Cálculo Diferencial. libro Cálculo I de los autores Larson, R., Hostetler, R.P., y Edwards, B. Ediciones Pirámide del año 2002

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cálculo Diferencial. libro Cálculo I de los autores Larson, R., Hostetler, R.P., y Edwards, B. Ediciones Pirámide del año 2002"

Transcripción

1 Cálclo Diferencial 1. Gráficas y modelos Teoría: Ver páginas y 5 del capítlo P del libro: Preparación para el Cálclo del libro Cálclo I de los atores Larson, R., Hostetler, R.P., y Edwards, B. Ediciones Pirámide del año 00 En cada no de los sigientes ejercicios estdiar si eiste simetría respecto de los ejes o del origen y calclar las intersecciones con los ejes: 1. y =.. y =. 3. y = y = + 1. : La fnción y=f() es simétrica respecto el eje de ordenadas si f(-)=f() 1. Es simétrica respecto del eje de ordenadas, es decir, es na fnción par pes: y = (-) =. Cálclo de las intersecciones con el eje de abscisas: y = 0 = = = 0 los pntos de = (,0 ) intersección con el eje son (, 0) con el eje y qe es (0, -). = 0 y =-, lego hay n solo pnto de intersección La gráfica de na crva dada mediante ecación en e y es simétrica respecto el origen si al sstitir en ella por e y por -y reslta na ecación eqivalente.. Es simétrica respecto del origen, es decir, es na fnción impar pes: y = y =, verificándose qe = = y ( ) Unidad Docente de Matemáticas de la E.T.S.I.T.G.C. 1

2 No corta al eje de abscisas pes y 0 para calqier valor de. Tampoco corta al eje de ordenada pes para = 0, no está definido el cociente 0 La fnción y=f() es simétrica respecto el eje de ordenadas si f(-)=f() La fnción y=f() es simétrica respecto el origen si f(-) = -f() 3. No es simétrica ni respecto del eje de ordenadas (no es na fnción par), ni respecto del origen (no es na fnción impar) pes: - ( ) + 3 = y, -y = 0 y = - 3, Cálclo de la intersección con el eje de abscisas: y = 0 = = 0 = = + 3 = 13, lego hay n pnto de intersección con el eje de abscisas qe es (13, 0) lego hay n solo pnto de intersección con el eje y qe es (0, - 3). La fnción y=f() es simétrica respecto el origen si f(-) = -f(). La fnción es simétrica respecto del origen pes: ( ) = + = - y +1 ( ) 1 Cálclo de las intersecciones con el eje de abscisas: y = 0 0 = = 0, lego solo hay n pnto de intersección con el eje de + 1 abscisas qe es el origen (0, 0) (obviamente también es n pnto de corte con el eje de ordenadas). =0 y =0, lego hay n solo pnto de intersección con el eje y qe es el origen (0, 0). Unidad Docente de Matemáticas de la E.T.S.I.T.G.C.

3 En los ejercicios 5-8 disctir si la afirmación es verdadera o falsa. Si es falsa eplicar la razón o dar n contraejemplo qe ponga de manifiesto la falsedad del ennciado. 5. Si (1,-) es n pnto de na crva simétrica respecto del eje, entonces (-1,-) es también n pnto de dicha crva. 6. Si (1,-) es n pnto de na crva simétrica respecto del eje y, entonces (-1,-) es también n pnto de dicha crva. 7. Si b ac > 0 y a 0, entonces la crva y = a + b + c tiene dos pntos de intersección con el eje abscisas. 8. Si b ac = 0 y a 0, entonces la crva y = a + b + c tiene solo n pnto de intersección con el eje abscisas. : La crva y=f() es simétrica respecto el eje de abscisas si y=f(-)=f() 5. Falso, dos pntos simétricos respecto del eje tiene la misma abscisa y ordenadas opestas. La crva en la qe ss pntos con abscisas opestas tienen la misma ordenada es simétrica respecto el eje de ordenadas. 6. Verdadero, dos pntos simétricos respecto del eje y tienen la misma ordenada y abscisas opestas. b ac discriminante en las raíces de na ecación de segndo grado 7. Verdadero, para y = 0 qeda na ecación de segndo grado con discriminante positivo qe da lgar a dos solciones distintas. b ac discriminante en las raíces de na ecación de segndo grado 8. Verdadero, para y = 0 qeda na ecación de segndo grado con discriminante nlo qe da lgar a na única solción. Unidad Docente de Matemáticas de la E.T.S.I.T.G.C. 3

4 9. Hallar na ecación para la crva formada por todos los pntos (, y) cya distancia al origen es K veces (K 1) la distancia al pnto (, 0). : ( ) = = ( ) + ( ) d A,B AB y y B A B A La distancia de n pnto (, y) al origen es + y y la distancia del pnto (, y) al pnto (, 0) es ( ) + y. En consecencia se debe verificar qe: + y =K ( ) + y Para obtener na epresión más sencilla elevamos al cadrado ambos miembros y simplificamos: ( 1 K ) + ( 1 K ) y + K + K = 0 Para K=3, la gráfica es Unidad Docente de Matemáticas de la E.T.S.I.T.G.C.

