CONCEPTOS CLAVE DE LA UNIDAD 2., entonces se dice que F es antiderivada de f. Siempre que f(x) esté definida.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CONCEPTOS CLAVE DE LA UNIDAD 2., entonces se dice que F es antiderivada de f. Siempre que f(x) esté definida."

Transcripción

1 CONCEPTOS CLAVE DE LA UNIDAD. Si f y F son funciones de, tles que F '( ) f ( ), entonces se dice que F es ntiderivd de f. Siempre que f() esté definid. Alguns veces l ntiderivd, se le llm función primitiv.. Si F y F son ntiderivds de f, entonces difieren lo más en un constnte. En generl, si F( ) es l ntiderivd de f( ), entonces tmbién lo es F( ) C, donde C puede ser culquier número rel. A l ntiderivd F( ) C, se le conoce como l ntiderivd más generl. 3. L ntiderivd más generl de F de f = n, donde n es un numero rcionl (n ), está dd por F = n+ n+ +C n n 4. Si f( ) y f( ) donde y son dos constntes culesquier y n y n son números rcionles n y n ) y si f ( ) f ( ) f ( ). entonces L ntiderivd más generl F( ) de f( ) es: F X = n + n + n + n + C; C = C + C En generl, tl como en l sum de derivds, l ntiderivd de un sum de funciones, es igul l sum de sus ntiderivds 5. Cundo se especificn cierts condiciones iniciles pr F( ), es posible conocer el vlor de l constnte C, es decir, si se conocen los vlores y b, tles que F( ) C b, entonces se despej pr obtener el vlor de.c, esto es: C b F( ) 6. Si F( ) es l ntiderivd de f( ), entonces eisten un infinidd de ntiderivds que tienen l form F( ) C, donde C es un número rel no especificdo. Conceptos Clve de l Unidd -

2 7. El conjunto infinito de ntiderivds es lo que se nombr como integrl indefinid. De este modo si F( ) es l ntiderivd de f( ), entonces l integrl indefinid de f( ) es igul F( ) C. L notción utilizd pr epresr lo nterior es: f ( ) d F( ) C Donde C es l constnte de integrción, f( ) es el integrndo y l vrible de integrción. 8. Al símbolo se denomin signo integrl y d indic que es l vrible de integrción y se le llm diferencil de. 9. L integrl indefinid de f es un ntiderivd. Al proceso de encontrr l función F prtir de un f dd, se le conoce como integrción indefinid. L regl de ls potencis pr l integrl indefinid es: n n n d C Donde n es un número rcionl y n. 0. Un regl de integrción es kf() d = k f d Donde k es un número rel culquier. Como l ntiderivd de un sum de funciones es igul l sum de ls ntiderivds, usndo l notción de integrl indefinid se puede epresr como: f ( ) g( ) d f ( ) d g( ) d Ls integrles inmedits de ls funciones eponenciles y logrítmics, se listn continución: d. ln C 3. e d e C 4. d ln C - Conceptos Clve de l Unidd

3 Ls integrles inmedits de ls funciones trigonométrics 5. send cos C, 6. cos d sen C 7. tn d ln cos C ln sec C 8. cot d ln sen C 9. sec d ln sec tn C 0. csc d ln csc cot C.. sec csc d tn C d cot C 3. sec tn d sec C 4. csc cot d csc C Si f ( ) d F( ) C, entonces f ( g( )) g '( ) d F( g( )) C 5. Aplicndo l regl de l cden l derivd de F( g( )) C y y que F' f : ) F '( g( )) g '( ) f ( g( )) g '( ) L fórmul de integrción por tnto b) f ( g( )) g '( ) d F( g( )) C du 6. Si u g( ), derivndo con respecto, g'( ) d, obteniendo l diferencil du g '( ) d y sustituyendo en l fórmul de integrción b), tenemos: f ( g( )) g '( ) d f ( u) du F( u) C F( g( )) C L integrl se obtiene con l formul y ntes vist r r r f ( u) du u du u C Pr integrles eponenciles y logrítmics: du 7. ln u C u u u 8. e du e C 9. u u du ln C Pr ls funciones trigonométrics, donde u es función de, u g( ) 30. senudu cosu C 35. cscudu ln cscu cot u C Conceptos Clve de l Unidd -3

4 3. cos udu senu C 3. tn udu ln cosu C ln secu C 33. cot udu ln senu C 34. secudu ln secu tn u C sec csc udu tn u C udu cot u C 38. secu tn udu secu C, 39. cscu cot udu cscu C Si un integrndo contiene epresiones de los tipos: ) b) + c) Donde es un constnte myor que cero. Es posible poyrse en el tringulo rectángulo y el teorem de Pitágors pr hcer ls sustituciones siguientes. Cso : Cso : + Cso 3: = sen 4. = tn 4. = sec Cundo se trt de integrr por cmbio de vrible y l vrible originl no se elimin, se puede usr otro método de integrción que es el de integrción por prtes. Así como el método de cmbio de vrible se poyb en l regl de l cden pr ls derivds, l integrción por prtes se bs en l derivd de un producto de funciones. Sen dos funciones tles que u = f() y v = g(), l derivd del producto de ests funciones está dd por d d dv du uv = u + v d d en form diferencil Despejndo d uv = udv + vdu udv = d uv vdu -4 Conceptos Clve de l Unidd

5 Integrndo udv = d uv vdu 43. Finlmente l fórmul pr integrción por prtes puede escribirse udv = uv vdu Conceptos Clve de l Unidd -5

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

Integrales. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid

Integrales. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid Jesús Grcí de Jlón de l Fuente IES Rmiro de Meztu Mdrid Diferencil de un función Diferencil de un función Definición L diferencil de un función f es igul su derivd por un incremento rbitrrio de l vrible.

Más detalles

Descomposición elemental (ajustes por constantes)

Descomposición elemental (ajustes por constantes) Descomposición elementl (justes por constntes) OBSERVACIONES. Ls primers integrles que precen se hn obtenido del libro de Mtemátics I (º de Bchillerto) McGrw-Hill, Mdrid 007.. Otros problems se hn obtenido

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grdo en Químic Bloque Funciones de un vrible Sección.6: Integrción y plicciones. L integrl sirve pr clculr áres de figurs plns limitds por curvs. Pr definir l integrl de un función f : [, b] R se utilizn

Más detalles

x b EXPONENTES Y LOGARITMOS Formulario Matemático para Economía III x = x x = Claudia Aburto 1 = x a A. Propiedades exponenciales: 1.

x b EXPONENTES Y LOGARITMOS Formulario Matemático para Economía III x = x x = Claudia Aburto 1 = x a A. Propiedades exponenciales: 1. Formulrio Mtemático pr Economí III EXPONENTES Y LOGARITMOS Cludi Aurto A. Propieddes eponenciles:. Multiplicción 4. División 6 4 6 +. Distriución con Multiplicción: () () 5 5 5 4. Distriución con división

Más detalles

Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica

Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. L Integrl.-. Definición e interpretción geométric Dd un función continu f :[, b] R ynonegtiv (f (), [, b]), vmos considerr l región del plno bjo l gráfic de

Más detalles

Teorema fundamental del Cálculo.

Teorema fundamental del Cálculo. Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

INTEGRACIÓN POR CAMBIO DE VARIABLE

INTEGRACIÓN POR CAMBIO DE VARIABLE INTEGRACIÓN POR CAMBIO DE VARIABLE Propósitos Identificar las operaciones algebraicas que convierten una integral a una forma inmediata (cambio de variable). Utilizar las tablas de integrales inmediatas

Más detalles

Método de sustitución trigonométrica

Método de sustitución trigonométrica MB0005_MAAL_Sustitución Versión: Septiembre 0 Método de sustitución trigonométric Por: Sndr Elvi Pérez El método de sustitución trigonométric se utiliz cundo ls integrles directs de epresiones rcionles

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene

Más detalles

En general, si una función f(x) tiene una función primitiva F(x), entonces tiene infinitas primitivas cuyas expresiones serán F k

En general, si una función f(x) tiene una función primitiva F(x), entonces tiene infinitas primitivas cuyas expresiones serán F k º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INTEGRACIÓN.-INTEGRAL INDEFINIDA. PROPIEDADES El Cálculo Integrl o integrción consiste en hllr l función f() cundo se conoce su derivd f

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

CAPÍTULO 3. PROCEDIMIENTOS DE INTEGRACIÓN 3.1. Integración por cambio de variable 3.2. Integración por partes 3.2.1. Producto de un polinomio por una

CAPÍTULO 3. PROCEDIMIENTOS DE INTEGRACIÓN 3.1. Integración por cambio de variable 3.2. Integración por partes 3.2.1. Producto de un polinomio por una CAPÍTULO. PROCEDIMIENTOS DE INTEGRACIÓN.. Integrción por cmbio de vrible.. Integrción por prtes... Producto de un polinomio por un eponencil... Producto de un polinomio por un seno o un coseno... Producto

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

0.1 Sustituciones trigonométricas.-

0.1 Sustituciones trigonométricas.- Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC.. Sustituciones trigonométrics.- Cso.- El integrndo contiene un epresión de l form +. Se sugiere l sustitución = tn u d = sec udu de donde Z + = sec u d ( +)

Más detalles

Métodos de Integración

Métodos de Integración CAPÍTULO Métodos de Integrción. Integrción or sustitución trigonométric A continución veremos un técnic de integrción, l cul se bs en utilizr unciones trigonométrics r licr cmbios de vrible que tendrán

Más detalles

una forma de resolver la integral, consiste en encontrar el desarrollo del

una forma de resolver la integral, consiste en encontrar el desarrollo del SSTITCION NIVERSIDAD FRANCISCO DE PALA SANTANDER FACLTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACIÓN POR SSTITCIÓN Nunc olvides que bst un person o un ide pr cmbir tu vid pr siempre

Más detalles

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos

Más detalles

TEMA 4. Cálculo integral

TEMA 4. Cálculo integral TEMA 4. Cálculo integrl En este tem considerremos el cálculo integrl, que es un complemento nturl del cálculo diferencil y tiene múltiples plicciones en otrs ciencis. 4.. Introducción l cálculo integrl

Más detalles

Parte 7. Derivación e integración numérica

Parte 7. Derivación e integración numérica Prte 7. Derivción e integrción numéric Gustvo Montero Escuel Técnic Superior de Ingenieros Industriles Universidd de Ls Plms de Grn Cnri Curso 006-007 Los problems de derivción e integrción numéric El

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

Métodos de Integración

Métodos de Integración CAPÍTULO Métodos de Integrción. Integrción or sustitución trigonométric A continución veremos un técnic de integrción, l cul se bs en utilizr unciones trigonométrics r licr cmbios de vrible que tendrán

Más detalles

Dpto. Matemática Aplicada Universidad de Málaga

Dpto. Matemática Aplicada Universidad de Málaga ndlucitech Integrción Integrción Dpto. Mtemátic Aplicd Universidd de Málg ndlucitech Integrción Resumen 1 Integrción 2 Áres Volúmenes Longitudes y superficies ndlucitech Integrción Motivción Cálculo de

Más detalles

SELECCIÓN DE PROBLEMAS DEL TEMA 5: INTEGRACIÓN. Análisis Matemático (Grupo 1)

SELECCIÓN DE PROBLEMAS DEL TEMA 5: INTEGRACIÓN. Análisis Matemático (Grupo 1) INTEGRACIÓN. Análisis Mtemático (Grupo ). Clcul ls siguientes integrles indefinids: ( R) ( ) + 4 + 6 4 (e) ln (g) (j) e (m) sen (o) + (h) cos ( ) (k) ln (n) e sen b (p) e sen sen sen (l) (ñ) cos sen rctn

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

Tecnólogo Mecánico-Cartografía

Tecnólogo Mecánico-Cartografía PRÁCTICO MATEMÁTICA II Tecnólogo Mecánico - Tecnólogo en Crtogrfí. Mtemátic II En los cursos re-universitrios rendimos derivr funciones. Dd un función f (derivble) se estudiron cierts técnics que nos ermitín

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

Fórmulas de Derivación. Fórmulas de Integración

Fórmulas de Derivación. Fórmulas de Integración Integrl Inefini A l operción e clclr l ntieriv (primitiv) e n fnción se le llm integrción se enot con el símbolo qe es l inicil e l plbr sm. Si F( es n fnción primitiv e f( se epres: f ( F( C si sólo si

Más detalles

Integrando Derivadas. f = F (b) F (a) F (x ) = F (x i) F (x i 1 ) i. S(f, P ) F (b) F (a) S(f, P ) f = F (b) F (a) f = f(b) f(a)

Integrando Derivadas. f = F (b) F (a) F (x ) = F (x i) F (x i 1 ) i. S(f, P ) F (b) F (a) S(f, P ) f = F (b) F (a) f = f(b) f(a) Unidd 2 Teorem Fundmentl del Cálculo 2. L integrl como función del límite superior Integrndo Derivds Denición. Un función F es un ntiderivd de un función f sobre un conjunto A si tnto F, f estn denidos

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES Unidd didáctic 7. Funciones reles de vrible rel Autors: Glori Jrne, Espernz Minguillón, Trinidd Zbl CONCEPTOS BÁSICOS Se llm función rel de vrible rel culquier plicción f : D R con D Œ R, es decir, culquier

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

1. Función primitiva. Integral de una función.

1. Función primitiva. Integral de una función. . Función primitiv. Integrl de un función. Considermos l función f() =. Nos preguntmos si eiste otr función F() tl que l derivrl nos de l función f(). F() = verific que F () = f(). Pero tmién nos vldrí

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

La integral indefinida Métodos de integración Integración de funciones de una variable real Integración impropia Aplicaciones de la integral

La integral indefinida Métodos de integración Integración de funciones de una variable real Integración impropia Aplicaciones de la integral Febrero, 2005 Índice generl Se f : I IR. Definición Diremos que F es primitiv de f en I si F (x) = f (x), x I. Teorem Si F y G son dos primitivs de un mism función f en un intervlo I, entonces, / k IR

Más detalles

Integral de Riemann. Introducción a la integración numérica.

Integral de Riemann. Introducción a la integración numérica. Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se

Más detalles

Métodos de Integración I n d i c e

Métodos de Integración I n d i c e Métodos de Integrción I n d i c e Introducción Cmbio de Vrible Integrción por prtes Integrles de funciones trigonométrics Sustitución Trigonométric Frcciones prciles Introducción. En est sección, y con

Más detalles

TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS

TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS. ÁREA BAJO UNA CURVA. El prolem que pretendemos resolver es el cálculo del áre limitd por l gráfic de un función f() continu y positiv, el eje X y ls sciss = y =. Si

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

Integración. 1. El cálculo de áreas, longitudes de arco y volúmenes.

Integración. 1. El cálculo de áreas, longitudes de arco y volúmenes. Integrción El cálculo integrl es de grn importnci en muchs áres de estudio, como l economí, l biologí, l químic, l físic y l mtemátic en generl. Ls plicciones más conocids del cálculo integrl son en: 1.

Más detalles

Tema 9: Cálculo de primitivas. Integrales definidas e impropias.

Tema 9: Cálculo de primitivas. Integrales definidas e impropias. Integrl definid y sus plicciones. Integrles impropis. Tem 9: Cálculo de primitivs. Integrles definids e impropis. José M. Slzr Noviembre de 206 Integrl definid y sus plicciones. Integrles impropis. Tem

Más detalles

Capítulo 4 El Teorema Fundamental del Cálculo (G. Izquierdo 06/2017)

Capítulo 4 El Teorema Fundamental del Cálculo (G. Izquierdo 06/2017) Tis is pge Printer: Opque tis Cpítulo 4 El Teorem Fundmentl del Cálculo G. Izquierdo 6/7) En este cpítulo remos uso del Cálculo Diferencil por lo que resultrá conveniente que el lector repse los métodos

Más detalles

1. Introducción a las integrales indefinidas o primitivas

1. Introducción a las integrales indefinidas o primitivas Tem 6. Integrles. Introducción ls integrles indefinids o primitivs En Mtemátics, un observción rzonble es que cundo se define un operción que proporcion unos resultdos prtir de unos dtos, se puede plnter

Más detalles

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x en INTEGRAL DEFINIDA El concepto de integrl definid está relciondo con el vlor que determin el áre jo l curv dd por un función f (x) el [, ]. (ve l intervlo gráfic) Uno de los primeros psos pr llegr este

Más detalles

Aplicaciones de la derivada

Aplicaciones de la derivada 1 CAPÍTULO 8 Aplicciones de l derivd 8.1 Derivilidd monotoní 1 Como se se, si f es un función derivle en 0, entonces l derivd de f en 0 es un número rel fijo f 0. 0 /, el cul puede ser f 0. 0 / > 0 o ien

Más detalles

Cálculo Diferencial e Integral - Teorema Fundamental. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Teorema Fundamental. Prof. Farith J. Briceño N. Cálculo Diferencil e Integrl - Teorem Fundmentl. Prof. Frith J. Briceño N. Objetivos cubrir Segundo Teorem Fundmentl del Cálculo. Teorem del Vlor Medio. Teorem sobre simetrí. Código : MAT-CDI. Ejercicios

Más detalles

Definición: Dada una función f(x), diremos que la función F(x) es una función primitiva de f(x) en el intervalo [a, b], cuando se verifica que:

Definición: Dada una función f(x), diremos que la función F(x) es una función primitiva de f(x) en el intervalo [a, b], cuando se verifica que: L INTEGRL INDEFINID.- Integrl indeinid. Deiniciones..- Propieddes de l integrl indeinid..- Integrles inmedits..- Métodos de integrción..- Integrl indeinid. Deiniciones Deinición: Dd un unción, diremos

Más detalles

C alculo Octubre 2010

C alculo Octubre 2010 Cálculo Octubre 2010 c Dpto. de Mtemátics UDC c Dpto. de Mtemátics UDC L integrl indefinid Sen I R un intervlo bierto y f : I IR Definición Diremos que F es primitiv de f en I si F (x) = f (x), x I Teorem

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

Definición de la función logaritmo natural.

Definición de la función logaritmo natural. L función logritmo Definición de l función logritmo nturl. Se sbe que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,

Más detalles

Funciones trigonométricas

Funciones trigonométricas Funciones trigonométrics Por Sndr Elvi Pérez Márquez Ls funciones trigonométrics son funciones de l medid de un ángulo, es decir, si el vlor del ángulo cmi, el vlor de ésts tmién. L tl 1 muestrs ls seis

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,

Más detalles

Métodos de Integración

Métodos de Integración CAPÍTULO Métodos de Integrción. Integrción por prtes El método que presentmos en est sección está bsdo en l regl pr derivr un producto de funciones. Como sbemos, si u f.x/ & v g.x/ son funciones derivbles,

Más detalles

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x)

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x) Cálculo de primitivs: f(x) dx = F (x) + C, siendo F (x) un ntiderivd de f(x), es decir, siendo F (x) tl que F (x) = f(x) L constnte C se denomin constnte de integrción; es un constnte rbitrri porque se

Más detalles

Tema 9. La Integral de Riemann Construcción de la integral de Riemann.

Tema 9. La Integral de Riemann Construcción de la integral de Riemann. Tem 9 L Integrl de Riemnn. 9.1. Construcción de l integrl de Riemnn. Definición 9.1.1. Se I = [, b] R un intervlo cerrdo y cotdo (compcto). Se llm prtición de I todo conjunto de puntos P = {x 0, x 1,,

Más detalles

La integral de Riemann

La integral de Riemann L integrl de Riemnn Mrí Muñoz Guillermo mri.mg@upct.es U.P.C.T. Mtemátics I (1 o Ingenierí Electrónic Industril y Automátic) M. Muñoz (U.P.C.T.) L integrl de Riemnn Mtemátics I 1 / 33 Sums superior e inferior

Más detalles

4.6. Teorema Fundamental del Cálculo

4.6. Teorema Fundamental del Cálculo Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 07-2 SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl del Cálculo Proposición 4.5. Se un

Más detalles

Primitiva de una función.

Primitiva de una función. Primitiv de un función. 1 / 29 Definición. Un función derivble F es primitiv de l función f en el intervlo I si F (x) = f(x), pr todo x I. Ejemplos 2 / 29 Ejemplo. Se f : R R tl que f(x) = 4x 3. i) F(x)

Más detalles

La función logaritmo. Definición de la función logaritmo natural.

La función logaritmo. Definición de la función logaritmo natural. L función logritmo Definición de l función logritmo nturl. Se se que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

SEMANA 8: INTEGRAL DE RIEMANN

SEMANA 8: INTEGRAL DE RIEMANN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Ingenierí Mtemátic Universidd de Chile SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl

Más detalles

Definición: Dada una función f(x), diremos que la función F(x) es una función primitiva de f(x) en el intervalo [a, b], cuando se verifica que:

Definición: Dada una función f(x), diremos que la función F(x) es una función primitiva de f(x) en el intervalo [a, b], cuando se verifica que: TEM : L INTEGRL INDEFINID.- Integrl indeinid. Deiniciones..- Propieddes de l integrl indeinid..- Integrles inmedits..- Métodos de integrción..- Integrl indeinid. Deiniciones Deinición: Dd un unción, diremos

Más detalles

Los números reales. 1.4 Orden de los números reales CAPÍTULO

Los números reales. 1.4 Orden de los números reales CAPÍTULO 1 CAPÍTULO 1 Los números reles 1 1.4 Orden de los números reles Un número que pertenezc los reles. 2 R / es positivo si está l derech del cero; esto se denot sí: > 0 o bien 0 < : 0 Un número que pertenezc

Más detalles

2. LAS INTEGRALES DEFINIDA E INDEFINIDA

2. LAS INTEGRALES DEFINIDA E INDEFINIDA 2. LAS INTEGRALES DEFINIDA E INDEFINIDA Ojetivo: El lumno identificrá los conceptos de ls integrles definid e indefinid y los plicrá en el cálculo y otención de integrles Notción sum Se k un numero rel

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

La Integral Definida II

La Integral Definida II L Integrl Definid II Hst hor h sido útil pensr en un integrl definid como el áre entre l gráfic de l función f(x) y el eje x. Usré es interpretción pr mostrrte un propiedd de mner intuitiv. El vlor del

Más detalles

1 TECNICAS DE INTEGRACION

1 TECNICAS DE INTEGRACION UNIVERSIDAD DE CONCEPCION DEPARTAMENTO DE MATEMATICA Prof Jorge Ruiz Cstillo TECNICAS DE INTEGRACION Integrción por prtes Teorem- Sen f g dos funciones derivbles sobre [, b] de mner que f g sen continus

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

Cálculo integral de funciones de una variable

Cálculo integral de funciones de una variable Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del

Más detalles

Guía de cálculo Integral

Guía de cálculo Integral Guí de cálculo Integrl Periodo Agosto-Diciembre Mestro: Gbriel Flores Sánchez gosto 7 ETAPA DE APERTURA Se pretende que en est etp de l secuenci, y trvés de l estrtegi: ejercicio vivencil, el lumno identifique

Más detalles

La Integral Definida

La Integral Definida Nivelción de Mtemátic MTHA UNLP ID Introducción Prtición L Integrl Definid Un prtición del intervlo [, b] es un sucesión de números = x x x x n = b, entre y b, tl que x i x i+ (i =,,, n ) Ejemplo: se llm

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesión de funciones continus (18.04.2017) Se {f n } un sucesión de funciones f n, definids en I. Si {f n } converge uniformemente f en I y ls f n son continus en I, entonces f es continu en I. D:

Más detalles

Integración Numérica

Integración Numérica Métodos Numéricos: Integrción Numéric Edurdo P. Serrno Versión previ br 1 1. L integrl. Considermos el problem de clculr l integrl: If) = fx) dx donde f es un función continu. El vlor If) puede clculrse,

Más detalles

Integración. Tema La integral indefinida

Integración. Tema La integral indefinida Tem Integrción Versión: 0 de septiembre de 08. L integrl indefinid L integrl indefinid ó cálculo de primitivs es, en cierto modo, un proceso inverso l de clculr l derivd de un función. Dd un función f()

Más detalles

Formulario de integrales

Formulario de integrales Formulrio de integrles c -5 Slvdor Blsco Llopis Este formulrio puede ser copido y distribuido libremente bjo l licenci Cretive Commons Atribución. Espñ. Séptim revisión: Febrero 5 Set revisión: Julio 3

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

Fórmulas de cuadratura.

Fórmulas de cuadratura. PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid

Más detalles

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si:

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: .- CONTINUIDAD TEMA 6 Continuidd, Cálculo Diferencil. FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continu en si: Lim f( ) f( ) Pr que un función se continu en un punto se h de cumplir: º f ( ) D º Lim

Más detalles

Para Grados en Ingeniería. Capítulo 4: Integración en una variable. Domingo Pestana Galván José Manuel Rodríguez García

Para Grados en Ingeniería. Capítulo 4: Integración en una variable. Domingo Pestana Galván José Manuel Rodríguez García TEOÍA DE CÁLCULO I Pr Grdos en Ingenierí Cpítulo 4: Integrción en un vrible Domingo Pestn Glván José Mnuel Rodríguez Grcí 1 TEMA 4. Integrción en un vrible 4.1 Cálculo de primitivs Preliminres - Geométricmente,

Más detalles

Cálculo Diferencial e Integral - Longitud de una curva. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Longitud de una curva. Prof. Farith J. Briceño N. Cálculo Diferencil e Integrl - Longitud de un curv. Prof. Frith J. Briceño N. Objetivos cubrir Longitud de un curv. Áre de un superficie de revolución. Ejercicios Código : MAT-CDI. resueltos Ejemplo :

Más detalles

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39 Índice generl. L Integrl Indenid.. Antiderivd e Integrl Indenid...................... Integrles inmedits........................... 3.3. Regl de l Cden............................ 4.4. Sustitución o Cmbio

Más detalles

MATEMÁTICAS APLICADAS A LAS CC. SS. II

MATEMÁTICAS APLICADAS A LAS CC. SS. II INTEGRLES MTEMÁTIS PLIDS LS. SS. II lfonso González IES Fernndo de Men Dpto. de Mtemátics IES FERNNDO DE MEN. DPTO. DE MTEMÁTIS I) ONEPTO DE INTEGRL INDEFINID (pág. 0 del liro de texto) Dd f(x)=x nos preguntmos

Más detalles

2. FUNCIONES REALES DE UNA VARIABLE REAL 2.2. LÍMITES

2. FUNCIONES REALES DE UNA VARIABLE REAL 2.2. LÍMITES Águed Mt Miguel Rees, Dpto. de Mtemátic Aplicd, FI-UPM. 2. FUNCINES REALES DE UNA VARIABLE REAL 2.2.. Límite de un unción en un punto 2.2. LÍMITES Se = () un unción deinid en un entorno del punto R (unque

Más detalles

Funciones trascendentes

Funciones trascendentes Cálculo 1 _Comisión -3 Año 017 Funciones trscendentes I) Funciones trigonométrics Son quells unciones cuys regls de deinición corresponden relciones trigonométrics (seno, coseno, tngente, cotngente, secnte

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

RELACIONES Y FUNCIONES

RELACIONES Y FUNCIONES RELACIONES Y FUNCIONES Variables Independiente: Aquella que puede tomar cualquier valor. Dependiente: Depende del valor que tome la variable independiente. Pares ordenados Se representan (a,b) donde: a:

Más detalles

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE: IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer emen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, eplicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos

Más detalles