIDAS DE POSICIÓ... MEDIDAS DE TEDECIA CETRAL: MEDIA ARITMÉTICA EJEMPLO : S tenemos el sguente conjunto de datos... 0, 9, 8, 0, 9, 9, 0, 9, 0, 9... y deseamos encontrar un valor resuma y represente

Más detalles

b) Realiza el diagrama de dispersión c) Calcula media y desviación típica de cada variable 2

b) Realiza el diagrama de dispersión c) Calcula media y desviación típica de cada variable 2 Ejercco 1: Varable dscreta. Datos con recuencas. Tabla de doble entrada En una clase compuesta por alumnos se ha hecho un estudo sobre el número de horas daras de estudo X el número de suspensos Y, obtenéndose

Más detalles

Estadístca Edad meda para los ccos: 18+ 8 1+ 1 0+ 10 1+ 5 + 3 1016 = = 0,3años. + 8+ 1+ 10+ 5+ 50 La edad meda para las ccas: 18+ 1+ 6 0+ 1+ 17 + 1 3 1071 = = 1, años. + + 6+ + 17+ 1 50 La edad meda del

Más detalles

16/02/2015. Ángel Serrano Sánchez de León

16/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León Índce Introduccón Varables estadístcas Dstrbucones de frecuencas Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca, armónca,

Más detalles

Modelos lineales Regresión simple y múl3ple

Modelos lineales Regresión simple y múl3ple Modelos lneales Regresón smple y múl3ple Dept. of Marne Scence and Appled Bology Jose Jacobo Zubcoff Modelos de Regresón Smple Que tpo de relacón exste entre varables Predccón de valores a partr de una

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

TEMA 2: MAGNITUDES ALEATORIAS

TEMA 2: MAGNITUDES ALEATORIAS MÉTODOS ESTADÍSTICOS PARA LA EMPRESA TEMA : MAGNITUDES ALEATORIAS..- Varable aleatora. Varables dscretas y contnuas..- Dstrbucón de probabldad de una varable aleatora.3.- Característcas de las varables

Más detalles

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información IV. Base de Datos CAPÍTULO IV. MEDICIÓN De acuerdo con Székely (2005), exste dentro del período 950-2004 nformacón representatva a nvel naconal que en algún momento se ha utlzado para medr la pobreza.

Más detalles

1. Notación y tabulación

1. Notación y tabulación Tema 2: Descrpcón Unvarante. otacón y tabulacón 2. Descrpcón gráfca 3. Descrpcón numérca. Momentos estadístcos. Meddas de poscón. Meddas de dspersón v. Varable tpfcada v. Meddas de forma v. Meddas de concentracón

Más detalles

, x es un suceso de S. Es decir, si :

, x es un suceso de S. Es decir, si : 1. Objetvos: a) Aprender a calcular probabldades de las dstrbucones Bnomal y Posson usando EXCEL. b) Estudo de la funcón puntual de probabldad de la dstrbucón Bnomal ~B(n;p) c) Estudo de la funcón puntual

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN PREPARATORIA No. 3

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN PREPARATORIA No. 3 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN PREPARATORIA No. 3 PROBABILIDAD Y ESTADISTICA LABORATORIO PARA EXAMENES EXTRAORDINARIOS INSTRUCCIONES.- CONTESTE CADA UNO DE LOS SIGUIENTES PROBLEMAS COMPROBANDO SU RESPUESTA

Más detalles

INICIACIÓN A LA ESTADÍSTICA. ACTIVIDADES DE AUTOEVALUACIÓN DE LA UNIDAD ESTADÍSTICA. (SOLUCIONES)

INICIACIÓN A LA ESTADÍSTICA. ACTIVIDADES DE AUTOEVALUACIÓN DE LA UNIDAD ESTADÍSTICA. (SOLUCIONES) ACTIVIDADES DE AUTOEVALUACIÓ DE LA UIDAD ESTADÍSTICA. (SOLUCIOES) 1. D, en cada caso, cuál es la varable que se quere estudar y especfca de qué tpo es: Tempo dedcado a las tareas doméstcas por parte de

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Hemos estudado dferentes meddas numércas correspondentes a conjuntos de datos, entre otras, estudamos la meda, la desvacón estándar etc. Ahora vamos a dstngur entre meddas numércas

Más detalles

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas.

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas. UIDAD 3: Meddas estadístcas Las meddas estadístcas o parámetros estadístcos son valores representatvos de una coleccón de datos y que resumen en unos pocos valores la normacón del total de datos. Estas

Más detalles

1. Variable aleatoria. Clasificación

1. Variable aleatoria. Clasificación Tema 7: Varable Aleatora Undmensonal 1. Varable aleatora. Clasfcacón. Caracterzacón de una varable aleatora. Varable Aleatora dscreta. Varable Aleatora contnua 3. Característcas de una varable aleatora.

Más detalles

Tema 1:Descripción de una variable. Tema 1:Descripción de una variable. 1.1 El método estadístico. 1.1 El método estadístico. Describir el problema

Tema 1:Descripción de una variable. Tema 1:Descripción de una variable. 1.1 El método estadístico. 1.1 El método estadístico. Describir el problema Tema :Descrpcón de una varable Tema :Descrpcón de una varable. El método estadístco. Descrpcón de conjuntos de datos Dstrbucones de frecuencas. Representacón gráfca Dagrama de barras Hstograma. Meddas

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca www.aulatecnologa.com 1 ETADÍTICA DECRIPTIVA Lo prmero que buscamos con la Estadístca es el tratamento matemátco a partr de una nformacón epermental. Cuando queremos observar la evolucón de

Más detalles

Estadística. Problemas de Estadística 1º Ciclo ESO Departamento de Matemáticas Raúl González Medina