5 10. La resistencia en ohmios de 1000 m de hilo de cobre a 77ºF admite el modelo matemático y = 0.37 con donde representa el diámetro del hilo en mm. Representar el modelo en Derive o en na calcladora. Si se dplica el diámetro del hilo en qé factor aproimado varía la resistencia? : Si sstitimos = y = 0.37 = 0.37 = 0.37, ( ) lego aproimadamente la resistencia varía en ¼ Unidad Docente de Matemáticas de la E.T.S.I.T.G.C. 5

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS. Calcla los sigientes límites: sen() (a) cos() sen() (b) cos(). Calcla los sigientes límites a) e b) a) e e sen() e. Calcla los sigientes límites: tg() sen()

Más detalles

Tema 10 Ejercicios resueltos

Tema 10 Ejercicios resueltos Tema 1 Ejercicios reseltos 1.1. Determinar el campo de eistencia de las fnciones sigientes: - 1 f(, ) = log f(, ) = ç è + ø f(, ) + - = ( f (, ) = log - 3 ) + 1.. Calclar los límites de las sigientes fnciones

Más detalles

INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES UNIDAD 9 INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES.- Calclar las sigientes integrales definidas: a) d b) d c) e e ln(ln ) d d) e + d e) sen cos d f ) ( )cos d e + +.- Sean a = sen d y b = los valores de a y

Más detalles

a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( )

a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( ) Diferenciabilidad de fnciones de dos variables - Sea = f(,) na fnción real de variable real, se verifica qe: a) Si f admite derivada direccional en n pnto P en calqier dirección, entonces f es diferenciable

Más detalles

el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES

el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES el blog de mate de aida MI: apntes de vectores y rectas pág. VECTORES.- LOS EJES CARTESIANOS Y EL ORIGEN El eje horizontal se llama eje de abscisas y el eje vertical se llama eje de ordenadas. El pnto

Más detalles

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez Criterio de la segnda derivada para fnciones de dos variables por Sergio Roberto Arzamendi Pérez Sea la fnción f de dos variables definida por f (, ) contina de primera segnda derivadas continas en s dominio,

Más detalles

; implícitas: x = 0. z. ; implícitas: -x+3y+2z = 0. z. , en general.

; implícitas: x = 0. z. ; implícitas: -x+3y+2z = 0. z. , en general. Solciones de la hoja Espacio Vectorial Crso 9- - En cada caso, determinar si F es n sbespacio ectorial de R En caso afirmatio, bscar na base nas ecaciones implícitas paramétricas de F F,, R /, R a) b)

Más detalles

TEMA 7 VECTORES MATEMÁTICAS 1

TEMA 7 VECTORES MATEMÁTICAS 1 TEMA 7 VECTORES MATEMÁTICAS TEMA 7 VECTORES 7. LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un ector es n segmento orientado. Un ector AB qeda determinado por dos pntos, origen A y extremo B. Elementos de

Más detalles

VECTORES - PRODUCTO ESCALAR - 1 -

VECTORES - PRODUCTO ESCALAR - 1 - VECTORES - PRODUCTO ESCALAR - - Observa el rombo de la figra y calcla: B a) AB + BC b) OB + OC c) OA + OD d) AB + CD A O C e) AB + AD f) DB CA Expresa los resltados tilizando los vértices del rombo. D

Más detalles

LÍMITES, CONTINUIDAD Y DERIVADAS

LÍMITES, CONTINUIDAD Y DERIVADAS LÍMITES, CONTINUIDAD Y DERIVADAS ÍNDICE. Concepto de límite. Propiedades de los límites 3. Definición de continidad 4. Tipos de continidad 5. Concepto de derivada 6. Tabla de derivadas 7. Crecimiento y

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II º ENSAYO (FUNCIONES) Apellidos: Nombre: Crso: º Grpo: Día: CURSO 056 Instrcciones: a) Dración: HORA y 30 MINUTOS. b) Debes elegir entre realizar únicamente los catro ejercicios

Más detalles

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u DPTO DE MATEMÁTICAS T5: VECTORES - 1 1.- VECTORES EN EL PLANO TEMA 7: VECTORES Hay magnitdes como ferza, desplazamiento, elocidad, qe no qedan completamente definidas por n número. Por ejemplo, no es sficiente

Más detalles

DERIVADAS. incremento de la variable independiente, x

DERIVADAS. incremento de la variable independiente, x DERIVADAS CPR. JORGE JUAN Xvia-Narón y= f(x): (a,b)r R fnción real definida en el dominio abierto, (a,b)r x 0, x (a,b) x= x -x 0 f(x )= f(x 0 +x) f(x 0 )= f(x 0 ) pntos del dominio de la fnción. incremento

Más detalles

1. Idea intuitiva del concepto de derivada de una función en un punto.

1. Idea intuitiva del concepto de derivada de una función en un punto. Tema : Derivadas. Idea intitiva del concepto de derivada de na fnción en n pnto. Comencemos pensando en na fnción f () t, donde t represente el tiempo y f la evolción de na cantidad calqiera a lo largo

Más detalles

Tema 5: Ecuaciones diferenciales de primer orden homogéneas

Tema 5: Ecuaciones diferenciales de primer orden homogéneas Tema 5: Ecaciones diferenciales de primer orden homogéneas 5.1 Primer método de solción En la e.d. homogénea d (1) f (, ) d donde, de acerdo con lo visto en (.), f(t, t) f(, ), se sstite () v s correspondiente

Más detalles

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR 8 REPSO POO OJETIVO IDENTIFICR LOS ELEMENTOS DE UN VECTOR Nombre: Crso: Fecha: Vector: segmento orientado determinado por dos pntos: (a, a ), origen del ector, y (b, b ), extremo del ector. Coordenadas

Más detalles

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x Regla de la cadena Una de las reglas qe en el cálclo de na variable reslta my útil es la regla de la cadena. Dicho grosso modo, esta regla sirve para derivar na composición de fnciones, esto es, na fnción

Más detalles

MMII_L1_c3: Método de Lagrange.

MMII_L1_c3: Método de Lagrange. MMII_L_c3: Método de Lagrange. Gión de la clase: Esta clase está centrada en plantearse la resolción de las ecaciones casi lineales de primer orden mediante el Método de Lagrange. El método eqivale a plantearse

Más detalles

INTEGRALES DE SUPERFICIE.

INTEGRALES DE SUPERFICIE. INTEGALE DE UPEFICIE. 31. Encontrar el área de la sperficie definida como intersección del plano x + y + z 1 con el sólido x + y 1. olción La sperficie dada se pede parametrizar por x cos v : y (/ ) sen

Más detalles

GEOMETRÍA: VECTORES 1 TEMA 7: VECTORES

GEOMETRÍA: VECTORES 1 TEMA 7: VECTORES GEOMETRÍA: VECTORES 1 Definición de ector: TEMA 7: VECTORES Un ector es n segmento orientado qe qeda determinado por dos pntos, A y B, el primero de los pntos se denomina origen y el segndo es el extremo,

Más detalles

Práctico Nº 4 : Vectores

Práctico Nº 4 : Vectores Práctico Nº 4 : Vectores Nota: Cando en el presente práctico los ectores estén dados por coordenadas salo qe se aclare lo contrario deberá entenderse qe éstas se refieren a la base canónica del espacio

Más detalles

EJERCICIOS RESUELTOS DEL TEMA: GEOMETRÍA EN R 3

EJERCICIOS RESUELTOS DEL TEMA: GEOMETRÍA EN R 3 GEOMETRÍA Ejercicios reseltos del tema Geometría en R Jan S. Herrera Lpión EJERCICIOS RESUELTOS DEL TEMA: GEOMETRÍA EN R Ejercicio Halla n vector perteneciente a R qe sea perpendiclar a (,8,-) y cyo prodcto

Más detalles

Unidad 3. La Integral Definida. 08/03/2016 Prof. José G. Rodríguez Ahumada 1 de 20

Unidad 3. La Integral Definida. 08/03/2016 Prof. José G. Rodríguez Ahumada 1 de 20 Unidad La Integral Definida 08/0/06 Prof. José G. Rodrígez Ahmada de 0 Actividades. Referencia del Teto: Sección 4. Área Ver ejemplos 4. Ejercicios de práctica: Impares del 9. Sección 4. La Sma de Riemann

Más detalles

Hoja Problemas Espacio Vectorial { } { } del espacio vectorial R 3. Hallar las coordenadas de a en la base B' = { u 1,u 2,u.

Hoja Problemas Espacio Vectorial { } { } del espacio vectorial R 3. Hallar las coordenadas de a en la base B' = { u 1,u 2,u. EJERCICIO PARA ENTREGAR Sean los sbespacios vectoriales: Hoja Problemas Espacio Vectorial 6-7 {( ) } F {( ) R / } E αγ βγ αβ γ / α β γ R Se pide: a) ases de E F EF E F b) Ecaciones implícitas de E F Sea

Más detalles

Vector director de una recta

Vector director de una recta Vector director de na recta En la figra se observa n vector libre aplicado en distintos pntos. Cada na de las flechas resltantes proporciona na recta. Se tienen así las rectas r, r y r3 qe son paralelas

Más detalles

3. Campos escalares diferenciables: gradiente.

3. Campos escalares diferenciables: gradiente. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. 3. Campos escalares diferenciables: gradiente. Plano tangente diferenciabilidad. Consideremos na fnción f :(, ) U f(, ) de dos variables n pnto (, interior al conjnto

Más detalles

1 Parametrización de super cies

1 Parametrización de super cies Dpto. Matemática Aplicada E.T.S. Arqitectra, U.P.M. Crvas y Sper cies HOJA DE PROBLEMAS: SUPERFICIES 1 Parametrización de sper cies 1. Obtener dos parametrizaciones reglares para cada na de las sigientes

Más detalles

Concurso Nacional de Matemáticas Pierre Fermat Problemas

Concurso Nacional de Matemáticas Pierre Fermat Problemas Concrso Nacional de Matemáticas Pierre Fermat 014 Examen para Nivel Secndaria Etapa Eliminatoria Instrcciones: No tilizar cellar (éste deberá de estar apagado), ipod, notebook, calcladora ó calqier otro

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecaciones Diferenciales de Primer Orden Definición Clasificación de las Ecaciones Diferenciales Una ecación diferencial es aqélla qe contiene las derivadas o diferenciales de na o más variables

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CASTELAR ADAJOZ A Mengiano PRUEA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTARIA JUNIO - 9 (RESUELTOS por Antonio Mengiano) MATEMÁTICAS II Tiempo máimo: horas y mintos - Debe escogerse na sola de las opciones

Más detalles

Cálculo diferencial. 2. f(x)= x+3. a) f(6), f(-6). b) f(c), f(x + Δx). f (x) = x a) f( 2 ). f (x+δx) f (x) b) 4. f(x) = 3x 1. f (x) f ( 1 ) a) = 3x

Cálculo diferencial. 2. f(x)= x+3. a) f(6), f(-6). b) f(c), f(x + Δx). f (x) = x a) f( 2 ). f (x+δx) f (x) b) 4. f(x) = 3x 1. f (x) f ( 1 ) a) = 3x Cálculo diferencial. Funciones y gráficas En los ejercicios -5 evaluar la función (si está definida) en los valores de la variable independiente indicados. Simplificar los resultados.. f() =. a) f(0),

Más detalles

Mecánica I Tema 5. Manuel Ruiz Delgado. 1 de diciembre de 2010

Mecánica I Tema 5. Manuel Ruiz Delgado. 1 de diciembre de 2010 Mecánica I Tema 5 Dinámica del sólido rígido Manel Ri Delgado 1 de diciembre de 010 eometría de masas Centro de masas de gravedad............................................... 4 Tensor de inercia.........................................................

Más detalles

BLOQUE 4: GEOMETRÍA. Vectores. La recta en el plano

BLOQUE 4: GEOMETRÍA. Vectores. La recta en el plano BLOQUE 4: GEOMETRÍA Vectores La recta en el plano 63 VECTORES Hay magnitdes qe no qedan bien definidas mediante n número; necesitamos conocer además s dirección y s sentido. A estas magnitdes se les llama

Más detalles

Consideremos el siguiente problema de valores iniciales y de contorno: = M(w(x, t)), 0 < x < L, t > 0

Consideremos el siguiente problema de valores iniciales y de contorno: = M(w(x, t)), 0 < x < L, t > 0 EJEMPLOS DE RESOLUCIÓN DE PROBLEMAS NO HOMOGÉNEO POR DESARROLLO EN FUNCIONES PROPIAS 1. PROBLEMA NO-HOMOGÉNERO CON CONDICIONES DE CONTORNO HO- MOGÉNEAS Consideremos el sigiente problema de valores iniciales

Más detalles

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2 34 CAPÍTULO 3 Vectores en R R 3 ais sqare a=ais; ais([min(a([1,3])),ma(a([,4])),min(a([1,3])),ma(a([,4]))]) % hold off Una ez qe se haa escrito la fnción en n archio con nombre lincomb.m, dé el comando

Más detalles

GEOMETRÍA ANALÍTICA AB CD CD AB CD

GEOMETRÍA ANALÍTICA AB CD CD AB CD GEOMETRÍA ANALÍTICA.- Vectores..- Vectores fijos en el plano Llamaremos ector fijo a todo par ordenado de pntos del plano. Si los pntos son A y B conendremos en representar por AB el ector fijo qe determinan;

Más detalles

INGENIERIA CIVIL EN MECANICA GUIA DE LABORATORIO

INGENIERIA CIVIL EN MECANICA GUIA DE LABORATORIO INGENIERIA CIVIL EN MECANICA GUIA DE LABORATORIO ASIGNATURA MECANICA DE FLUIDOS II CODIGO 9513 NIVEL 3 EXPERIENCIA C9 ESTUDIO DE DESARROLLO DE CAPA LIMITE" OBJETIVO GENERAL UNIVERSIDAD DE SANTIAGO DE CHILE

Más detalles

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa NOMBRE: VECTORES EN EL PLANO Ángel de la Llave Canosa 1 VECTORES EN EL PLANO VECTOR FIJO Un vector fijo AB es n segmento orientado, qe está definido por dos pntos: Un pnto origen y n pnto extremo. Los

Más detalles

Funciones en explícitas

Funciones en explícitas Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos

Más detalles

TEMA 14: COMPORTAMIENTO REAL DE LAS MÁQUINAS HIDRAULICAS

TEMA 14: COMPORTAMIENTO REAL DE LAS MÁQUINAS HIDRAULICAS TEMA 14: COMORTAMIENTO REAL DE LAS MÁUINAS IDRAULICAS 14.1.- La desviación del comportamiento teórico: Definición de érdidas 14..- Altra útil de na bomba 14.3.- Otros arámetros qe definen la bomba 14.4.-

Más detalles

Apuntes de Cálculo Diferencial para la asesoría en el área de matemáticas

Apuntes de Cálculo Diferencial para la asesoría en el área de matemáticas Universidad Atónoma del Estado de Méico Plantel Ignacio Ramírez Calzada Academia de Matemáticas Núcleo de formación: Matemáticas Apntes de Cálclo Diferencial para la asesoría en el área de matemáticas

Más detalles

CENTRO DE BACHILLERATO TECNOLÓGICO INDUSTRIAL Y SERVICIOS NO. 50 CURSO CÁLCULO INTEGRAL PERIODO AUTOR JULIO MELÉNDEZ PULIDO

CENTRO DE BACHILLERATO TECNOLÓGICO INDUSTRIAL Y SERVICIOS NO. 50 CURSO CÁLCULO INTEGRAL PERIODO AUTOR JULIO MELÉNDEZ PULIDO CENTRO DE BACHILLERATO TECNOLÓGICO INDUSTRIAL Y SERVICIOS NO. 50 CURSO CÁLCULO INTEGRAL PERIODO 0- AUTOR JULIO MELÉNDEZ PULIDO Cálclo Integral 0- CBTIS No. 50 CONCEPTO FUNDAMENTAL:. INTEGRALES ELEMENTALES

Más detalles

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v.

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v. Estdios J.Concha ( fndado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Jaier Concha y Ramiro Froilán TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS

Más detalles

VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v.

VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v. COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatra: FÍSICA 10º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER DE VECTORES VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por

Más detalles

6 La semejanza en el plano

6 La semejanza en el plano TIVIS MPLIIÓN 6 La semejanza en el plano 1. alcla las medidas de los segmentos,, z, t en la sigiente figra, sabiendo qe las medidas de los segmentos conocidos están epresadas en metros. 4 G z t. ibja n

Más detalles

1 Composición de funciones

1 Composición de funciones Composición de fnciones La composición de fnciones o la fnción de fnción es na operación qe aparece natralmente en varias sitaciones. En esta nota, presentaremos (sin demostración) algnos de los resltados

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169

SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169 TEMA. VECTORES SOLUCIONES DE LAS ACTIVIDADES Págs. 58 a 6 Página 58. Obtenemos los sigientes ectores: + Página 6. La representación es la sigiente: x - - Página 5. ( 0) (0 ) x ( ) a + b a / b y ( 6) a

Más detalles

AB se representa por. CD y

AB se representa por. CD y 1.- VECTORES. OPERACIONES Vector fijo Un ector fijo AB es n segmento orientado con origen en el pnto A y extremo en B Todo ector fijo AB tiene tres elementos: Módlo: Es la longitd del segmento AB. El módlo

Más detalles

REVISIÓN DE ANÁLISIS MATEMÁTICO CONCEPTOS Y EJEMPLOS

REVISIÓN DE ANÁLISIS MATEMÁTICO CONCEPTOS Y EJEMPLOS E.T. Nº 7 - Brig. Gral. Apnte teórico TEORÍA DE LOS IRUITOS II REVISIÓN DE ANÁLISIS MATEMÁTIO ONEPTOS Y EJEMPLOS INDIE Página FUNIONES LÍMITES DERIVADAS oncepto definición Derivadas de las fnciones algeraicas

Más detalles

Ecuaciones diferenciales homogéneas

Ecuaciones diferenciales homogéneas Ecaciones dierenciales homogéneas Eisten algnas ecaciones dierenciales qe al hacer n cambio de variable adecado se redcen a ecaciones en variables separadas. Antes de estdiar las ecaciones dierenciales

Más detalles

Funciones I. Importante. Funciones

Funciones I. Importante. Funciones Funciones I Importante El concepto de función es una de las ideas fundamentales en la matemática. Casi cualquier estudio que se refiere a la aplicación de la matemática a problemas prácticos o que requiera

Más detalles

GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN

GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN 1) El vértice de la parábola f ( x) x² 8x 5 corresponde al par ordenado: a) (4,11) b) (4, 11) c) ( 8,5) d) ( 4,11) e)

Más detalles

Los datos del sistema están dados en valores por unidad sobre las mismas bases.

Los datos del sistema están dados en valores por unidad sobre las mismas bases. Ejemplo. Malio Rodrígez. Ejemplo, Malio Rodrígez En el sigiente sistema de potencia ocrre n cortocircito trifásico sólido en el pnto, el cal esta bicado exactamente en la mita de la línea -. Los interrptores

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS Cando al smar dos fracciones algebraicas

Más detalles

Lección 3. Cálculo vectorial. 4. Integrales de superficie.

Lección 3. Cálculo vectorial. 4. Integrales de superficie. GRAO E INGENIERÍA AEROEPACIAL CURO 0 MATEMÁTICA II PTO E MATEMÁTICA APLICAA II 4 Integrales de sperficie Nestro último paso en la etensión del concepto de integral es el estdio de las integrales de sperficie,

Más detalles

CAPÍTULO I INTRODUCCIÓN AL CÁLCULO

CAPÍTULO I INTRODUCCIÓN AL CÁLCULO CAPÍTULO I INTRODUCCIÓN AL CÁLCULO INTRODUCCIÓN Sin duda, la parte más apasionante de la matemática, la constituye el cálculo, podemos mencionar sin lugar a equivocarnos que es la parte que más aplicaciones

Más detalles

= y s 6x 4y 1 =

= y s 6x 4y 1 = . Determina el ángl frmad pr las rectas: r (x y) = ( ) +λλ ( ) y s (x y) = ( 5 7) +µ ( ) x y y r = y s x = c. r x y = y s x + y + = d. r x + y + = y s x y =. Las rectas r x + y = y s x + k y = frman n

Más detalles

Ejercicios de funciones

Ejercicios de funciones Matemáticas 4º ESO. Ejercicios Tema 0. Funciones. Pág /6. Sean las funciones: Ejercicios de funciones Calcular:. Dadas las funciones: Calcular: Probar que: Probar que: 3. Dadas las funciones: Calcular:

Más detalles

Método de los Elementos Finitos para determinar las deflexiones en una viga tipo Euler-Bernoulli

Método de los Elementos Finitos para determinar las deflexiones en una viga tipo Euler-Bernoulli Preliminares Formlación del elemento inito para vigas Ejemplo Método de los Elementos Finitos para determinar las deleiones en na viga tipo Eler-Bernolli Lic. Mat. Carlos Felipe Piedra Cáceda. Estdiante

Más detalles

1. Encontrar la pendiente de la recta tangente a la curva de intersección de la superficie: z = y con el plano y=2, en el punto (2,1, 6 )

1. Encontrar la pendiente de la recta tangente a la curva de intersección de la superficie: z = y con el plano y=2, en el punto (2,1, 6 ) PROBLEMAS RESUELTOS 1. Encontrar la pendiente de la recta tangente a la cra de intersección de la sperficie: z = 1 con el plano =, en el pnto (,1, 6 Solción La pendiente bscada es: z 1 (,1 1 z (,1 6 (,1.

Más detalles

Tema 11: INTRODUCCIÓN A LAS EDP LINEALES DE 2º ORDEN: MÉTODO DE SEPARACIÓN DE VARIABLES

Tema 11: INTRODUCCIÓN A LAS EDP LINEALES DE 2º ORDEN: MÉTODO DE SEPARACIÓN DE VARIABLES Profesor: Roqe Molina egaz Tema 11: INTRODUCCIÓN A AS EDP INEAES DE 2º ORDEN: MÉTODO DE SEPARACIÓN DE VARIABES Programa detallado: 11.1 Introdcción. Sobre solciones de na EDP lineal. 11.2 Método de separación

Más detalles

DERIVADA DE LA FUNCIÓN EXPONENCIAL DE CUALQUIER BASE Y DE LA FUNCIÓN LOGARÍTMO NATURAL

DERIVADA DE LA FUNCIÓN EXPONENCIAL DE CUALQUIER BASE Y DE LA FUNCIÓN LOGARÍTMO NATURAL DERIVADA DE LA FUNCIÓN EXPONENCIAL DE CUALQUIER BASE Y DE LA FUNCIÓN LOGARÍTMO NATURAL Sgerencias para qien imparte el crso: Se deberá concebir a la Matemática como na actividad social y cltral, en la

Más detalles

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor.

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor. Física para iencias e Ingeniería ÁLGEBRA ETORIAL 7.2- Introdcción A lo largo del estdio de la Física srgen na serie de propiedades, tanto de magnitdes escalares como vectoriales, qe se epresan por medio

Más detalles

actividades propuestas en la unidad vectores

actividades propuestas en la unidad vectores actiidades propestas en la nidad ectores Las respestas feron elaboradas por las Profesoras Lciana Calderón y María de los Ángeles Fernandez qienes realizan na adscripción en la Cátedra. Propesta.3: 1)

Más detalles

Guía de Funciones Cuadráticas

Guía de Funciones Cuadráticas Colegio Raimapu Departamento de Matemática Guía de Funciones Cuadráticas Nombre del Estudiante: ) Cuál de los siguientes gráficos representa a la función f() =? A) B) C) D) E) º Medio ) El punto que no

Más detalles

Métodos y técnicas de integración

Métodos y técnicas de integración Métodos y técnicas de integración (º) Integración por sstitción o cambio de variable En mchas ocasiones, cando la integración directa no es tan obvia, es posible resolver la integral simplemente con hacer

Más detalles

1. Definición y formas de de definir una función

1. Definición y formas de de definir una función Tema 7. Funciones 1. Definición y formas de definir una función 1.1. Definición de una función 1.. Formas de definir una función 1..1. A Partir de gráfica 1... Epresión algebraica 1..3. Tabla. Dominio

Más detalles

Material N 29 GUÍA TEÓRICO PRÁCTICA Nº 23

Material N 29 GUÍA TEÓRICO PRÁCTICA Nº 23 C u r s o : Matemática Material N 9 GUÍA TEÓRICO PRÁCTICA Nº 3 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar

Más detalles

Operación Matriciales y Matrices en Sistemas de Potencia

Operación Matriciales y Matrices en Sistemas de Potencia Anexo.. Problema Reselto Considere la red mostrada en la Figra., y los sigientes datos. 4 5 6 7 8 Fig... Tabla... Datos del Sistema Línea X L -. -.5 -.84 -.5 -. -4.84-5.7-6.6 6-7.68 4-7.84 5-8.7 7-8.4

Más detalles

VECTORES. Copia en un papel cuadriculado los cuatro vectores siguientes:

VECTORES. Copia en un papel cuadriculado los cuatro vectores siguientes: a c VECTORES Página REFLEXIONA Y RESUELVE Mltiplica vectores por números Copia en n papel cadriclado los catro vectores sigientes: d Representa: a a c Expresa el vector d como prodcto de no de los vectores

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA GUÍA TEÓRICO PRÁCTICA Nº8 A la función de segundo grado f() = a + b + c, siendo a, b, c lr a 0 se le denomina función cuadrática. La

Más detalles

Resuelve. Unidad 7. Vectores. BACHILLERATO Matemáticas I. Descomposición de una fuerza. Página 171

Resuelve. Unidad 7. Vectores. BACHILLERATO Matemáticas I. Descomposición de una fuerza. Página 171 Resele Página 171 Descomposición de na ferza I. Una cerda de 10 m de larga celga de dos escarpias, A y B, sitadas a la misma altra y a m de distancia entre sí. De ella se celga na pesa de 0 kg de masa

Más detalles

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO ALGEBRA LINEAL. º GRADO DE ECONOMÍA CURSO 0-0 I. ESPACIOS VECTORIALES I.. Vectores. Operaciones con vectores I.. Espacio vectorial. Propiedades I.. Sbespacio vectorial. Operaciones con sbespacios vectoriales

Más detalles

Fundamentos Matemáticos

Fundamentos Matemáticos Tema 1: Fndamentos Matemáticos Antonio Gonále Fernánde Departamento de Física Aplicada III Universidad de Sevilla Parte I Índice Introdcción I. Sistemas de coordenadas II. Campos escalares. Gradiente III.

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coordinación de Matemática II (MAT) Primer semestre de 3 Semana 9: Lnes 3 de Mao Viernes 7 de Mao CÁLCULO Contenidos Clase : Coordenadas polares: Gráfica de cras. Clase : Cálclo de áreas en coordenadas

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecaciones Diferenciales Ordinarias Cristian j. P. Castillo U. ÍNDICE GENERAL PRESENTACIÓN CAPÍTULO. INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES 4. Definición de ecación diferencial 5. Clasificación de

Más detalles

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO Prof. Pedro Ortega Pulido

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO Prof. Pedro Ortega Pulido ALGEBRA LINEAL. º GRADO DE ECONOMÍA CURSO 0-04 Prof. Pedro Ortega Plido I. ESPACIOS VECTORIALES I.. Vectores. Operaciones con vectores I.. Espacio vectorial. Propiedades I.. Sbespacio vectorial. Operaciones

Más detalles

Algebra III (Grado en Matemáticas)

Algebra III (Grado en Matemáticas) Algebra III (Grado en Matemáticas) Relación 1 Curso 2016-2017 Polinomios simétricos Resultante y discriminante Ejercicio 1. Para tres variables, epresar los siguientes polinomios simétricos como polinomios

Más detalles

7.FUNCIÓN REAL DE VARIABLE REAL

7.FUNCIÓN REAL DE VARIABLE REAL 7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el

Más detalles

β = 0,0012 m. A) Usando la figura 2, determine el umbral de audición para la frecuencia del

β = 0,0012 m. A) Usando la figura 2, determine el umbral de audición para la frecuencia del Dos pastores de La Gomera ntrodcción Silbar es na forma de transmitir información a grandes distancias en espacios abiertos. Los lgares donde se tilizan estos lengajes silbados tienen nas características

Más detalles

13/05/14. Conjuntos Ortogonales y mínimos cuadrados CONJUNTOS ORTOGONALES. ! n 6.2. iu j i j. CONJUNTOS ORTOGONALES (opcional) u 1

13/05/14. Conjuntos Ortogonales y mínimos cuadrados CONJUNTOS ORTOGONALES. ! n 6.2. iu j i j. CONJUNTOS ORTOGONALES (opcional) u 1 6 6. Conjntos Ortogonales y mínimos cadrados Se dice qe n conjnto de vectores {,, } en es ortogonal si cada par distinto de vectores del conjnto es ortogonal, esto es, si i i j = 0 mientras i j. El sigiente

Más detalles

VECTORES. Copia nun papel cuadriculado os catro vectores seguintes: Expresa o vector b como produto dun dos vectores a, b ou c por un número.

VECTORES. Copia nun papel cuadriculado os catro vectores seguintes: Expresa o vector b como produto dun dos vectores a, b ou c por un número. a c VECTORES Páxina REFLEXIONA E RESOLVE Mltiplica vectores por números Copia nn papel cadriclado os catro vectores segintes: d Representa: a a c Expresa o vector como prodto dn dos vectores a, o c por

Más detalles

FLUJO EN MEDIOS POROSOS PRINCIPIO DE TERZAGHI

FLUJO EN MEDIOS POROSOS PRINCIPIO DE TERZAGHI Capítlo FLUJO EN MEDIOS POROSOS PRINCIPIO DE TERZGHI Problemas de Geotecnia y Cimientos 34 Capítlo - Fljo en Medios Porosos Principio de Teraghi PROLEM.1 El permeámetro de carga constante, cyo esqema se

Más detalles

Series aritméticas. ó 4 6 8 10 La suma de los primeros n términos en una serie se representa por S n. .Por ejemplo, S 6

Series aritméticas. ó 4 6 8 10 La suma de los primeros n términos en una serie se representa por S n. .Por ejemplo, S 6 LECCIÓN CONDENSADA 11.1 Series aritméticas En esta lección Aprenderás la terminología y la notación asociada con las series Descbrirás dos fórmlas para la sma parcial de na serie aritmética Una serie es

Más detalles

2. Determinar el dominio de las siguientes funciones de variable real. a) f ( x ) = 4 2x b) f ( x ) =x 2 4x + 3

2. Determinar el dominio de las siguientes funciones de variable real. a) f ( x ) = 4 2x b) f ( x ) =x 2 4x + 3 Ejercicios para practicar. Dado los conjntos A = {, 4, 6, 8,0,,4} B = {,, 5, 7, 9,,,5}; Constra la sigiente relación de A en B R = {(, ) / = + }. Adicionalmente determine el dominio el rango de cada na

Más detalles

Áreas de Regiones Cuadrangulares

Áreas de Regiones Cuadrangulares Geoetría ÍTUL XIII Áreas de egiones adranglares 01. ado n triánglo, en la prolongación de y en se bican los pntos y Q respectivaente, se trazan H y Q ; ( H) ; calcle el área de la región QH si = H = H;

Más detalles

que asocia a cada número entero su triple menos dos:

que asocia a cada número entero su triple menos dos: Dada la función f que asocia a cada número entero su triple menos dos: a) Escribe la epresión que nos proporciona f 0,, b) Calcula la imagen para ) Dada la siguiente función : ), ) y 0) a) Calcula b) Determina

Más detalles

Funciones lineales, cuadráticas y polinómicas.

Funciones lineales, cuadráticas y polinómicas. Funciones lineales, cuadráticas El objetivo de esta ejercitación es familiarizarse con las epresiones matemáticas de funciones lineales cuadráticas, así como con sus representaciones gráficas. Matemáticamente,

Más detalles

VECTORES EN EL PLANO.

VECTORES EN EL PLANO. VECTORES EN EL PLNO. Introdcción: Magnitdes escalares ectoriales. Ha ciertas magnitdes físicas, tales como la masa, la presión, el olmen, la energía, la temperatra, etc., qe qedan completamente definidas

Más detalles

1. El plano cartesiano

1. El plano cartesiano 1. El plano cartesiano Para representar puntos en un plano, definidos por un par ordenado de números reales, se utiliza generalmente el sistema de coordenadas rectangulares, que se caracteriza por: Estar

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

VII.- TEORÍA ELEMENTAL DE LA CAPA LIMITE BIDIMENSIONAL pfernandezdiez.es

VII.- TEORÍA ELEMENTAL DE LA CAPA LIMITE BIDIMENSIONAL pfernandezdiez.es VII.- TEORÍA ELEMENTAL DE LA CAPA LIMITE BIDIMENSIONAL VII.1.- CAPA LIMITE LAMINAR Y TURBULENTA EN FLUJO SOBRE PLACA PLANA En el movimiento de flidos sobre na placa plana, la Hidrodinámica clásica se limita

Más detalles

Funciones, límites y continuidad

Funciones, límites y continuidad 8/0/016 Funciones, límites y continuidad C U R S O 0 1 5-0 1 6 Funciones, limites y continuidad Los puntos rojos son los que entran en el eamen de º evaluación 1) Concepto de función. Dominio y recorrido.

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO.- PRIMERO DE BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por AB o por. El pnto A es el origen y el pnto B

Más detalles

RECTAS Y PLANOS EN EL ESPACIO. donde OP y OP

RECTAS Y PLANOS EN EL ESPACIO. donde OP y OP RECTAS Y ANOS EN E ESACIO A RECTA EN R Ecacines de la recta En el espaci R se determina na recta si se cnce n pnt de ella dirección representada pr n ectr n nl Figra a Recta en R Cm se bsera en la Figra

Más detalles

Estructura de Computadores. 1. Ejercicios Resueltos 1.1.

Estructura de Computadores. 1. Ejercicios Resueltos 1.1. Estrctra de Comptadores Tema. La nidad de memoria II. La memoria virtal Localidad de referencia. Definición de memoria cache. Estrategias de mapeado: directo, asociativo y asociativo por conjntos. Algoritmos

Más detalles

ANÁLISIS MATEMÁTICO I TEMA III : CONTINUIDAD Hoja: 1

ANÁLISIS MATEMÁTICO I TEMA III : CONTINUIDAD Hoja: 1 ANÁLISIS MATEMÁTICO I TEMA III : CONTINUIDAD Hoja: 1 A) i) Estudiar la continuidad, en R, de las siguientes funciones. En caso de eistir puntos de discontinuidad, clasificarlos. Redefinirlas si es posible.

Más detalles

Lección 1: Tensiones verticales en los suelos.

Lección 1: Tensiones verticales en los suelos. Lección : Tensiones verticales en los selos. Tensión vertical en n pnto del terreno. La tensión vertical en n pnto calqiera de n selo a na profndidad es el peso de la colmna de terreno existente por encima

Más detalles