Estadística. Problemas de Estadística 1º Ciclo ESO Departamento de Matemáticas  Raúl González Medina 1 Estadístca 01.- Indca que varables son cualtatvas y cuales cuanttatvas: a) Comda Favorta. b) Profesón que te gusta. c) Número de goles marcados por tu equpo favorto en la últma temporada. d) Número de

Más detalles

Ejercicios y Talleres. puedes enviarlos a

Ejercicios y Talleres. puedes enviarlos a Ejerccos y Talleres puedes envarlos a klasesdematematcasymas@gmal.com www.klasesdematematcasymas.com EJERCICIOS DE REGRESIONES Y ANALISIS DE COVARIANZA Analzar la nformacón recoplada por medo de los dferentes

Más detalles

Variable Estadística

Variable Estadística Varable Estadístca.- Los afconados al bésbol aprenden de memora las estadístcas de este juego. Por ejemplo, cuántos home runs (golpes que envían la pelota fuera del campo de juego) son necesaros para lderar

Más detalles

CAPÍTULO III. METODOLOGÍA 1. sismos pasados, por lo que este se calculara evaluando primero la tasa de actividad sísmica

CAPÍTULO III. METODOLOGÍA 1. sismos pasados, por lo que este se calculara evaluando primero la tasa de actividad sísmica CAPÍTULO III. METODOLOGÍA 1 III.1 Evaluacón del pelgro sísmco La determnacón drecta del pelgro sísmco rara vez se puede hacer debdo a la falta de nformacón en cuanto a las aceleracones que se han producdo

Más detalles

Aspectos fundamentales en el análisis de asociación

Aspectos fundamentales en el análisis de asociación Carrera: Ingenería de Almentos Perodo: BR01 Docente: Lc. María V. León Asgnatura: Estadístca II Seccón A Análss de Regresón y Correlacón Lneal Smple Poblacones bvarantes Una poblacón b-varante contene

Más detalles

MEDIDAS DESCRIPTIVAS

MEDIDAS DESCRIPTIVAS Tema 2: MEDIDAS DESCRIPTIVAS DE LOS DATOS 1. MEDIDAS DE CETRALIZACIÓ: Meda Medana Moda Cuantles Otras 2. MEDIDAS DE DISPERSIÓ: Desvacón típca Varanza Rango Otras 3. MEDIDAS DE FORMA: Asmetría Apuntamento

Más detalles

GUÍA DE APOYO AL APRENDIZAJE N 2

GUÍA DE APOYO AL APRENDIZAJE N 2 GUÍA E APOYO AL APREIZAJE Meddas de Tendenca Central ó de Resumen Las meddas de resumen son valores de la varable que permten resumr la normacón que hay en una tabla undamentalmente estas meddas se usan

Más detalles

3º ESO ESTADÍSTICA DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ESTADÍSTICA

3º ESO ESTADÍSTICA DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ESTADÍSTICA 3º ESO ESTADÍSTICA DEPARTAMETO DE MATEMÁTICAS. COPIRRAI_Julo César Abad Martínez-Losa ESTADÍSTICA 1.- POBLACIÓ, MUESTRA y CARACTERES ESTADÍSTICOS.- Poblacón: Son todos los ndvduos sobre los que se realza

Más detalles

unidad 12 Estadística

unidad 12 Estadística undad 1 Estadístca Qué es una tabla de frecuencas Págna 1 Al número de veces que se repte un dato se le denomna frecuenca de ese dato. Una tabla de frecuencas es una tabla en la que cada valor de la varable

Más detalles

Probabilidad Grupo 23 Semestre Segundo examen parcial

Probabilidad Grupo 23 Semestre Segundo examen parcial Probabldad Grupo 3 Semestre 015- Segundo examen parcal La tabla sguente presenta 0 postulados, algunos de los cuales son verdaderos y otros son falsos. Analza detendamente cada postulado y elge tu respuesta

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA 1.

Más detalles

4) Ahora elaboremos la tabla de distribución de frecuencias: TABLA DE DISTRIBUCIÓN DE FRECUENCIAS DE LOS PESOS DE LOS ESTUDIANTES MERU CALIDAD.

4) Ahora elaboremos la tabla de distribución de frecuencias: TABLA DE DISTRIBUCIÓN DE FRECUENCIAS DE LOS PESOS DE LOS ESTUDIANTES MERU CALIDAD. APELLIDOS Y NOMBRES:... EJERCICIO: Se han regstrado dferentes pesos de los alumnos del segundo grado de una Insttucón Educatva en klogramos. 40 41 42 50 40 48 41 43 39 40 47 46 49 49 50 39 50 48 42 45

Más detalles

Lección 4. Ejercicios complementarios.

Lección 4. Ejercicios complementarios. Introduccón a la Estadístca Grado en Tursmo Leccón 4. Ejerccos complementaros. Ejercco 1 (juno 06). La nformacón relatva al mes de enero sobre los ngresos (X) y los gastos (Y), expresados en mles de euros,

Más detalles

MATEMÁTICAS 3º ESO PENDIENTES

MATEMÁTICAS 3º ESO PENDIENTES MATEMÁTICAS º ESO PENDIENTES Tema 1: Números Tema : Potencas y radcales Tema : Proporconaldad Tema 4: Lenguaje algebraco Solucones Solucones Solucones Solucones Tema : Ecuacones y sstemas Tema 6: Sucesones

Más detalles

. c) Estimar qué gastos de publicidad se han de realizar para conseguir unas ventas de , es

. c) Estimar qué gastos de publicidad se han de realizar para conseguir unas ventas de , es 1.- En una muestra de 64 famlas se ha estudado el número de membros en edad laboral (X) y el número de ellos que están en actvo (Y). Los resultados son los de la tabla de doble entrada: X/Y 1 3 1 6 0 0

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles